Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

General Research Article

In Silico Design of Chimeric and Immunogenic Protein-Containing IpaB and IpaD as a Vaccine Candidate against Shigella dysenteriae

Author(s): Seyed Akbar Arianzad, Mehdi Zeinoddini*, Azam Haddadi, Shahram Nazarian and Reza Hasan Sajedi

Volume 17, Issue 4, 2020

Page: [333 - 341] Pages: 9

DOI: 10.2174/1570164617666190906145843

Price: $65

Abstract

Background:S. dysenteriae is the causative agent of shigellosis, a severe form of bacillary dysentery and this infectious disease is still a health problem worldwide, especially in children. The most important proteins of the Shigella type III secretion system are IpaB and IpaD, which attach to the intestinal epithelial cells and provide the possibility of invasion and disease. These two proteins with immunogenic properties can be a suitable target to design and manufacture subunit recombinant vaccines.

Objective: The aim of this study is to design an immunogenic chimeric protein against IpaB and IpaD as a subunit vaccine candidate through an in silico study.

Methods: Firstly, the immunogenic epitopes of amino acid sequences, physico-chemical parameters, and the allergenicity of the chimeric protein were determined. Then the tertiary structure and the potential ability of the chimeric protein were predicted and evaluated in terms of inducing B cells’ immune responses with effective epitopes. Finally, the optimization of the chimeric protein was examined as the index affecting the protein expression.

Results: Data showed an instability index of 37.18 and a well-established predicted third structure for the chimeric protein, with a z-score of -6.11. Also, more than 99% of its amino acids were in the optimal range. Minimum energy for mRNA structure increased to -317.9 and the Codon Adaptive Index (CAI) rose to 88%. The designed protein had no IgE specific B cell epitopes.

Conclusion: Overall, the results of this study show that the designed protein can be considered as an immunogen vaccine candidate against S. dysenteriae.

Keywords: Shigella, in silico analysis, bioinformatics, chimeric protein, candidate vaccine design, virulence factor.

Graphical Abstract

[1]
Sur, D.; Ramamurthy, T.; Deen, J.; Bhattacharya, S.K. Shigellosis : challenges and management issues. Indian J. Med. Res., 2004, 120(5), 454-462.
[PMID: 15591629]
[2]
Petri, W.A., Jr; Miller, M.; Binder, H.J.; Levine, M.M.; Dillingham, R.; Guerrant, R.L. Enteric infections, diarrhea, and their impact on function and development. J. Clin. Invest., 2008, 118(4), 1277-1290.
[http://dx.doi.org/10.1172/JCI34005] [PMID: 18382740]
[3]
Geo, F.B.; Karen, C.C.; Janet, S.B.; Stephen, A.M.; Timothy, A.M. Enteric gram-negative rods in: Jawetz, Melnick & Adelberg’s medical microbiology; Lange Medical Books/Mc Graw Hill: New York, 2007, Vol. 26, pp. 233-238.
[4]
Edwards, B.H. Salmonella and Shigella species. Clin. Lab. Med., 1999, 19(3), 469-487.
[http://dx.doi.org/10.1016/S0272-2712(18)30099-4] [PMID: 10549421]
[5]
Elston, H.R.; Baudo, J.A.; Stanek, J.P.; Schaab, M. Multi-biochemical test system for distinguishing enteric and other gram-negative bacilli. Appl. Microbiol., 1971, 22(3), 408-414.
[http://dx.doi.org/10.1128/AEM.22.3.408-414.1971] [PMID: 4940877]
[6]
Chang, Z.; Zhang, J.; Ran, L.; Sun, J.; Liu, F.; Luo, L.; Zeng, L.; Wang, L.; Li, Z.; Yu, H.; Liao, Q. The changing epidemiology of bacillary dysentery and characteristics of antimicrobial resistance of Shigella isolated in China from 2004-2014. BMC Infect. Dis., 2016, 16(1), 685-695.
[http://dx.doi.org/10.1186/s12879-016-1977-1] [PMID: 27863468]
[7]
Schroeder, G.N.; Hilbi, H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin. Microbiol. Rev., 2008, 21(1), 134-156.
[http://dx.doi.org/10.1128/CMR.00032-07] [PMID: 18202440]
[8]
Sansonetti, P.J. Microbes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280(3), G319-G323.
[http://dx.doi.org/10.1152/ajpgi.2001.280.3.G319] [PMID: 11171613]
[9]
Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol., 2010, 8(1), 26-38.
[http://dx.doi.org/10.1038/nrmicro2265] [PMID: 19966814]
[10]
Yang, S.C.; Hung, C.F.; Aljuffali, I.A.; Fang, J.Y. The roles of the virulence factor IpaB in Shigella spp. in the escape from immune cells and invasion of epithelial cells. Microbiol. Res., 2015, 181, 43-51.
[http://dx.doi.org/10.1016/j.micres.2015.08.006] [PMID: 26640051]
[11]
Oany, A.R.; Pervin, T.; Mia, M.; Hossain, M.; Shahnaij, M.; Mahmud, S.; Kibria, K.M.K. Vaccinomics opproach for de-signing potential peptide vaccine by targeting shigella spp: Serine protease autotransporter subfamily protein SigA. J. Immunol. Res., 2017, 2017 6412353
[http://dx.doi.org/10.1155/2017/6412353] [PMID: 29082265]
[12]
Martinez-Becerra, F.J.; Kiissmann, J.M.; Diaz-McNair, J.; Choudhari, S.P.; Quick, A.M.; Mellado-Sanchez, G.; Clem-ents, J.D.; Pasetti, M.F. Picking, WL. Broadly protective shi-gella vaccine based on typ3 secretion apparatus proteins; Infect Immune, 2012, pp. 1222-1231.
[13]
Mani, S.; Wierzba, T.; Walker, R.I. Status of vaccine research and development for Shigella. Vaccine, 2016, 34(26), 2887-2894.
[14]
Farhani, I. nezafat, N.; Mahmoodi, SH. Designing a novel multi-epitop peptide vaccine against pathogenic shigella spp based immunoinformatics approaches. Int. J. Pept. Res. Ther., 2018, 25, 541-553.
[15]
Abraham, E.; Wunderink, R.; Silverman, H.; Perl, T.M.; Nasraway, S.; Levy, H.; Bone, R.; Wenzel, R.P.; Balk, R.; Allred, R. Efficacy and safety of monoclonal antibody to human tumor necrosis factor α in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-α MAb Sepsis Study Group. JAMA, 1995, 273(12), 934-941.
[http://dx.doi.org/10.1001/jama.1995.03520360048038] [PMID: 7884952]
[16]
Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci., 2006, 15(11), 2507-2524.
[http://dx.doi.org/10.1110/ps.062416606] [PMID: 17075131]
[17]
El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting flexible length linear B-cell epitopes. Comput. Syst. Bioinform. Conf., 2008, 7, 121-132.
[http://dx.doi.org/10.1142/9781848162648_0011] [PMID: 19642274]
[18]
El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit., 2008, 21(4), 243-255.
[http://dx.doi.org/10.1002/jmr.893] [PMID: 18496882]
[19]
Ansari, H.R.; Raghava, G.P. Identification of conformational B-cell epitopes in an antigen from its primary sequence; Immunme Res, 2010, p. 6.
[20]
Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M.; Reli-able, B. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLOS Comput. Biol., 2012, 8(12) e1002829
[http://dx.doi.org/10.1371/journal.pcbi.1002829] [PMID: 23300419]
[21]
Nazarian, S.; Mousavi Gargari, S.L.; Rasooli, I.; Amani, J.; Bagheri, S.; Alerasool, M. An in silico chimeric multi subunit vaccine targeting virulence factors of Enter Toxigenic Escherichia coli (ETEC) with its bacterial inbuilt adjuvant. J. Microbiol. Methods, 2012, 90(1), 36-45.
[http://dx.doi.org/10.1016/j.mimet.2012.04.001] [PMID: 22525194]
[22]
Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools on the EXPASy server. Method Mol. Biol., 1999, 112, 571-607.
[23]
Doytchinova, I.A.; Flower, D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8, 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[24]
Doytchinova, I.A.; Flower, D.R. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 2007, 25(5), 856-866.
[http://dx.doi.org/10.1016/j.vaccine.2006.09.032] [PMID: 17045707]
[25]
Doytchinova, I.A.; Flower, D.R. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Vaccine J, 2008, 1, 22-26.
[http://dx.doi.org/10.2174/1875035400801010022]
[26]
Wang, S.; Li, W.; Liu, S.; Xu, J. RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res., 2016, 44(W1), W430-W435.
[http://dx.doi.org/10.1093/nar/gkw306] [PMID: 27112573]
[27]
Wiederstein, M.; Sippl, M.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server issue), W407-410.
[28]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[29]
Puigbò, P.; Guzmán, E.; Romeu, A.; Garcia-Vallvé, S. OPTI-MIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res., 2007, 35(Web Server issue), W126-131.
[30]
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13), 3406-3415.
[http://dx.doi.org/10.1093/nar/gkg595] [PMID: 12824337]
[31]
Saha, S.; Raghava, GP. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res., 2006, 34(Web Server issue), 202-209.
[32]
Niyogi, S.K.; Mitra, U.; Dutta, P. Changing patterns of serotypes and antimicrobial susceptibilities of Shigella species isolated from children in Calcutta, India. Jpn. J. Infect. Dis., 2001, 54(3), 121-122.
[PMID: 11544405]
[33]
Kim, Y.J.; Yeo, S.G.; Park, J.H.; Ko, H.J. Shigella vaccine development: prospective animal models and current status. Curr. Pharm. Biotechnol., 2013, 14(10), 903-912.
[http://dx.doi.org/10.2174/1389201014666131226123900] [PMID: 24372251]
[34]
McKenzie, R.; Venkatesan, M.M.; Wolf, M.K.; Islam, D.; Grahek, S.; Jones, A.M.; Bloom, A.; Taylor, D.N.; Hale, T.L.; Bourgeois, A.L. Safety and immunogenicity of WRSd1, a live attenuated Shigella dysenteriae type 1 vaccine candidate. Vaccine, 2008, 26(26), 3291-3296.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.079] [PMID: 18468742]
[35]
Chitradevi, S.T.S.; Kaur, G.; Sivaramakrishna, U.; Singh, D.; Bansal, A. Development of recombinant vaccine candidate molecule against Shigella infection. Vaccine, 2016, 34(44), 5376-5383.
[http://dx.doi.org/10.1016/j.vaccine.2016.08.034] [PMID: 27591952]
[36]
Ashkenazi, S.; Cohen, D. An update on vaccines against Shigella. Ther. Adv. Vaccines, 2013, 1(3), 113-123.
[http://dx.doi.org/10.1177/2051013613500428] [PMID: 24757519]
[37]
Cam, P.D.; Pál, T.; Lindberg, A.A. Immune response against lipopolysaccharide and invasion plasmid-coded antigens of shigellae in Vietnamese and Swedish dysenteric patients. J. Clin. Microbiol., 1993, 31(2), 454-457.
[http://dx.doi.org/10.1128/JCM.31.2.454-457.1993] [PMID: 8432838]
[38]
Markham, A.P.; Barrett, B.S.; Esfandiary, R.; Picking, W.L.; Picking, W.D.; Joshi, S.B.; Middaugh, C.R. Formulation and immunogenicity of a potential multivalent type III secretion system-based protein vaccine. J. Pharm. Sci., 2010, 99(11), 4497-4509.
[http://dx.doi.org/10.1002/jps.22195] [PMID: 20845449]
[39]
Samandari, T.; Kotloff, K.L.; Losonsky, G.A.; Picking, W.D.; Sansonetti, P.J.; Levine, M.M.; Sztein, M.B. Production of IFN-gamma and IL-10 to Shigella invasins by mononuclear cells from volunteers orally inoculated with a Shiga toxin-deleted Shigella dysenteriae type 1 strain. J. Immunol., 2000, 164(4), 2221-2232.
[http://dx.doi.org/10.4049/jimmunol.164.4.2221] [PMID: 10657678]
[40]
Simon, J.K.; Maciel, M., Jr; Weld, E.D.; Wahid, R.; Pasetti, M.F.; Picking, W.L.; Kotloff, K.L.; Levine, M.M.; Sztein, M.B. Antigen-specific IgA B memory cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates. Clin. Immunol., 2011, 139(2), 185-192.
[http://dx.doi.org/10.1016/j.clim.2011.02.003] [PMID: 21388888]
[41]
Turbyfill, K.R.; Hartman, A.B.; Oaks, E.V. Isolation and characterization of a Shigella flexneri invasin complex subunit vaccine. Infect. Immun., 2000, 68(12), 6624-6632.
[http://dx.doi.org/10.1128/IAI.68.12.6624-6632.2000] [PMID: 11083774]
[42]
Martinez-Becerra, F.J.; Chen, X.; Dickenson, N.E.; Choudhari, S.P.; Harrison, K.; Clements, J.D.; Picking, W.D.; Van De Verg, L.L.; Walker, R.I.; Picking, W.L. Characterization of a novel fusion protein from IpaB and IpaD of Shigella spp. and its potential as a pan-Shigella vaccine. Infect. Immun., 2013, 81(12), 4470-4477.
[http://dx.doi.org/10.1128/IAI.00859-13] [PMID: 24060976]
[43]
Heine, S.J.; Diaz-McNair, J.; Andar, A.U.; Drachenberg, C.B.; van de Verg, L.; Walker, R.; Picking, W.L.; Pasetti, M.F. Intradermal delivery of Shigella IpaB and IpaD type III secretion proteins: kinetics of cell recruitment and antigen uptake, mucosal and systemic immunity, and protection across serotypes. J. Immunol., 2014, 192(4), 1630-1640.
[http://dx.doi.org/10.4049/jimmunol.1302743] [PMID: 24453241]
[44]
Arabshahi, S.; Nayeri Fasaei, B.; Derakhshandeh, A.; Novinrooz, A. In silico design of a novel chimeric shigella IpaB fused to C terminal of clostridium perfringens enterotoxin as a vaccine candidate. Bioengineered, 2018, 9(1), 170-177.
[http://dx.doi.org/10.1080/21655979.2017.1373535] [PMID: 29091543]
[45]
Murayama, S.Y.; Sakai, T.; Makino, S.; Kurata, T.; Sasakawa, C.; Yoshikawa, M. The use of mice in the Sereny test as a virulence assay of shigella and enteroinvasive Escherichia coli. Infect. Immune., 1986, 51(2), 696-698.
[46]
Panda, C.S.; Riley, L.W.; Kumari, S.N.; Khanna, K.K.; Prakash, K. Comparison of alkaline phosphatase-conjugated oligonucleotide DNA probe with the Sereny test for identification of Shigella strains. J. Clin. Microbiol., 1990, 28(9), 2122-2124.
[http://dx.doi.org/10.1128/JCM.28.9.2122-2124.1990] [PMID: 2229395]
[47]
Hesaraki, M.; Saadati, M.; Honari, H.; Olad, G.; Heiat, M.; Malaei, F.; Ranjbar, R. Molecular cloning and biologically active production of IpaD N-terminal region. Biologicals, 2013, 41(4), 269-274.
[http://dx.doi.org/10.1016/j.biologicals.2013.03.002] [PMID: 23731655]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy