Research Article

性早熟雌性大鼠RFRP3 / GPR147的动态变化

卷 19, 期 10, 2019

页: [766 - 775] 页: 10

弟呕挨: 10.2174/1566524019666190906142445

open access plus

摘要

背景:青春期发育是受神经内分泌系统和下丘脑-垂体-性腺轴调节的复杂生理过程。性早熟是一种常见的儿童内分泌疾病。性早熟的发病机理尚未完全阐明。 RFRP3 / GPR147信号通路可能通过作用于GnRH神经元和垂体来调节促性腺激素的合成和释放,从而抑制禽类和哺乳动物的生殖能力。但是,关于RFRP3在青春期发育和性早熟中的作用知之甚少。目的:观察雌性大鼠模型下丘脑中RF酰胺相关肽3 / G蛋白偶联受体147(RFRP3 / GPR147)的动态变化,并探讨其在性早熟中的作用。 方法:将Sprague-Dawley雌性大鼠随机分为三组:正常,媒介物和性早熟模型。在5天大时,通过皮下注射达那唑溶解的乙醇和乙二醇的混合物来制备具有性早熟的大鼠模型。在不同的日龄(15、25、30、35和40天),通过酶检测外周血中雌二醇(E2),促卵泡激素(FSH)和黄体生成素(LH)的水平实时聚合酶链反应(RT PCR)检测免疫荧光法检测RFRP3的信使核糖核酸(mRNA),促性腺激素释放激素和GPR147的表达。使用免疫荧光共聚焦显微镜观察到RFRP3阳性细胞。 结果:在性早熟模型组中,在第25天和第30天,性激素水平和子宫系数显着高于正常组和媒介物组。性早熟模型大鼠的卵巢形态发育显着早于正常和媒介物组。在性早熟模型组中,RFRP3 / GPR147和GnRH的mRNA表达逐渐升高,并在25天达到峰值。不同日龄和交互作用对RFRP3 mRNA的表达具有统计学意义,而模型组和媒介物组的RFRP3 mRNA水平无统计学意义。模型组与媒介物组在不同日龄之间GPR147 mRNA的表达具有统计学意义。下丘脑RFRP3 / GPR147 mRNA和RFRP3阳性细胞的表达随着青春期的开始而逐渐降低。在35天时,性早熟模型组的RFRP3 mRNA和GPR147 mRNA的水平显着低于媒介物组。同时,性早熟模型大鼠的LH水平在该年龄达到峰值。在媒介物组中,RFRP3 mRNA水平和血清LH逐渐升高,并且LH在35日龄时几乎达到峰值。随后,它逐渐下降并达到35日龄的最低水平。 RFRP3 mRNA和LH的表达呈正相关。 结论:研究结果表明,RFRP3 / GPR147信号通路可能通过调节大鼠的青春期发育和性成熟而参与性早熟的发病机制。

关键词: 性早熟模型大鼠,RFamide相关肽3,G蛋白偶联受体147, 下丘脑-垂体-性腺轴。

[1]
Ellis BJ, Garber J. Psychosocial antecedents of variation in girls’ pubertal timing: maternal depression, stepfather presence, and marital and family stress. Child Dev 2000; 71(2): 485-501.
[http://dx.doi.org/10.1111/1467-8624.00159] [PMID: 10834479]
[2]
Qiao X, Yu J, Fu X, Gao H. Intelligence, Self-concept and Behavior Problem of Girls with Precocious Puberty. Chinese Journal of Clinical Psychology 2008; 16(370): 371-63.
[3]
Teilmann G, Pedersen CB, Jensen TK, Skakkebaek NE, Juul A. Prevalence and incidence of precocious pubertal development in Denmark: an epidemiologic study based on national registries. Pediatrics 2005; 116(6): 1323-8.
[http://dx.doi.org/10.1542/peds.2005-0012] [PMID: 16322154]
[4]
Lin Feng. Z. C.-h., Li Hua, Pan Ling-ling, Rao Gao-feng, Zeng Ai-ping, Yan Dao-ru. Investigation and research about precocious puberty in eastern coast of Zhejiang Province. Journal of Applied Clinical Pediatrics 2004; 19: 640-2.
[5]
Tsutsui K, et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 2000; 275: 661-7.
[http://dx.doi.org/10.1006/bbrc.2000.3350]
[6]
Tsutsui K. A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Prog Neurobiol 2009; 88: 76-88.
[7]
Kriegsfeld LJ, et al. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci USA 2006; 103: 2410-5.
[http://dx.doi.org/10.1073/pnas.0511003103]
[8]
Bentley GE, et al. Gonadotropin-inhibitory hormone and its receptor in the avian reproductive system. Gen Comp Endocrinol 2008; 156: 34-43.
[http://dx.doi.org/10.1016/j.ygcen.2007.10.003]
[9]
Ubuka T, Lai H, Kitani M, et al. Gonadotropin-inhibitory hormone identification, cDNA cloning, and distribution in rhesus macaque brain. J Comp Neurol 2009; 517(6): 841-55.
[http://dx.doi.org/10.1002/cne.22191] [PMID: 19844991]
[10]
Ubuka T, Morgan K, Pawson AJ, et al. Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary axis. PLoS One 2009; 4(12)e8400
[http://dx.doi.org/10.1371/journal.pone.0008400] [PMID: 20027225]
[11]
Ubuka T, Inoue K, Fukuda Y, et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 2012; 153(1): 373-85.
[http://dx.doi.org/10.1210/en.2011-1110] [PMID: 22045661]
[12]
Yin H, Ukena K, Ubuka T, Tsutsui K. A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): identification, expression and binding activity. J Endocrinol 2005; 184: 257-66.
[13]
Clarke IJ, Qi Y, Puspita Sari I, Smith JT. Evidence that RF-amide related peptides are inhibitors of reproduction in mammals. Front Neuroendocrinol 2009; 30: 371-8.
[14]
Ubuka T, et al. Gonadotropin-inhibitory hormone neurons interact directly with gonadotropin-releasing hormone-I and -II neurons in European starling brain. Endocrinology 2007; 149: 268-78.
[15]
Ubuka T, Ukena K, Sharp PJ, Bentley GE, Tsutsui K. Gonadotropin-inhibitory hormone inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and release in male quail. Endocrinology 2006; 147: 1187-94.
[http://dx.doi.org/10.1210/en.2005-1178]
[16]
Morishita H, Takemoto M, Kondo H, Higuchi K, Aono T. Induction of true precocious puberty by neonatal treatment with danazol in female rats. Neurosci Lett 1993; 157(1): 33-6.
[http://dx.doi.org/10.1016/0304-3940(93)90636-Y] [PMID: 8233026]
[17]
Izquierdo Ade M, Mishima FD, Carrard VC, Farina M, Nojima Mda C. Effects of induced precocious puberty on cranial growth in female Wistar rats. Eur J Orthod 2012; 34(2): 133-40.
[http://dx.doi.org/10.1093/ejo/cjq130] [PMID: 21808074]
[18]
Fan L, Li D, Fan P, Liu M. Study and correlation analysis of normal reference range of body weight and the main organs coefficient of clean SD rat. Chinese Journal of Health Laboratory Technology 2012; 22: 3.
[19]
Krewson TD, Supelak PJ, Hill AE, et al. Chromosomes 6 and 13 harbor genes that regulate pubertal timing in mouse chromosome substitution strains. Endocrinology 2004; 145(10): 4447-51.
[http://dx.doi.org/10.1210/en.2004-0543] [PMID: 15284200]
[20]
Li S, et al. Role of kisspeptin/GPR54signaling pathways in prompting formation pathogenesis of precocious puberty Chinese Journal of Pathophysiology 2015; 31: 1345-51.
[21]
Semaan SJ, Kauffman AS. Daily successive changes in reproductive gene expression and neuronal activation in the brains of pubertal female mice. Mol Cell Endocrinol 2015; 401: 84-97.
[http://dx.doi.org/10.1016/j.mce.2014.11.025]
[22]
Conn PM, Crowley WF Jr. Gonadotropin-releasing hormone and its analogues. N Engl J Med 1991; 324(2): 93-103.
[http://dx.doi.org/10.1056/NEJM199101103240205] [PMID: 1984190]
[23]
Tian ZZ, Zhao H, Chen BY. Effect of Chinese herbal medicine for nourishing yin and purging fire on mRNA expressions of gonadotropin-releasing hormone and its receptor in precocious puberty model rats. Zhongguo Zhong Xi Yi Jie He Za Zhi 2003; 23(9): 695-8.
[PMID: 14571621]
[24]
Iwasa T, Matsuzaki T, Murakami M, et al. Developmental changes in the mammalian gonadotropin-inhibitory hormone (GnIH) ortholog RFamide-related peptide (RFRP) and its cognate receptor GPR147 in the rat hypothalamus. Int J Dev Neurosci 2012; 30: 31-7.
[25]
Xiang W, Zhang B, Lv F, et al. The Inhibitory Effects of RFamide-Related Peptide 3 on Luteinizing Hormone Release Involves an Estradiol-Dependent Manner in Prepubertal but Not in Adult Female Mice. Biol Reprod 2015; 93(2): 30.
[http://dx.doi.org/10.1095/biolreprod.115.128777] [PMID: 26063871]
[26]
Clarke IJ, Parkington HC. Gonadotropin inhibitory hormone (GnIH) as a regulator of gonadotropes. Mol Cell Endocrinol 2014; 385: 36-44.

© 2025 Bentham Science Publishers | Privacy Policy