Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Vesicle Trafficking, Autophagy and Nanoparticles: A Brief Review

Author(s): Tianzhong Li and Mengsu Yang*

Volume 10, Issue 1, 2020

Page: [3 - 19] Pages: 17

DOI: 10.2174/2468187309666190906114325

Abstract

Background: Nanomedicine shows a huge promise for incurable diseases. So far, more than 50 nanoparticles have been approved by FDA and around 80 nanoformulations are currently in clinical trials. Nanoparticles possess several advantages over traditional drugs, including higher biocompatibility and bioavailability. One of the challenges for their wide application is insufficient understanding of the molecular network related to internalization of particles and intracellular release of cargos.

Objective: This article aims to review the interactions between nanoparticles, vesicle transportation and autophagy pathways. The underlying molecular machinery is also discussed.

Methods: For each step of the vesicle trafficking and autophagy, details of signaling pathways are described for a better understanding of the interactions between delivery vehicles and biomolecules within the cell.

Conclusion: The selection of cellular uptake route mainly depends on physical characteristics of nanoparticles. For nanoparticles modified with ligands, they undergo receptormediated endocytic pathway. Once residing within the cells, cargos are released after disruption of endosomes, a mechanism called ‘proton sponge effect’. Besides, internalized nanoparticles either can be exocytosized, or they initiate the autophagy response, affecting the intracellular distribution of drugs.

Keywords: Autophagy, vesicle trafficking, endocytosis, exocytosis, nanoparticle, drug delivery.

Graphical Abstract

[1]
Imran A. Nano drugs: novel agents for cancer chemo-therapy (editorial). Curr Cancer Drug Targets 2011; 11: 130.
[http://dx.doi.org/10.2174/156800911794328466] [PMID: 21247391]
[2]
Ravi Kumar M, Hellermann G, Lockey RF, Mohapatra SS. Nanoparticle-mediated gene delivery: state of the art. Expert Opin Biol Ther 2004; 4(8): 1213-24.
[http://dx.doi.org/10.1517/14712598.4.8.1213] [PMID: 15268657]
[3]
Ali I, Mukhtar SD, Hsieh MF, et al. et al.Facile synthesis of indole heterocyclic compounds based micellar nano anti-cancer drugs. RSC Advances 2018; 8: 37905-14.
[http://dx.doi.org/10.1039/C8RA07060A]
[4]
Dobrovolskaia MA, McNeil SE, Eds. Immunological properties of engineered nanomaterials: An Introduction 1st vol. World Scientific 2013; pp. 1-23.
[http://dx.doi.org/10.1142/9789814390262_0001]
[5]
Ali I, Lone MN, Suhail M, Mukhtar SD, Asnin L. Advances in nanocarriers for anticancer drugs delivery. Curr Med Chem 2016; 23(20): 2159-87.
[http://dx.doi.org/10.2174/0929867323666160405111152] [PMID: 27048343]
[6]
Vieira AV, Lamaze C, Schmid SL. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 1996; 274(5295): 2086-9.
[http://dx.doi.org/10.1126/science.274.5295.2086] [PMID: 8953040]
[7]
Scita G, Di Fiore PP. The endocytic matrix. Nature 2010; 463(7280): 464-73.
[http://dx.doi.org/10.1038/nature08910] [PMID: 20110990]
[8]
Man N, Chen Y, Zheng F, Zhou W, Wen LP. Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy 2010; 6(4): 449-54.
[http://dx.doi.org/10.4161/auto.6.4.11612] [PMID: 20383065]
[9]
Peynshaert K, Manshian BB. Joris F, et al.Exploiting intrinsic nanoparticle toxicity: the pros and cons of nanoparticle-induced autophagy in biomedical research. Chem Rev 2014; 114(15): 7581-609.
[http://dx.doi.org/10.1021/cr400372p] [PMID: 24927160]
[10]
Kotcherlakota R, Rahaman ST, Patra CR. Nanomedicine for cancer therapy using autophagy: an overview. Curr Top Med Chem 2018; 18(30): 2599-613.
[http://dx.doi.org/10.2174/1568026619666181224104838] [PMID: 30582477]
[11]
Li Y, Ju D. The role of autophagy in nanoparticles-induced toxicity and its related cellular and molecular mechanisms. Cellular and Molecular Toxicology of Nanoparticles 2018; 1048: 71-84.
[http://dx.doi.org/10.1007/978-3-319-72041-8_5]
[12]
Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007; 8(8): 603-12.
[http://dx.doi.org/10.1038/nrm2216] [PMID: 17609668]
[13]
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12(8): 517-33.
[http://dx.doi.org/10.1038/nrm3151] [PMID: 21779028]
[14]
Brodsky FM. Diversity of clathrin function: new tricks for an old protein. Annu Rev Cell Dev Biol 2012; 28: 309-36.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155716] [PMID: 22831640]
[15]
Maritzen T, Koo SJ, Haucke V. Turning CALM into excitement: AP180 and CALM in endocytosis and disease. Biol Cell 2012; 104(10): 588-602.
[http://dx.doi.org/10.1111/boc.201200008] [PMID: 22639918]
[16]
Gordon SL, Cousin MA. The Sybtraps: control of synaptobrevin traffic by synaptophysin, α-synuclein and AP-180. Traffic 2014; 15(3): 245-54.
[http://dx.doi.org/10.1111/tra.12140] [PMID: 24279465]
[17]
Rao Y, Rückert C, Saenger W, Haucke V. The early steps of endocytosis: from cargo selection to membrane deformation. Eur J Cell Biol 2012; 91(4): 226-33.
[http://dx.doi.org/10.1016/j.ejcb.2011.02.004] [PMID: 21458101]
[18]
Ungewickell EJ, Hinrichsen L. Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 2007; 19(4): 417-25.
[http://dx.doi.org/10.1016/j.ceb.2007.05.003] [PMID: 17631994]
[19]
Nazarenus M, Zhang Q, Soliman MG. , et al.In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far? Beilstein J Nanotechnol 2014; 5: 1477-90.
[http://dx.doi.org/10.3762/bjnano.5.161] [PMID: 25247131]
[20]
Dutta D, Donaldson JG. Search for inhibitors of endocytosis: Intended specificity and unintended consequences. Cell Logist 2012; 2(4): 203-8.
[http://dx.doi.org/10.4161/cl.23967] [PMID: 23538558]
[21]
Yang N, Hong X. Yang P, et al.The 2009 pandemic A/Wenshan/01/2009 H1N1 induces apoptotic cell death in human airway epithelial cells. J Mol Cell Biol 2011; 3(4): 221-9.
[http://dx.doi.org/10.1093/jmcb/mjr017] [PMID: 21816972]
[22]
Yang S, He M, Liu X, Li X, Fan B, Zhao S. Japanese encephalitis virus infects porcine kidney epithelial PK15 cells via clathrin- and cholesterol-dependent endocytosis. Virol J 2013; 10: 258.
[http://dx.doi.org/10.1186/1743-422X-10-258] [PMID: 23937769]
[23]
Peng T, Wang J-L, Chen W. et al.Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis. Can J Microbiol 2009; 55(2): 139-45.
[http://dx.doi.org/10.1139/W08-107] [PMID: 19295646]
[24]
Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res 2010; 20(3): 256-75.
[http://dx.doi.org/10.1038/cr.2010.19] [PMID: 20125123]
[25]
Guha A, Sriram V, Krishnan KS, Mayor S. Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes. J Cell Sci 2003; 116(Pt 16): 3373-86.
[http://dx.doi.org/10.1242/jcs.00637] [PMID: 12857788]
[26]
Howes MT, Mayor S, Parton RG. Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr Opin Cell Biol 2010; 22(4): 519-27.
[http://dx.doi.org/10.1016/j.ceb.2010.04.001] [PMID: 20439156]
[27]
Sandvig K, Pust S, Skotland T, van Deurs B. Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol 2011; 23(4): 413-20.
[http://dx.doi.org/10.1016/j.ceb.2011.03.007] [PMID: 21466956]
[28]
Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007; 8(3): 185-94.
[http://dx.doi.org/10.1038/nrm2122] [PMID: 17318224]
[29]
Parton RG, del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 2013; 14(2): 98-112.
[http://dx.doi.org/10.1038/nrm3512] [PMID: 23340574]
[30]
Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol 2009; 11(5): 510-20.
[http://dx.doi.org/10.1038/ncb0509-510] [PMID: 19404330]
[31]
Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic 2009; 10(4): 364-71.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00878.x] [PMID: 19192253]
[32]
West MA, Bretscher MS, Watts C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol 1989; 109(6 Pt 1): 2731-9.
[http://dx.doi.org/10.1083/jcb.109.6.2731] [PMID: 2556406]
[33]
Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 2011; 89(8): 836-43.
[http://dx.doi.org/10.1038/icb.2011.20] [PMID: 21423264]
[34]
Liberali P, Kakkonen E, Turacchio G. et al.The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J 2008; 27(7): 970-81.
[http://dx.doi.org/10.1038/emboj.2008.59] [PMID: 18354494]
[35]
Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol 2012; 15(4): 490-9.
[http://dx.doi.org/10.1016/j.mib.2012.05.016] [PMID: 22749376]
[36]
West MA, Wallin RP, Matthews SP. et al.Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 2004; 305(5687): 1153-7.
[http://dx.doi.org/10.1126/science.1099153] [PMID: 15326355]
[37]
Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 2003; 20(2): 212-20.
[http://dx.doi.org/10.1023/A:1022219003551] [PMID: 12636159]
[38]
Nan A, Bai X, Son SJ, Lee SB, Ghandehari H. Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett 2008; 8(8): 2150-4.
[http://dx.doi.org/10.1021/nl0802741] [PMID: 18624386]
[39]
Kirchmeier MJ, Ishida T, Chevrette J, Allen TM. Correlations between the rate of intracellular release of endocytosed liposomal Doxorubicin and cytotoxicity as determined by a new assay. J Liposome Res 2001; 11(1): 15-29.
[http://dx.doi.org/10.1081/LPR-100103167] [PMID: 19530916]
[40]
Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 2006; 7(8): 1041-53.
[http://dx.doi.org/10.1517/14656566.7.8.1041] [PMID: 16722814]
[41]
von Gersdorff K, Sanders NN, Vandenbroucke R, De Smedt SC, Wagner E, Ogris M. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther 2006; 14(5): 745-53.
[http://dx.doi.org/10.1016/j.ymthe.2006.07.006] [PMID: 16979385]
[42]
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422(6927): 37-44.
[http://dx.doi.org/10.1038/nature01451] [PMID: 12621426]
[43]
Qaddoumi MG, Ueda H, Yang J, Davda J, Labhasetwar V, Lee VH. The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res 2004; 21(4): 641-8.
[http://dx.doi.org/10.1023/B:PHAM.0000022411.47059.76] [PMID: 15139521]
[44]
Lai SK, Hida K, Man ST. et al.Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 2007; 28(18): 2876-84.
[http://dx.doi.org/10.1016/j.biomaterials.2007.02.021] [PMID: 17363053]
[45]
Raniolo S, Vindigni G, Ottaviani A. et al.Selective targeting and degradation of doxorubicin-loaded folate-functionalized DNA nanocages. Nanomedicine (Lond) 2018; 14(4): 1181-90.
[http://dx.doi.org/10.1016/j.nano.2018.02.002] [PMID: 29458213]
[46]
Chowdhury HH, Cerqueira SR, Sousa N, Oliveira JM, Reis RL, Zorec R. The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes - electrophysiological quantification. Biomater Sci 2018; 6(2): 388-97.
[http://dx.doi.org/10.1039/C7BM00886D] [PMID: 29336451]
[47]
Sun XY, Jiang LJ, Wang CN. et al.Systematic investigation of intracellular trafficking behavior of one-dimensional alumina nanotubes. J Mater Chem B Mater Biol Med 2019; 7: 2043-53.
[http://dx.doi.org/10.1039/C8TB03349H]
[48]
Jiang L, Liang X, Liu G. et al.The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery. Drug Deliv 2018; 25(1): 985-94.
[http://dx.doi.org/10.1080/10717544.2018.1461954] [PMID: 29667445]
[49]
Perale G, Hilborn J, Eds. Bioresorbable polymers for biomedical applications from fundamentals to translational medicine. Science Direct 2017; pp. 265-83.
[http://dx.doi.org/10.1016/B978-0-08-100262- 9.00012-4]
[50]
Wilhelm C, Bal L, Smirnov P. et al.Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials 2007; 28(26): 3797-806.
[http://dx.doi.org/10.1016/j.biomaterials.2007.04.047] [PMID: 17544118]
[51]
Wilhelm C, Gazeau F, Roger J, et al. et al.Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 2002; 18: 8148-55.
[http://dx.doi.org/10.1021/la0257337]
[52]
Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003; 24(6): 1001-11.
[http://dx.doi.org/10.1016/S0142-9612(02)00440-4] [PMID: 12504522]
[53]
Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 2002; 19(10): 1488-94.
[http://dx.doi.org/10.1023/A:1020404615898] [PMID: 12425466]
[54]
Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 2007; 353(1): 26-32.
[http://dx.doi.org/10.1016/j.bbrc.2006.11.135] [PMID: 17184736]
[55]
Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T. Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 2005; 22(12): 2058-68.
[http://dx.doi.org/10.1007/s11095-005-8175-y] [PMID: 16170693]
[56]
Klein PM, Kern S, Lee D-J. et al.Folate receptor-directed orthogonal click-functionalization of siRNA lipopolyplexes for tumor cell killing in vivo. Biomaterials 2018; 178: 630-42.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.031] [PMID: 29580727]
[57]
Cai C, Wang M, Wang X. et al.Transferrin adsorbed on PEGylated gold nanoparticles and its relevance to targeting specificity. J Nanosci Nanotechnol 2018; 18(8): 5306-13.
[http://dx.doi.org/10.1166/jnn.2018.15435] [PMID: 29458581]
[58]
Pareek V, Bhargava A, Bhanot V, Gupta R, Jain N, Panwar J. Formation and characterization of protein corona around nanoparticles: A Review. J Nanosci Nanotechnol 2018; 18(10): 6653-70.
[http://dx.doi.org/10.1166/jnn.2018.15766] [PMID: 29954482]
[59]
Huang K, Voss B, Kumar D, Hamm HE, Harth E. Dendritic molecular transporters provide control of delivery to intracellular compartments. Bioconjug Chem 2007; 18(2): 403-9.
[http://dx.doi.org/10.1021/bc060287a] [PMID: 17284011]
[60]
Gupta AK, Gupta M, Yarwood SJ, Curtis AS. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Control Release 2004; 95(2): 197-207.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.006] [PMID: 14980768]
[61]
Berry CC, Rudershausen S, Teller J, Curtis AS. The influence of elastin-coated 520-nm- and 20-nm-diameter nanoparticles on human fibroblasts in vitro. IEEE Trans Nanobioscience 2002; 1(3): 105-9.
[http://dx.doi.org/10.1109/TNB.2003.809467] [PMID: 16696299]
[62]
Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 2007; 7(6): 1542-50.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[63]
Hall FL, Mitchell JP, Vulliet PR. Phosphorylation of synapsin I at a novel site by proline-directed protein kinase. J Biol Chem 1990; 265(12): 6944-8.
[PMID: 2108963]
[64]
Llinás R, McGuinness TL, Leonard CS, Sugimori M, Greengard P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci USA 1985; 82(9): 3035-9.
[http://dx.doi.org/10.1073/pnas.82.9.3035] [PMID: 2859595]
[65]
Aunis D, Bader M-F. The cytoskeleton as a barrier to exocytosis in secretory cells. J Exp Biol 1988; 139: 253-66.
[PMID: 3062121]
[66]
Ali SM, Geisow MJ, Burgoyne RD. A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells. Nature 1989; 340(6231): 313-5.
[http://dx.doi.org/10.1038/340313a0] [PMID: 2526299]
[67]
Cockcroft S, Howell TW, Gomperts BD. Two G-proteins act in series to control stimulus-secretion coupling in mast cells: use of neomycin to distinguish between G-proteins controlling polyphosphoinositide phosphodiesterase and exocytosis. J Cell Biol 1987; 105(6 Pt 1): 2745-50.
[http://dx.doi.org/10.1083/jcb.105.6.2745] [PMID: 2447099]
[68]
Der CJ, Krontiris TG, Cooper GM. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 1982; 79(11): 3637-40.
[http://dx.doi.org/10.1073/pnas.79.11.3637] [PMID: 6285355]
[69]
Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 2006; 16(10): 522-9.
[http://dx.doi.org/10.1016/j.tcb.2006.08.006] [PMID: 16949823]
[70]
D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006; 7(5): 347-58.
[http://dx.doi.org/10.1038/nrm1910] [PMID: 16633337]
[71]
Weis K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 2003; 112(4): 441-51.
[http://dx.doi.org/10.1016/S0092-8674(03)00082-5] [PMID: 12600309]
[72]
Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011; 91(1): 119-49.
[http://dx.doi.org/10.1152/physrev.00059.2009] [PMID: 21248164]
[73]
Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev 2001; 81(1): 153-208.
[http://dx.doi.org/10.1152/physrev.2001.81.1.153] [PMID: 11152757]
[74]
Soldati T, Riederer MA, Pfeffer SR. Rab GDI: a solubilizing and recycling factor for rab9 protein. Mol Biol Cell 1993; 4(4): 425-34.
[http://dx.doi.org/10.1091/mbc.4.4.425] [PMID: 8389620]
[75]
Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 2004; 5(11): 886-96.
[http://dx.doi.org/10.1038/nrm1500] [PMID: 15520808]
[76]
Ali BR, Wasmeier C, Lamoreux L, Strom M, Seabra MC. Multiple regions contribute to membrane targeting of Rab GTPases. J Cell Sci 2004; 117(Pt 26): 6401-12.
[http://dx.doi.org/10.1242/jcs.01542] [PMID: 15561774]
[77]
Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 2000; 149(4): 901-14.
[http://dx.doi.org/10.1083/jcb.149.4.901] [PMID: 10811830]
[78]
Stenmark H, Valencia A, Martinez O, Ullrich O, Goud B, Zerial M. Distinct structural elements of rab5 define its functional specificity. EMBO J 1994; 13(3): 575-83.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06295.x] [PMID: 8313902]
[79]
Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13(15): 1899-911.
[http://dx.doi.org/10.1101/gad.13.15.1899] [PMID: 10444588]
[80]
Wei MC, Zong W-X, Cheng EH-Y. et al.Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001; 292(5517): 727-30.
[http://dx.doi.org/10.1126/science.1059108] [PMID: 11326099]
[81]
Geppert M, Südhof TC. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci 1998; 21: 75-95.
[http://dx.doi.org/10.1146/annurev.neuro.21.1.75] [PMID: 9530492]
[82]
Chun Y, Kim J. Autophagy: An essential degradation program for cellular homeostasis and life. Cells 2018; 7(12): 7.
[http://dx.doi.org/10.3390/cells7120278] [PMID: 30572663]
[83]
Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res 2014; 24(1): 24-41.
[http://dx.doi.org/10.1038/cr.2013.168] [PMID: 24366339]
[84]
Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967; 33(2): 437-49.
[http://dx.doi.org/10.1083/jcb.33.2.437] [PMID: 4292315]
[85]
Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 1992; 119(2): 301-11.
[http://dx.doi.org/10.1083/jcb.119.2.301] [PMID: 1400575]
[86]
Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. et al.A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003; 5(4): 539-45.
[87]
Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 1997; 192(2): 245-50.
[http://dx.doi.org/10.1016/S0378-1119(97)00084-X] [PMID: 9224897]
[88]
Kabeya Y, Mizushima N, Ueno T. et al.LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19(21): 5720-8.
[http://dx.doi.org/10.1093/emboj/19.21.5720] [PMID: 11060023]
[89]
Liang XH, Jackson S, Seaman M. et al.Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402(6762): 672-6.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[90]
Hara T, Nakamura K, Matsui M. et al.Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885-9.
[http://dx.doi.org/10.1038/nature04724] [PMID: 16625204]
[91]
Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22(2): 132-9.
[http://dx.doi.org/10.1016/j.ceb.2009.12.004] [PMID: 20056399]
[92]
Hara T, Takamura A, Kishi C. et al.FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008; 181(3): 497-510.
[http://dx.doi.org/10.1083/jcb.200712064] [PMID: 18443221]
[93]
Liang C. Negative regulation of autophagy. Cell Death Differ 2010; 17(12): 1807-15.
[http://dx.doi.org/10.1038/cdd.2010.115] [PMID: 20865012]
[94]
Orsi A, Razi M, Dooley HC. et al.Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 2012; 23(10): 1860-73.
[http://dx.doi.org/10.1091/mbc.e11-09-0746] [PMID: 22456507]
[95]
Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-Beclin 1 interaction regulates autophagy induction. Sci Rep 2013; 3: 1055.
[http://dx.doi.org/10.1038/srep01055] [PMID: 23316280]
[96]
Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12(1): 1-222.
[http://dx.doi.org/10.1080/15548627.2015.1100356] [PMID: 26799652]
[97]
Schulze RJ, Weller SG, Schroeder B, et al. Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol 2013. jcb. 201306140.
[98]
Li C, Liu H, Sun Y, et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol 2010; 2: 103.
[http://dx.doi.org/10.1093/jmcb/mjq003]
[99]
Zhang X, Dong Y, Zeng X. et al.The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials 2014; 35(6): 1932-43.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.034] [PMID: 24315578]
[100]
Shi M, Cheng L, Zhang Z, Liu Z, Mao X. Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating the Beclin 1/Bcl-2/VPS34 complex. Int J Nanomedicine 2014; 10: 207-16.
[PMID: 25565814]
[101]
Wang Y, Lin Y-X, Qiao Z-Y, et al. Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo. Adv Mater 2015; 27(16): 2627-34.
[http://dx.doi.org/10.1002/adma.201405926] [PMID: 25786652]
[102]
Lee J-A, Beigneux A, Ahmad ST, Young SG, Gao FB. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 2007; 17(18): 1561-7.
[http://dx.doi.org/10.1016/j.cub.2007.07.029] [PMID: 17683935]
[103]
Orecna M, De Paoli SH, Janouskova O, et al. Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulation of the autophagic flux with the release of nanomaterial in autophagic vesicles. Nanomedicine (Lond) 2014; 10(5): 939-48.
[http://dx.doi.org/10.1016/j.nano.2014.02.001] [PMID: 24566271]
[104]
Soenen SJ, Demeester J, De Smedt SC, et al. Turning a frown upside down: exploiting nanoparticle toxicity for anticancer therapy. Nano Today 2013; 8: 121-5.
[http://dx.doi.org/10.1016/j.nantod.2012.12.001]
[105]
Lee SS, Song W, Cho M, et al. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 2013; 7(11): 9693-703.
[http://dx.doi.org/10.1021/nn4026806] [PMID: 24079896]
[106]
Xia T, Kovochich M, Liong M, Zink JI, Nel AE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2008; 2(1): 85-96.
[http://dx.doi.org/10.1021/nn700256c] [PMID: 19206551]
[107]
Aguilera MO, Berón W, Colombo MI. The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy. Autophagy 2012; 8(11): 1590-603.
[http://dx.doi.org/10.4161/auto.21459] [PMID: 22863730]
[108]
Watson P, Jones AT, Stephens DJ. Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv Drug Deliv Rev 2005; 57(1): 43-61.
[http://dx.doi.org/10.1016/j.addr.2004.05.003] [PMID: 15518920]
[109]
He Y, Hua W-H, Low M-C, et al. Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes. Nanotechnology 2018; 29(23)235101
[http://dx.doi.org/10.1088/1361-6528/aab933] [PMID: 29570098]

© 2025 Bentham Science Publishers | Privacy Policy