Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Insight into Structure-Function Relationships of β-Lactamase and BLIPs Interface Plasticity using Protein-Protein Interactions

Author(s): Tara C. Yadav, Vidhu Agarwal, Amit K. Srivastava, Navdeep Raghuwanshi, Pritish Varadwaj, Ramasare Prasad and Vikas Pruthi*

Volume 25, Issue 31, 2019

Page: [3378 - 3389] Pages: 12

DOI: 10.2174/1381612825666190911154650

Price: $65

Abstract

Background: Mostly BLIPs are identified in soil bacteria Streptomyces and originally isolated from Streptomyces clavuligerus and can be utilized as a model system for biophysical, structural, mutagenic and computational studies. BLIP possess homology with two proteins viz., BLIP-I (Streptomyces exofoliatus) and BLP (beta-lactamase inhibitory protein like protein from S. clavuligerus). BLIP consists of 165 amino acid, possessing two homologues domains comprising helix-loop-helix motif packed against four stranded beta-sheet resulting into solvent exposed concave surface with extended four stranded beta-sheet. BLIP-I is a 157 amino acid long protein obtained from S. exofoliatus having 37% sequence identity to BLIP and inhibits beta-lactamase.

Methods: This review is intended to briefly illustrate the beta-lactamase inhibitory activity of BLIP via proteinprotein interaction and aims to open up a new avenue to combat antimicrobial resistance using peptide based inhibition.

Results: D49A mutation in BLIP-I results in a decrease in affinity for TEM-1 from 0.5 nM to 10 nM (Ki). It is capable of inhibiting TEM-1 and bactopenemase and differs from BLIP only in modulating cell wall synthesis enzyme. Whereas, BLP is a 154 amino acid long protein isolated from S. clavuligerus via DNA sequencing analysis of Cephamycin-Clavulanate gene bunch. It shares 32% sequence similarity with BLIP and 42% with BLIP-I. Its biological function is unclear and lacks beta-lactamase inhibitory activity.

Conclusion: Protein-protein interactions mediate a significant role in regulation and modulation of cellular developments and processes. Specific biological markers and geometric characteristics are manifested by active site binding clefts of protein surfaces which determines the specificity and affinity for their targets. TEM1.BLIP is a classical model to study protein-protein interaction. β-Lactamase inhibitory proteins (BLIPs) interacts and inhibits various β-lactamases with extensive range of affinities.

Keywords: β-lactams, β-lactamase, β-lactamase inhibitory protein, protein-protein interactions, antimicrobial resistance, Streptomyces exofoliatus.

[1]
O’Neill J, Davies S, Rex J, White LJ, Murray R. Review on antimicrobial resistance, tackling drug-resistant infections globally: Final report and recommendations. London: Wellcome Trust and UK Government 2016; p. 10.
[2]
Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013; 13(12): 1057-98.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[3]
Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015; 517(7535): 455-9.
[http://dx.doi.org/10.1038/nature14098] [PMID: 25561178]
[4]
Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci 2015; 22(1): 90-101.
[http://dx.doi.org/10.1016/j.sjbs.2014.08.002] [PMID: 25561890]
[5]
Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr 2017; 57(13): 2857-76.
[http://dx.doi.org/10.1080/10408398.2015.1077192] [PMID: 26464037]
[6]
Wilke MS, Lovering AL, Strynadka NCJ. β-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 2005; 8(5): 525-33.
[http://dx.doi.org/10.1016/j.mib.2005.08.016] [PMID: 16129657]
[7]
Wong D, van Duin D. Novel beta-lactamase inhibitors: unlocking their potential in therapy. Drugs 2017; 77(6): 615-28.
[http://dx.doi.org/10.1007/s40265-017-0725-1] [PMID: 28303449]
[8]
Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32(2): 259-86.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00099.x] [PMID: 18266855]
[9]
Yao Z, Kahne D, Kishony R. Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell 2012; 48(5): 705-12.
[http://dx.doi.org/10.1016/j.molcel.2012.09.016] [PMID: 23103254]
[10]
King DT, Sobhanifar S, Strynadka NCJ. One ring to rule them all: current trends in combating bacterial resistance to the β-lactams. Protein Sci 2016; 25(4): 787-803.
[http://dx.doi.org/10.1002/pro.2889] [PMID: 26813250]
[11]
Frère JM, Joris B, Granier B, Matagne A, Jacob F, Bourguignon-Bellefroid C. Diversity of the mechanisms of resistance to β-lactam antibiotics. Res Microbiol 1991; 142(6): 705-10.
[http://dx.doi.org/10.1016/0923-2508(91)90084-N] [PMID: 1961980]
[12]
Pratt RF, McLeish MJ. Structural relationship between the active sites of β-lactam-recognizing and amidase signature enzymes: convergent evolution? Biochemistry 2010; 49(45): 9688-97.
[http://dx.doi.org/10.1021/bi1012222] [PMID: 20977193]
[13]
Rudgers GW, Palzkill T. Protein minimization by random fragmentation and selection. Protein Eng 2001; 14(7): 487-92.
[http://dx.doi.org/10.1093/protein/14.7.487] [PMID: 11522922]
[14]
Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 2018; 26(10): 2700-7.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[15]
Sandanayaka VP, Prashad AS. Resistance to β-lactam antibiotics: structure and mechanism based design of β-lactamase inhibitors. Curr Med Chem 2002; 9(12): 1145-65.
[http://dx.doi.org/10.2174/0929867023370031] [PMID: 12052169]
[16]
Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 1980; 289(1036): 321-31.
[http://dx.doi.org/10.1098/rstb.1980.0049] [PMID: 6109327]
[17]
Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39(6): 1211-33.
[http://dx.doi.org/10.1128/AAC.39.6.1211] [PMID: 7574506]
[18]
Bonomo RA. β-Lactamases: a focus on current challenges. Cold Spring Harb Perspect Med 2017; 7(1): 1-16.
[http://dx.doi.org/10.1101/cshperspect.a025239] [PMID: 27742735]
[19]
Pitout JDD, Laupland KB. Extended-spectrum β-lactamase-producing enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8(3): 159-66.
[http://dx.doi.org/10.1016/S1473-3099(08)70041-0] [PMID: 18291338]
[20]
Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4): 657-86.
[http://dx.doi.org/10.1128/CMR.18.4.657-686.2005] [PMID: 16223952]
[21]
Rawat D, Nair D. Extended-spectrum ß-lactamases in gram negative bacteria. J Glob Infect Dis 2010; 2(3): 263-74.
[http://dx.doi.org/10.4103/0974-777X.68531] [PMID: 20927289]
[22]
Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14(4): 933-51.
[http://dx.doi.org/10.1128/CMR.14.4.933-951.2001] [PMID: 11585791]
[23]
Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 2010; 54(3): 969-76.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[24]
Ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. BioMed Res Int 2018; 2018 9519718
[http://dx.doi.org/10.1155/2018/9519718]
[25]
Hanes MS, Jude KM, Berger JM, Bonomo RA, Handel TM. Structural and biochemical characterization of the interaction between KPC-2 β-lactamase and β-lactamase inhibitor protein. Biochemistry 2009; 48(39): 9185-93.
[http://dx.doi.org/10.1021/bi9007963] [PMID: 19731932]
[26]
Nordmann P, Naas T, Poirel L, Carbapenemases CA. Global spread of carbapenemase-producing enterobacteriaceae. Emerg Infect Dis 2011; 17(10): 1791-8.
[http://dx.doi.org/10.3201/eid1710.110655] [PMID: 22000347]
[27]
Zhao WH, Hu ZQ. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in gram-negative bacteria. Crit Rev Microbiol 2013; 39(1): 79-101.
[http://dx.doi.org/10.3109/1040841X.2012.691460] [PMID: 22697133]
[28]
Tzouvelekis LS, Tzelepi E, Tassios PT, Legakis NJ. CTX-M-type β-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 2000; 14(2): 137-42.
[http://dx.doi.org/10.1016/S0924-8579(99)00165-X] [PMID: 10720804]
[29]
Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13(9): 785-96.
[http://dx.doi.org/10.1016/S1473-3099(13)70190-7] [PMID: 23969216]
[30]
Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 2014; 20(9): 821-30.
[http://dx.doi.org/10.1111/1469-0691.12719] [PMID: 24930781]
[31]
Scheme SN, Scheme SN. Guest commentary: update of the stabdard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother 2004; 48: 2347-9.
[http://dx.doi.org/10.1128/AAC.48.7.2347-2349.2004] [PMID: 15215079]
[32]
Fisher JF, Mobashery S. Three decades of the class A β-lactamase acyl-enzyme. Curr Protein Pept Sci 2009; 10(5): 401-7.
[http://dx.doi.org/10.2174/138920309789351967] [PMID: 19538154]
[33]
Palzkill T. Metallo-β-lactamase structure and function. Ann N Y Acad Sci 2013; 1277: 91-104.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06796.x] [PMID: 23163348]
[34]
Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin Microbiol Rev 2010; 23(1): 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[35]
Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18(2): 306-25.
[http://dx.doi.org/10.1128/CMR.18.2.306-325.2005] [PMID: 15831827]
[36]
Zmarlicka MT, Nailor MD, Nicolau DP. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infect Drug Resist 2015; 8: 297-309.
[PMID: 26345624]
[37]
Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53(12): 5046-54.
[http://dx.doi.org/10.1128/AAC.00774-09] [PMID: 19770275]
[38]
Khan AU, Maryam L, Zarrilli R. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 2017; 17(1): 101.
[http://dx.doi.org/10.1186/s12866-017-1012-8] [PMID: 28449650]
[39]
Hernandez Valladares M, Felici A, Weber G, et al. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-β-lactamase activity and stability. Biochemistry 1997; 36(38): 11534-41.
[http://dx.doi.org/10.1021/bi971056h] [PMID: 9298974]
[40]
Wang Z, Fast W, Valentine AM, Benkovic SJ. Metallo-β-lactamase: structure and mechanism. Curr Opin Chem Biol 1999; 3(5): 614-22.
[http://dx.doi.org/10.1016/S1367-5931(99)00017-4] [PMID: 10508665]
[41]
Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother 2002; 46(1): 1-11.
[http://dx.doi.org/10.1128/AAC.46.1.1-11.2002] [PMID: 11751104]
[42]
Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009; 22(1): 161-82.
[http://dx.doi.org/10.1128/CMR.00036-08] [PMID: 19136439]
[43]
Mohamudha Parveen R, Harish BN, Parija SC. Ampc Beta lactamases among gram negative clinical isolates from a tertiary hospital, South India. Braz J Microbiol 2010; 41(3): 596-602.
[http://dx.doi.org/10.1590/S1517-83822010000300009] [PMID: 24031534]
[44]
Thomson KS. Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol 2010; 48(4): 1019-25.
[http://dx.doi.org/10.1128/JCM.00219-10] [PMID: 20181902]
[45]
Jaurin B, Grundström T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci USA 1981; 78(8): 4897-901.
[http://dx.doi.org/10.1073/pnas.78.8.4897] [PMID: 6795623]
[46]
Knott-Hunziker V, Petursson S, Jayatilake GS, Waley SG, Jaurin B, Grundström T. Active sites of β-lactamases. The chromosomal β-lactamases of Pseudomonas aeruginosa and Escherichia coli. Biochem J 1982; 201(3): 621-7.
[http://dx.doi.org/10.1042/bj2010621] [PMID: 6807285]
[47]
Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 2014; 58(4): 1835-46.
[http://dx.doi.org/10.1128/AAC.00826-13] [PMID: 24379206]
[48]
Chen Y, Minasov G, Roth TA, Prati F, Shoichet BK. The deacylation mechanism of AmpC β-lactamase at ultrahigh resolution. J Am Chem Soc 2006; 128(9): 2970-6.
[http://dx.doi.org/10.1021/ja056806m] [PMID: 16506777]
[49]
Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother 2010; 54(1): 24-38.
[http://dx.doi.org/10.1128/AAC.01512-08] [PMID: 19721065]
[50]
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3(3): 398-434.
[http://dx.doi.org/10.3390/antibiotics3030398] [PMID: 27025753]
[51]
Antunes NT, Lamoureaux TL, Toth M, Stewart NK, Frase H, Vakulenko SB. Class D β-lactamases: are they all carbapenemases? Antimicrob Agents Chemother 2014; 58(4): 2119-25.
[http://dx.doi.org/10.1128/AAC.02522-13] [PMID: 24468778]
[52]
Evans BA, Amyes SGB. OXA β-lactamases. Clin Microbiol Rev 2014; 27(2): 241-63.
[http://dx.doi.org/10.1128/CMR.00117-13] [PMID: 24696435]
[53]
Smith CA, Antunes NT, Stewart NK, et al. Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. Chem Biol 2013; 20(9): 1107-15.
[http://dx.doi.org/10.1016/j.chembiol.2013.07.015] [PMID: 24012371]
[54]
Reading C, Cole M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 1977; 11(5): 852-7.
[http://dx.doi.org/10.1128/AAC.11.5.852] [PMID: 879738]
[55]
English AR, Retsema JA, Girard AE, Lynch JE, Barth WE. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother 1978; 14(3): 414-9.
[http://dx.doi.org/10.1128/AAC.14.3.414] [PMID: 309306]
[56]
Soc GBR. P-Lactamase inactivation by mechanism-based reagents 1980; 289: 309-19.
[57]
Geddes AM, Klugman KP, Rolinson GN. Introduction: historical perspective and development of amoxicillin/clavulanate. Int J Antimicrob Agents 2007; 30(Suppl. 2): S109-12.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.07.015] [PMID: 17900874]
[58]
Buynak JD. Understanding the longevity of the β-lactam antibiotics and of antibiotic/β-lactamase inhibitor combinations. Biochem Pharmacol 2006; 71(7): 930-40.
[http://dx.doi.org/10.1016/j.bcp.2005.11.012] [PMID: 16359643]
[59]
Monnaie D, Frere J-M. Interaction of clavulanate with class C β-lactamases. FEBS Lett 1993; 334(3): 269-71.
[http://dx.doi.org/10.1016/0014-5793(93)80692-N] [PMID: 8243630]
[60]
Page MGP. b-Lactamase inhibitors. Drug Resist Updat 2000; 3(2): 109-25.
[http://dx.doi.org/10.1054/drup.2000.0137] [PMID: 11498375]
[61]
Payne DJ, Cramp R, Winstanley DJ, Knowles DJC. Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important β-lactamases. Antimicrob Agents Chemother 1994; 38(4): 767-72.
[http://dx.doi.org/10.1128/AAC.38.4.767] [PMID: 8031044]
[62]
Bonnefoy A, Dupuis-Hamelin C, Steier V, et al. In vitro activity of AVE1330A, an innovative broad-spectrum non-β-lactam β-lactamase inhibitor. J Antimicrob Chemother 2004; 54(2): 410-7.
[http://dx.doi.org/10.1093/jac/dkh358] [PMID: 15254025]
[63]
Ehmann DE, Jahić H, Ross PL, et al. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc Natl Acad Sci USA 2012; 109(29): 11663-8.
[http://dx.doi.org/10.1073/pnas.1205073109] [PMID: 22753474]
[64]
Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem 2016; 8(10): 1063-84.
[http://dx.doi.org/10.4155/fmc-2016-0078] [PMID: 27327972]
[65]
Temkin E, Torre-Cisneros J, Beovic B, et al. Ceftazidime-avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob Agents Chemother 2017; 61(2): 1-11.
[PMID: 27895014]
[66]
Lahiri SD, Johnstone MR, Ross PL, McLaughlin RE, Olivier NB, Alm RA. Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob Agents Chemother 2014; 58(10): 5704-13.
[http://dx.doi.org/10.1128/AAC.03057-14] [PMID: 25022578]
[67]
Docquier J-D, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Updat 2018; 36: 13-29.
[http://dx.doi.org/10.1016/j.drup.2017.11.002] [PMID: 29499835]
[68]
Werner JP, Mitchell JM, Taracila MA, Bonomo RA, Powers RA. Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase. Protein Sci 2017; 26(3): 515-26.
[http://dx.doi.org/10.1002/pro.3100] [PMID: 27997706]
[69]
Caselli E, Powers RA, Blasczcak LC, Wu CYE, Prati F, Shoichet BK. Energetic, structural, and antimicrobial analyses of β-lactam side chain recognition by β-lactamases. Chem Biol 2001; 8(1): 17-31.
[http://dx.doi.org/10.1016/S1074-5521(00)00052-1] [PMID: 11182316]
[70]
Patera A, Blaszczak LC, Shoichet BK. Crystal structures of substrate and inhibitor complexes with AmpC β-lactamase: Possible implications for substrate-assisted catalysis. J Am Chem Soc 2000; 122: 10504-12.
[http://dx.doi.org/10.1021/ja001676x]
[71]
Brem J, Cain R, Cahill S, et al. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 2016; 7: 12406.
[http://dx.doi.org/10.1038/ncomms12406] [PMID: 27499424]
[72]
Brem J, Cain R, Cahill S, et al. Structural basis of metallo-β- lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 2016; 7: 12406.
[http://dx.doi.org/10.1038/ncomms12406] [PMID: 27499424]
[73]
Bou G, Santillana E, Sheri A, et al. Design, synthesis, and crystal structures of 6-alkylidene-2′-substituted penicillanic acid sulfones as potent inhibitors of Acinetobacter baumannii OXA-24 carbapenemase. J Am Chem Soc 2010; 132(38): 13320-31.
[http://dx.doi.org/10.1021/ja104092z] [PMID: 20822105]
[74]
Drawz SM, Bethel CR, Doppalapudi VR, et al. Penicillin sulfone inhibitors of class D β-lactamases. Antimicrob Agents Chemother 2010; 54(4): 1414-24.
[http://dx.doi.org/10.1128/AAC.00743-09] [PMID: 20086146]
[75]
Danishuddin M, Khan A, Faheem M, et al. Structure-based screening of inhibitors against KPC-2: designing potential drug candidates against multidrug-resistant bacteria. J Biomol Struct Dyn 2014; 32(5): 741-50.
[http://dx.doi.org/10.1080/07391102.2013.789988] [PMID: 23600675]
[76]
Rotondo CM, Wright GD. Inhibitors of metallo-β-lactamases. Curr Opin Microbiol 2017; 39: 96-105.
[http://dx.doi.org/10.1016/j.mib.2017.10.026] [PMID: 29154026]
[77]
Tehrani KHME, Martin NI. Thiol-containing metallo-β-lactamase inhibitors resensitize resistant gram-negative bacteria to meropenem. ACS Infect Dis 2017; 3(10): 711-7.
[http://dx.doi.org/10.1021/acsinfecdis.7b00094] [PMID: 28820574]
[78]
Li GB, Abboud MI, Brem J, et al. NMR-filtered virtual screening leads to non-metal chelating metallo-β-lactamase inhibitors. Chem Sci (Camb) 2017; 8(2): 928-37.
[http://dx.doi.org/10.1039/C6SC04524C] [PMID: 28451231]
[79]
Hinchliffe P, Tanner CA, Krismanich AP, et al. Structural and kinetic studies of the potent inhibition of metallo-β-lactamases by 6-phosphonomethylpyridine-2-carboxylates. Biochemistry 2018; 57(12): 1880-92.
[http://dx.doi.org/10.1021/acs.biochem.7b01299] [PMID: 29485857]
[80]
Bush K. Game Changers: new β-lactamase inhibitor combinations targeting antibiotic resistance in gram-negative bacteria. ACS Infect Dis 2018; 4(2): 84-7.
[http://dx.doi.org/10.1021/acsinfecdis.7b00243] [PMID: 29232103]
[81]
Doran JL, Leskiw BK, Aippersbach S, Jensen SE. Isolation and characterization of a beta-lactamase-inhibitory protein from Streptomyces clavuligerus and cloning and analysis of the corresponding gene. J Bacteriol 1990; 172(9): 4909-18.
[http://dx.doi.org/10.1128/jb.172.9.4909-4918.1990] [PMID: 2203736]
[82]
Strynadka NCJ, Jensen SE, Johns K, et al. Structural and kinetic characterization of a β-lactamase-inhibitor protein. Nature 1994; 368(6472): 657-60.
[http://dx.doi.org/10.1038/368657a0] [PMID: 8145854]
[83]
Chow DC, Rice K, Huang W, Atmar RL, Palzkill T. Engineering specificity from broad to narrow: design of a β-lactamase inhibitory protein (BLIP) variant that exclusively binds and detects KPC β-lactamase. ACS Infect Dis 2016; 2(12): 969-79.
[http://dx.doi.org/10.1021/acsinfecdis.6b00160] [PMID: 27756125]
[84]
Zhang Z, Palzkill T. Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 β-lactamase with β-lactamase inhibitory protein. J Biol Chem 2003; 278(46): 45706-12.
[http://dx.doi.org/10.1074/jbc.M308572200] [PMID: 12933802]
[85]
Strynadka NC, Eisenstein M, Katchalski-Katzir E, et al. Molecular docking programs successfully predict the binding of a β-lactamase inhibitory protein to TEM-1 β-lactamase. Nat Struct Biol 1996; 3(3): 233-9.
[http://dx.doi.org/10.1038/nsb0396-233] [PMID: 8605624]
[86]
Petrosino J, Rudgers G, Gilbert H, Palzkill T. Contributions of aspartate 49 and phenylalanine 142 residues of a tight binding inhibitory protein of β-lactamases. J Biol Chem 1999; 274(4): 2394-400.
[http://dx.doi.org/10.1074/jbc.274.4.2394] [PMID: 9891008]
[87]
Selzer T, Albeck S, Schreiber G. Rational design of faster associating and tighter binding protein complexes. Nat Struct Biol 2000; 7(7): 537-41.
[http://dx.doi.org/10.1038/76744] [PMID: 10876236]
[88]
Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol 1998; 280: 1-9.
[89]
Adamski CJ, Palzkill T. Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A β-lactamases. BMC Biochem 2017; 18(1): 2.
[http://dx.doi.org/10.1186/s12858-017-0077-1] [PMID: 28264645]
[90]
Kang SG, Park HU, Lee HS, Kim HT, Lee KJ. New β -lactamase inhibitory protein (BLIP-I) from Streptomyces exfoliatus SMF19 and its roles on the morphological differentiation. J Biol Chem 2000; 275(22): 16851-6.
[http://dx.doi.org/10.1074/jbc.M000227200] [PMID: 10747883]
[91]
Lim D, Park HU, De Castro L, et al. Crystal structure and kinetic analysis of beta-lactamase inhibitor protein-II in complex with TEM-1 beta-lactamase. Nat Struct Biol 2001; 8(10): 848-52.
[http://dx.doi.org/10.1038/nsb1001-848] [PMID: 11573088]
[92]
Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 1997; 179(6): 2053-9.
[http://dx.doi.org/10.1128/jb.179.6.2053-2059.1997] [PMID: 9068654]
[93]
Gretes M, Lim DC, de Castro L, et al. Insights into positive and negative requirements for protein-protein interactions by crystallographic analysis of the β-lactamase inhibitory proteins BLIP, BLIP-I, and BLP. J Mol Biol 2009; 389(2): 289-305.
[http://dx.doi.org/10.1016/j.jmb.2009.03.058] [PMID: 19332077]
[94]
Kim MK, Lee KJ. Characteristics of beta-lactamase-inhibiting proteins from Streptomyces exfoliatus SMF19. Appl Environ Microbiol 1994; 60(3): 1029-32.
[PMID: 8161170]
[95]
Huang W, Petrosino J, Palzkill T. Display of functional beta-lactamase inhibitory protein on the surface of M13 bacteriophage. Antimicrob Agents Chemother 1998; 42(11): 2893-7.
[http://dx.doi.org/10.1128/AAC.42.11.2893] [PMID: 9797222]
[96]
Albeck S, Schreiber G. Biophysical characterization of the interaction of the β-lactamase TEM-1 with its protein inhibitor BLIP. Biochemistry 1999; 38(1): 11-21.
[http://dx.doi.org/10.1021/bi981772z] [PMID: 9890878]
[97]
Huang W, Zhang Z, Palzkill T. Design of potent β-lactamase inhibitors by phage display of β-lactamase inhibitory protein. J Biol Chem 2000; 275(20): 14964-8.
[http://dx.doi.org/10.1074/jbc.M001285200] [PMID: 10748011]
[98]
Rudgers GW, Palzkill T. Identification of residues in β-lactamase critical for binding β-lactamase inhibitory protein. J Biol Chem 1999; 274(11): 6963-71.
[http://dx.doi.org/10.1074/jbc.274.11.6963] [PMID: 10066750]
[99]
Schroeder WA, Locke TR, Jensen SE. Resistance to β-lactamase inhibitor protein does not parallel resistance to clavulanic acid in TEM β-lactamase mutants. Antimicrob Agents Chemother 2002; 46(11): 3568-73.
[http://dx.doi.org/10.1128/AAC.46.11.3568-3573.2002] [PMID: 12384366]
[100]
Reynolds KA, Hanes MS, Thomson JM, et al. Computational redesign of the SHV-1 β-lactamase/β-lactamase inhibitor protein interface. J Mol Biol 2008; 382(5): 1265-75.
[http://dx.doi.org/10.1016/j.jmb.2008.05.051] [PMID: 18775544]
[101]
Brown NG, Palzkill T. Identification and characterization of β-lactamase inhibitor protein-II (BLIP-II) interactions with β-lactamases using phage display. Protein Eng Des Sel 2010; 23(6): 469-78.
[http://dx.doi.org/10.1093/protein/gzq017] [PMID: 20308189]
[102]
Strynadka NCJ, Jensen SE, Alzari PM, James MNG. A potent new mode of β-lactamase inhibition revealed by the 1.7 A X-ray crystallographic structure of the TEM-1-BLIP complex. Nat Struct Biol 1996; 3(3): 290-7.
[http://dx.doi.org/10.1038/nsb0396-290] [PMID: 8605632]
[103]
Fryszczyn BG, Adamski CJ, Brown NG, Rice K, Huang W, Palzkill T. Role of β-lactamase residues in a common interface for binding the structurally unrelated inhibitory proteins BLIP and BLIP-II. Protein Sci 2014; 23(9): 1235-46.
[http://dx.doi.org/10.1002/pro.2505] [PMID: 24947275]
[104]
Brown NG, Chow D-C, Palzkill T. BLIP-II is a highly potent inhibitor of Klebsiella pneumoniae carbapenemase (KPC-2). Antimicrob Agents Chemother 2013; 57(7): 3398-401.
[http://dx.doi.org/10.1128/AAC.00215-13] [PMID: 23587951]
[105]
Cohen-Khait R, Schreiber G. Low-stringency selection of TEM1 for BLIP shows interface plasticity and selection for faster binders. Proc Natl Acad Sci USA 2016; 113(52): 14982-7.
[http://dx.doi.org/10.1073/pnas.1613122113] [PMID: 27956635]
[106]
Cohen-Khait R, Schreiber G. Selecting for fast protein-protein association as demonstrated on a random TEM1 yeast library binding BLIP. Biochemistry 2018; 57(31): 4644-50.
[http://dx.doi.org/10.1021/acs.biochem.8b00172] [PMID: 29671590]
[107]
Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C. Tackling the antibiotic resistance caused by class a β-lactamases through the use of β-lactamase inhibitory protein. Int J Mol Sci 2018; 19(8): 19.
[http://dx.doi.org/10.3390/ijms19082222] [PMID: 30061509]
[108]
Joughin BA, Green DF, Tidor B. Action-at-a-distance interactions enhance protein binding affinity. Protein Sci 2005; 14(5): 1363-9.
[http://dx.doi.org/10.1110/ps.041283105] [PMID: 15802650]
[109]
Selzer T, Schreiber G. New insights into the mechanism of protein-protein association. Proteins 2001; 45(3): 190-8.
[http://dx.doi.org/10.1002/prot.1139] [PMID: 11599022]
[110]
Meneksedag D, Dogan A, Kanlikilicer P, Ozkirimli E. Communication between the active site and the allosteric site in class A beta-lactamases. Comput Biol Chem 2013; 43: 1-10.
[http://dx.doi.org/10.1016/j.compbiolchem.2012.12.002] [PMID: 23314151]
[111]
Kanlikiliçer P, Ölmez EÖ, Büdeyri N, Akbulut BS. Investigation of TEM-1 and SHV-1 Beta-Lactamase ligand binding. 5th Int Symp Heal Informatics Bioinformatics, HIBIT 2010; 167-72.
[112]
Fataftah H, Karain W. Detecting protein atom correlations using correlation of probability of recurrence. Proteins 2014; 82(9): 2180-9.
[http://dx.doi.org/10.1002/prot.24574] [PMID: 24723469]
[113]
Lin J, Nishino K, Roberts MC, Tolmasky M, Aminov RI, Zhang L. Mechanisms of antibiotic resistance. Front Microbiol 2015; 6: 34.
[http://dx.doi.org/10.3389/fmicb.2015.00034] [PMID: 25699027]
[114]
Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005; 105(2): 395-424.
[http://dx.doi.org/10.1021/cr030102i] [PMID: 15700950]
[115]
Lodge JM, Minchin SD, Piddock LJV, Busby SJW. Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC β-lactamase. Biochem J 1990; 272(3): 627-31.
[http://dx.doi.org/10.1042/bj2720627] [PMID: 2125210]
[116]
Hancock REW. The bacterial outer membrane as a drug barrier. Trends Microbiol 1997; 5(1): 37-42.
[http://dx.doi.org/10.1016/S0966-842X(97)81773-8] [PMID: 9025234]
[117]
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284(5418): 1318-22.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[118]
Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000; 288(5469): 1251-4.
[http://dx.doi.org/10.1126/science.288.5469.1251] [PMID: 10818002]
[119]
Kong K-F, Jayawardena SR, Indulkar SD, et al. Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother 2005; 49(11): 4567-75.
[http://dx.doi.org/10.1128/AAC.49.11.4567-4575.2005] [PMID: 16251297]
[120]
Balasubramanian D, Schneper L, Merighi M, et al. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes. PLoS One 2012; 7(3) e34067
[http://dx.doi.org/10.1371/journal.pone.0034067] [PMID: 22479525]
[121]
Hennequin C, Robin F, Cabrolier N, Bonnet R, Forestier C. Characterization of a DHA-1-producing Klebsiella pneumoniae strain involved in an outbreak and role of the AmpR regulator in virulence. Antimicrob Agents Chemother 2012; 56(1): 288-94.
[http://dx.doi.org/10.1128/AAC.00164-11] [PMID: 21986829]
[122]
de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 2016; 13(11) e1002184
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[123]
Gomes B, Augusto MT, Felício MR, et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 2018; 36(2): 415-29.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.004] [PMID: 29330093]
[124]
Sable R, Parajuli P, Jois S. Peptides, peptidomimetics, and polypeptides from marine sources: A wealth of natural sources for pharmaceutical applications. Mar Drugs 2017; 15(4): 124.
[http://dx.doi.org/10.3390/md15040124] [PMID: 28441741]
[125]
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 2012; 18(5): 263-72.
[http://dx.doi.org/10.1016/j.molmed.2012.03.003] [PMID: 22480775]
[126]
Henriques ST, Melo MN, Castanho MARB. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 2006; 399(1): 1-7.
[http://dx.doi.org/10.1042/BJ20061100] [PMID: 16956326]
[127]
Nantasenamat C, Prachayasittikul V. Maximizing computational tools for successful drug discovery. Expert Opin Drug Discov 2015; 10(4): 321-9.
[http://dx.doi.org/10.1517/17460441.2015.1016497] [PMID: 25693813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy