Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Passive and Active Drug Targeting: Role of Nanocarriers in Rational Design of Anticancer Formulations

Author(s): Ram P. Das, Vishwa V. Gandhi, Beena G. Singh and Amit Kunwar*

Volume 25, Issue 28, 2019

Page: [3034 - 3056] Pages: 23

DOI: 10.2174/1381612825666190830155319

Price: $65

Abstract

Background: Cancer is the major public health problem in developing countries. The treatment of cancer requires a multimodal approach and chemotherapy is one of them. Chemotherapeutic drug is administered to cancer patients in the form of a formulation which is prepared by mixing an active ingredient (drug) with the excipient. The role of excipient in a formulation is to regulate the release, bio-distribution, and selectivity of drug within the body.

Methods: In this context, selectivity of an anticancer formulation is achieved through two mechanisms like passive and active targeting. The passive targeting of a formulation is generally through enhanced permeation retention (EPR) effect which is dictated by physical properties of the carrier such as shape and size. On the contrary, active targeting means surface functionalization of excipient with target-specific ligands and/or receptors to increase its selectivity.

Results: Over the past several decades, remarkable progress has been made in the development and application of an engineered excipient or carrier to treat cancer more effectively. Especially nanoparticulate systems composed of metal/liposomes/polymeric material/proteins have received significant attention in the rational design of anticancer drug formulations; for example, therapeutic agents have been integrated with nanoparticles of optimal sizes, shapes and surface properties to improve their solubility, circulation half-life, and bio-distribution. In this review article, recent literature is included to discuss the role of physicochemical properties of excipients in achieving tumour targeting through passive and active approaches.

Conclusion: The selection of an excipient/carrier and targeting ligand plays a very important role in rational design and development of anticancer drug formulations.

Keywords: Anticancer formulation, nano delivery system, passive targeting, active targeting, clinical application, nanoparticulate systems.

[1]
Pisani P. The cancer burden and cancer control in developing countries. Environ Health 2011; 10(Suppl. 1): S2.
[http://dx.doi.org/10.1186/1476-069X-10-S1-S2]
[2]
Cooper GM. The Cell: A Molecular Approach. 2nd ed. Sunderland, MA: Sinauer Associates 2000.https://www.ncbi.nlm.nih.gov/books/NBK9963/
[3]
Miller KD, Jemal A, Rebecca L. Siegel Cancer statistics. Cancer J Clin 2018; 68: 7-30.
[4]
Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev 2016; 98: 19-34.
[http://dx.doi.org/10.1016/j.addr.2015.10.022] [PMID: 26546751]
[5]
Wais U, Jackson AW, He T, Zhang H. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale 2016; 8(4): 1746-69.
[http://dx.doi.org/10.1039/C5NR07161E] [PMID: 26731460]
[6]
Ventola CL. Progress in nanomedicine: Approved and investigational nanodrugs. P&T 2017; 42(12): 742-55.
[PMID: 29234213]
[7]
Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018; 23(4): 826.
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[8]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[9]
Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery 2014. http://10.5772/58459
[10]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[11]
Kohli AG, Kierstead PH, Venditto VJ, Walsh CL, Szoka FC. Designer lipids for drug delivery: From heads to tails. J Control Release 2014; 190: 274-87.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.047] [PMID: 24816069]
[12]
Lu T, Wang Z, Ma Y, Zhang Y, Chen T. Influence of polymer size, liposomal composition, surface charge, and temperature on the permeability of pH-sensitive liposomes containing lipid-anchored poly(2-ethylacrylic acid). Int J Nanomed 2012; 7: 4917-26.
[http://dx.doi.org/10.2147/IJN.S35576] [PMID: 23028220]
[13]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[14]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[15]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[16]
Hickey JW, Santos JL, Williford JM, Mao HQ. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release 2015; 219: 536-47.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.006] [PMID: 26450667]
[17]
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol 2010; 624: 163-75.
[http://dx.doi.org/10.1007/978-1-60761-609-2_11] [PMID: 20217595]
[18]
El-Say KM, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. Int J Pharm 2017; 528(1-2): 675-91.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[19]
Grabnar PA, Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul 2011; 28(4): 323-35.
[http://dx.doi.org/10.3109/02652048.2011.569763] [PMID: 21545323]
[20]
Jao D, Xue Y, Medina J, Hu X. Protein-based drug-delivery materials. Materials (Basel) 2017; 10(5): 517.
[http://dx.doi.org/10.3390/ma10050517] [PMID: 28772877]
[21]
Fuchs S, Coester C. Protein-based nanoparticles as a drug delivery system: Chances, risks, perspectives. J Drug Deliv Sci Technol 2010; 20: 331-42.
[http://dx.doi.org/10.1016/S1773-2247(10)50056-X]
[22]
Harm S, Schildböck C, Hartmann J. Removal of stabilizers from human serum albumin by adsorbents and dialysis used in blood purification. PLoS One 2018; 13(1)e0191741
[http://dx.doi.org/10.1371/journal.pone.0191741] [PMID: 29364955]
[23]
Abiri N, Pang J, Ou J, et al. Assessment of the immunogenicity of residual host cell protein impurities of OsrHSA. PLoS One 2018; 13(3)e0193339
[http://dx.doi.org/10.1371/journal.pone.0193339] [PMID: 29513721]
[24]
Kunwar A, Barik A, Pandey R, Priyadarsini KI. Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. Biochim Biophys Acta 2006; 1760(10): 1513-20.
[http://dx.doi.org/10.1016/j.bbagen.2006.06.012] [PMID: 16904830]
[25]
Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini KI. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta 2008; 1780(4): 673-9.
[http://dx.doi.org/10.1016/j.bbagen.2007.11.016] [PMID: 18178166]
[26]
Lee JE, Kim MG, Jang YL, et al. Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Deliv 2018; 25(1): 1570-8.
[http://dx.doi.org/10.1080/10717544.2018.1489430] [PMID: 30044159]
[27]
Thadakapally R, Aafreen A, Aukunuru J, Habibuddin M, Jogala S. Preparation and characterization of PEG-albumin-curcumin nanoparticles intended to treat breast cancer. Indian J Pharm Sci 2016; 78(1): 65-72.
[http://dx.doi.org/10.4103/0250-474X.180250] [PMID: 27168683]
[28]
Koudelka KJ, Pitek AS, Manchester M, Steinmetz NF. Virus-based nanoparticles as versatile nanomachines. Annu Rev Virol 2015; 2(1): 379-401.
[http://dx.doi.org/10.1146/annurev-virology-100114-055141] [PMID: 26958921]
[29]
Bruckman MA, Czapar AE, Steinmetz NF. Drug-loaded plant-virus based nanoparticles for cancer drug delivery. Methods Mol Biol 2018; 1776: 425-36.
[http://dx.doi.org/10.1007/978-1-4939-7808-3_28] [PMID: 29869258]
[30]
Ahmad MZ, Akhter S, Jain GK, et al. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv 2010; 7(8): 927-42.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[31]
Liu CG, Han YH, Zhang JT, Kankala RK, Wang SB, Chen AZ. Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy. Chem Eng J 2019; 370: 1188-99.
[http://dx.doi.org/10.1016/j.cej.2019.03.272]
[32]
Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J Control Release 2019; 299: 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.015] [PMID: 30771414]
[33]
Kuthati Y, Kankala RK, Lee C-H. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl Clay Sci 2015; 112-113: 100-16.
[http://dx.doi.org/10.1016/j.clay.2015.04.018]
[34]
Kankala RK, Tsai P-Y, Kuthati Y, Wei P-R, Liu C-L, Lee C-H. Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics. J Mater Chem B Mater Biol Med 2017; 5: 1507-17.
[http://dx.doi.org/10.1039/C6TB03146C]
[35]
Shrivastava V, Chauhan PS, Tomar RS. Bio-fabrication of metal nanoparticles: A review. Int J Curr Res 2019; 7: 1927-32.
[36]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[37]
Kulkarni N, Muddapur U. Biosynthesis of metal nanoparticles: A review. J Nanotechnol 2014. Article ID 510246
[38]
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J 2016; 24(4): 473-84.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[39]
Lan S, Lin Z, Zhang D, Zeng Y, Liu X. Photocatalysis enhancement for programmable killing of hepatocellular carcinoma through self-compensation mechanisms based on black phosphorus quantum-dot-hybridized nanocatalysts. ACS Appl Mater Interfaces 2019; 11(10): 9804-13.
[http://dx.doi.org/10.1021/acsami.8b21820] [PMID: 30773883]
[40]
Kankala RK, Liu C-G, Chen A-Z, et al. Overcoming multidrug resistance through the synergistic effects of hierarchical ph-sensitive, ros-generating nanoreactors. ACS Biomater Sci Eng 2017; 3: 2431-42.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00569]
[41]
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2014; 18(8): 1491-508.
[http://dx.doi.org/10.1111/jcmm.12164] [PMID: 24237862]
[42]
Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006; 2(3): 213-9.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[43]
Zuazo-Gaztelu I, Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front Oncol 2018; 8: 248.
[http://dx.doi.org/10.3389/fonc.2018.00248] [PMID: 30013950]
[44]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[45]
Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2010; 2: 14.
[http://dx.doi.org/10.1186/2040-2384-2-14] [PMID: 20701757]
[46]
Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R. Endothelium and its alterations in cardiovascular diseases: Life style intervention. BioMed Res Int 2014; 2014801896
[http://dx.doi.org/10.1155/2014/801896] [PMID: 24719887]
[47]
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015; 10(4): 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]
[48]
Tang L, Yang X, Yin Q, et al. Investigating the optimal size of anticancer nanomedicine. Proc Natl Acad Sci USA 2014; 111(43): 15344-9.
[http://dx.doi.org/10.1073/pnas.1411499111] [PMID: 25316794]
[49]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[50]
Yue J, Feliciano TJ, Li W, Lee A, Odom TW. Gold nanoparticle size and shape effects on cellular uptake and intracellular distribution of sirna nanoconstructs. Bioconjug Chem 2017; 28(6): 1791-800.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00252] [PMID: 28574255]
[51]
Hsiao I, Gramatke AM, Joksimovic R, Sokolowski M, Gradzielski M, Haase A. Size and cell type dependent uptake of silica nanoparticles. J Nanomed Nanotechnol 2014; 5: 248.
[52]
Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 2018; 8(1): 2082-95.
[http://dx.doi.org/10.1038/s41598-018-19628-z] [PMID: 29391477]
[53]
Ichikawa S, Shimokawa N, Takagi M, Kitayama Y, Takeuchi T. Size-dependent uptake of electrically neutral amphipathic polymeric nanoparticles by cell-sized liposomes and an insight into their internalization mechanism in living cells. Chem Commun (Camb) 2018; 54(36): 4557-60.
[http://dx.doi.org/10.1039/C8CC00977E] [PMID: 29662978]
[54]
Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015; 9(9): 8655-71.
[http://dx.doi.org/10.1021/acsnano.5b03184] [PMID: 26256227]
[55]
Das RP, Gandhi VV, Singh BG, Kunwar A, Kumar NN, Priyadarsini KI. Preparation of albumin nanoparticles: Optimum size for cellular uptake of entrapped drug (Curcumin). Colloids Surf A Physicochem Eng Asp 2019; 567: 86-95.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.043]
[56]
Das RP, Singh BG, Kunwar A, et al. Tuning the binding, release and cytotoxicity of hydrophobic drug by bovine serum albumin nanoparticles: Influence of particle size. Colloids Surf B Biointerfaces 2017; 158: 682-8.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.048] [PMID: 28783613]
[57]
Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 2015; 39(8): 881-90.
[http://dx.doi.org/10.1002/cbin.10459] [PMID: 25790433]
[58]
Dasgupta S, Auth T, Gompper G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett 2014; 14(2): 687-93.
[http://dx.doi.org/10.1021/nl403949h] [PMID: 24383757]
[59]
Shukla S, Eber FJ, Nagarajan AS, et al. The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv Healthc Mater 2015; 4(6): 874-82.
[http://dx.doi.org/10.1002/adhm.201400641] [PMID: 25641794]
[60]
Huff TB, Hansen MN, Zhao Y, Cheng JX, Wei A. Controlling the cellular uptake of gold nanorods. Langmuir 2007; 23(4): 1596-9.
[http://dx.doi.org/10.1021/la062642r] [PMID: 17279633]
[61]
Toy R, Peiris PM, Ghaghada KB, Karathanasis E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond) 2014; 9(1): 121-34.
[http://dx.doi.org/10.2217/nnm.13.191] [PMID: 24354814]
[62]
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012; 7: 5577-91.
[http://dx.doi.org/10.2147/IJN.S36111] [PMID: 23144561]
[63]
Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 2018; 13(1): 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[64]
Yu B, Zhang Y, Zheng W, Fan C, Chen T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg Chem 2012; 51(16): 8956-63.
[http://dx.doi.org/10.1021/ic301050v] [PMID: 22873404]
[65]
Zhang D, Wei L, Zhong M, Xiao L, Li HW, Wang J. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem Sci (Camb) 2018; 9(23): 5260-9.
[http://dx.doi.org/10.1039/C8SC01828F] [PMID: 29997881]
[66]
Lieleg O, Baumgärtel RM, Bausch AR. Selective filtering of particles by the extracellular matrix: An electrostatic bandpass. Biophys J 2009; 97(6): 1569-77.
[http://dx.doi.org/10.1016/j.bpj.2009.07.009] [PMID: 19751661]
[67]
Xiao K, Li Y, Luo J, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011; 32(13): 3435-46.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.021] [PMID: 21295849]
[68]
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015; 10(4): 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]
[69]
Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 2014; 9(Suppl. 1): 51-63.
[70]
Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015; 9(9): 8655-71.
[http://dx.doi.org/10.1021/acsnano.5b03184] [PMID: 26256227]
[71]
Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 2011; 6(6): 385-91.
[http://dx.doi.org/10.1038/nnano.2011.58] [PMID: 21516092]
[72]
Kuhn DA, Vanhecke D, Michen B, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol 2014; 5: 1625-36.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[73]
Ginzburg VV, Balijepalli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett 2007; 7(12): 3716-22.
[http://dx.doi.org/10.1021/nl072053l] [PMID: 17983249]
[74]
Rattan R, Bhattacharjee S, Zong H, et al. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorg Med Chem 2017; 25(16): 4487-96.
[http://dx.doi.org/10.1016/j.bmc.2017.06.040] [PMID: 28705434]
[75]
Sadzuka Y, Kishi K, Hirota S, Sonobe T. Effect of polyethyleneglycol (PEG) chain on cell uptake of PEG-modified liposomes. J Liposome Res 2003; 13(2): 157-72.
[http://dx.doi.org/10.1081/LPR-120020318] [PMID: 12855110]
[76]
Batra J, Robinson J, Mehner C, et al. PEGylation extends circulation half-life while preserving in vitro and in vivo activity of tissue inhibitor of metalloproteinases-1 (TIMP-1). PLoS One 2012; 7(11)e50028
[http://dx.doi.org/10.1371/journal.pone.0050028] [PMID: 23185522]
[77]
Guo P, Liu D, Subramanyam K, et al. Nanoparticle elasticity directs tumor uptake. Nat Commun 2018; 9(1): 130.
[http://dx.doi.org/10.1038/s41467-017-02588-9] [PMID: 29317633]
[78]
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int J Nanomedicine 2018; 13: 3921-35.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[79]
Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 2004; 4(10): 806-13.
[http://dx.doi.org/10.1038/nrc1456] [PMID: 15510161]
[80]
Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 2013; 7: 27-34.
[http://dx.doi.org/10.4137/DTI.S12519] [PMID: 24023511]
[81]
Lee KJ, Shin SH, Lee JH, et al. A strategy for actualization of active targeting nanomedicine practically functioning in a living body. Biomaterials 2017; 141: 136-48.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.037] [PMID: 28688285]
[82]
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int J Nanomed 2018; 13: 3921-35.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[83]
Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun 2012; 12: 14-22.
[PMID: 22896759]
[84]
Weiner GJMD. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 2015; 15(6): 361-70.
[http://dx.doi.org/10.1038/nrc3930] [PMID: 25998715]
[85]
Barbet J, Machy P, Leserman LD. Monoclonal antibody covalently coupled to liposomes: Specific targeting to cells. J Supramol Struct Cell Biochem 1981; 16(3): 243-58.
[http://dx.doi.org/10.1002/jsscb.1981.380160305] [PMID: 7031274]
[86]
Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 2015; 482(1-2): 2-10.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.045] [PMID: 25445515]
[87]
Sankar K, Hoi KH, Yin Y, et al. Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. MAbs 2018; 10(8): 1281-90.
[http://dx.doi.org/10.1080/19420862.2018.1518887] [PMID: 30252602]
[88]
Shabat D, Itzhaky H, Reymond JL, Keinan E. Antibody catalysis of a reaction otherwise strongly disfavoured in water. Nature 1995; 374(6518): 143-6.
[http://dx.doi.org/10.1038/374143a0] [PMID: 7877686]
[89]
Plath F, Ringler P, Graff-Meyer A, et al. Characterization of mAb dimers reveals predominant dimer forms common in therapeutic mAbs. MAbs 2016; 8(5): 928-40.
[http://dx.doi.org/10.1080/19420862.2016.1168960] [PMID: 27031922]
[90]
Cheng WW, Allen TM. The use of single chain Fv as targeting agents for immunoliposomes: An update on immunoliposomal drugs for cancer treatment. Expert Opin Drug Deliv 2010; 7(4): 461-78.
[http://dx.doi.org/10.1517/17425240903579963] [PMID: 20331354]
[91]
Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 2012; 164(2): 125-37.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.052] [PMID: 22709588]
[92]
Zitzmann S, Ehemann V, Schwab M. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res 2002; 62(18): 5139-43.
[PMID: 12234975]
[93]
Song N, Zhao L, Zhu M, Zhao J. Recent progress in LyP-1-based strategies for targeted imaging and therapy. Drug Deliv 2019; 26(1): 363-75.
[http://dx.doi.org/10.1080/10717544.2019.1587047] [PMID: 30905205]
[94]
Kotamraju VR, Sharma S, Kolhar P, Agemy L, Pavlovich J, Ruoslahti E. Increasing tumor accessibility with conjugatable disulfide-bridged tumor-penetrating peptides for cancer diagnosis and treatment. Breast Cancer (Auckl) 2016; 9(Suppl. 2): 79-87.
[PMID: 27385913]
[95]
Teesalu T, Sugahara KN, Ruoslahti E. Tumor-penetrating peptides. Front Oncol 2013; 3: 216.
[http://dx.doi.org/10.3389/fonc.2013.00216] [PMID: 23986882]
[96]
Zanuy D, Flores-Ortega A, Casanovas J, Curcó D, Nussinov R, Alemán C. The energy landscape of a selective tumor-homing pentapeptide. J Phys Chem B 2008; 112(29): 8692-700.
[http://dx.doi.org/10.1021/jp711477k] [PMID: 18588341]
[97]
Seidi K, Jahanban-Esfahlan R, Monhemi H, et al. NGR (Asn-Gly-Arg)-targeted delivery of coagulase to tumor vasculature arrests cancer cell growth. Oncogene 2018; 37(29): 3967-80.
[http://dx.doi.org/10.1038/s41388-018-0213-4] [PMID: 29662195]
[98]
Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci (Camb) 2017; 9(4): 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[99]
Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: Synthesis, mechanisms of action, therapeutic and diagnostic applications. Chem Rev 2017; 117(15): 10043-120.
[http://dx.doi.org/10.1021/acs.chemrev.7b00042] [PMID: 28654243]
[100]
Sonoke S, Ueda T, Fujiwara K, Kuwabara K, Yano J. Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA. Biol Pharm Bull 2011; 34(8): 1338-42.
[http://dx.doi.org/10.1248/bpb.34.1338] [PMID: 21804229]
[101]
Zhang H, Liu X, Wu F, et al. A novel prostate-specific membrane-antigen (PSMA) targeted micelle-encapsulating wogonin inhibits prostate cancer cell proliferation via inducing intrinsic apoptotic pathway. Int J Mol Sci 2016; 17(5): 676.
[http://dx.doi.org/10.3390/ijms17050676] [PMID: 27196894]
[102]
Lupold SE. Aptamers and apple pies: A mini-review of PSMA aptamers and lessons from Donald S. Coffey. Am J Clin Exp Urol 2018; 6(2): 78-86.
[PMID: 29666835]
[103]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[104]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[105]
Yi G, Son J, Yoo J, Park C, Koo H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater Res 2018; 22: 13.
[http://dx.doi.org/10.1186/s40824-018-0123-0] [PMID: 29686885]
[106]
Chen Y, Xianyu Y, Wu J, Yin B, Jiang X. Click chemistry-mediated nanosensors for biochemical assays. Theranostics 2016; 6(7): 969-85.
[http://dx.doi.org/10.7150/thno.14856] [PMID: 27217831]
[107]
Ferrante A, Gorski J. Cooperativity of hydrophobic anchor interactions: Evidence for epitope selection by MHC class II as a folding process. J Immunol 2007; 178(11): 7181-9.
[http://dx.doi.org/10.4049/jimmunol.178.11.7181] [PMID: 17513767]
[108]
Liu W, Samanta SK, Smith BD, Isaacs L. Synthetic mimics of biotin/(strept)avidin. Chem Soc Rev 2017; 46(9): 2391-403.
[http://dx.doi.org/10.1039/C7CS00011A] [PMID: 28191579]
[109]
Hulme EC, Trevethick MA. Ligand binding assays at equilibrium: Validation and interpretation. Br J Pharmacol 2010; 161(6): 1219-37.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00604.x] [PMID: 20132208]
[110]
Kuhn B, Fuchs JE, Reutlinger M, Stahl M, Taylor NR. Rationalizing tight ligand binding through cooperative interaction networks. J Chem Inf Model 2011; 51(12): 3180-98.
[http://dx.doi.org/10.1021/ci200319e] [PMID: 22087588]
[111]
Shen Z, Ye H, Li Y. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation. Phys Chem Chem Phys 2018; 20(24): 16372-85.
[http://dx.doi.org/10.1039/C7CP08644J] [PMID: 29445792]
[112]
Elias DR, Poloukhtine A, Popik V, Tsourkas A. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine (Lond) 2013; 9(2): 194-201.
[http://dx.doi.org/10.1016/j.nano.2012.05.015] [PMID: 22687896]
[113]
Abstiens K, Gregoritza M, Goepferich AM. Ligand density and linker length are critical factors for multivalent nanoparticle-receptor interactions. ACS Appl Mater Interfaces 2019; 11(1): 1311-20.
[http://dx.doi.org/10.1021/acsami.8b18843] [PMID: 30521749]
[114]
Wright JSIII III, Lyon GJ, George EA, Muir TW, Novick RP. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc Natl Acad Sci USA 2004; 101(46): 16168-73.
[http://dx.doi.org/10.1073/pnas.0404039101] [PMID: 15528279]
[115]
Yue T, Li S, Xu Y, Zhang X, Huang F. Interplay between nanoparticle wrapping and clustering of inner anchored membrane proteins. J Phys Chem B 2016; 120(42): 11000-9.
[http://dx.doi.org/10.1021/acs.jpcb.6b08667] [PMID: 27723331]
[116]
Yu X, Xu F, Ramirez NGP, et al. Dressing up nanoparticles: A membrane wrap to induce formation of the virological synapse. ACS Nano 2015; 9(4): 4182-92.
[http://dx.doi.org/10.1021/acsnano.5b00415] [PMID: 25853367]
[117]
Birtwistle MR, Kholodenko BN. Endocytosis and signalling: A meeting with mathematics. Mol Oncol 2009; 3(4): 308-20.
[http://dx.doi.org/10.1016/j.molonc.2009.05.009] [PMID: 19596615]
[118]
Karimi M, Eslami M, Sahandi-Zangabad P, et al. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(5): 696-716.
[http://dx.doi.org/10.1002/wnan.1389] [PMID: 26762467]
[119]
Kuo CY, Liu TY, Hardiansyah A, Lee CF, Wang MS, Chiu WY. Self-assembly behaviors of thermal- and pH- sensitive magnetic nanocarriers for stimuli-triggered release. Nanoscale Res Lett 2014; 9(1): 520.
[http://dx.doi.org/10.1186/1556-276X-9-520] [PMID: 25288914]
[120]
Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45(5): 1457-501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[121]
Dzamukova MR, Naumenko EA, Lvov YM, Fakhrullin RF. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep 2015; 5: 10560.
[http://dx.doi.org/10.1038/srep10560] [PMID: 25976444]
[122]
Mo R, Gu Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater Today 2016; 19: 274-83.
[http://dx.doi.org/10.1016/j.mattod.2015.11.025]
[123]
Maciejczyk M, Pietrzykowska A, Zalewska A, Knaś M, Daniszewska I. The significance of matrix metalloproteinases in oral diseases. Adv Clin Exp Med 2016; 25(2): 383-90.
[http://dx.doi.org/10.17219/acem/30428] [PMID: 27627574]
[124]
Su Y, Hu Y, Du Y, et al. Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy. Mol Pharm 2015; 12(4): 1193-202.
[http://dx.doi.org/10.1021/mp500710x] [PMID: 25751168]
[125]
Zhang P, Wu J, Xiao F, Zhao D, Luan Y. Disulfide bond based polymeric drug carriers for cancer chemotherapy and relevant redox environments in mammals. Med Res Rev 2018; 38(5): 1485-510.
[http://dx.doi.org/10.1002/med.21485] [PMID: 29341223]
[126]
NDong C, Tate JA, Kett WC, et al Tumor cell targeting by iron oxide nanoparticles is dominated by different factors in vitro versus in vivo. PLoS One 2015; 10(2)e0115636
[http://dx.doi.org/10.1371/journal.pone.0115636] [PMID: 25695795]
[127]
Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ. Magnetic nanoparticle hyperthermia in cancer treatment Nano Life 2010; 1(1n02): 17-32
[http://dx.doi.org/10.1142/S1793984410000067] [PMID: 24348868]
[128]
Cooper DR, Bekah D, Nadeau JL. Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem 2014; 2: 86.
[http://dx.doi.org/10.3389/fchem.2014.00086] [PMID: 25353018]
[129]
Yao C, Zhang L, Wang J, et al. Gold nanoparticle mediated phototherapy for cancer. J Nanomater 2016; 20165497136
[130]
Gao X, Cao Y, Song X, et al. pH- and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. J Mater Chem B Mater Biol Med 2013; 1: 5578-87.
[http://dx.doi.org/10.1039/c3tb20901f]
[131]
Bertranda O, Gohy JF. Photo-responsive polymers: Synthesis and applications. Polym Chem 2017; 8: 52-73.
[http://dx.doi.org/10.1039/C6PY01082B]
[132]
Kato S, Kimura M, Kageyama K, Tanaka H, Miwa N. Enhanced radiosensitization by liposome-encapsulated pimonidazole for anticancer effects on human melanoma cells. J Nanosci Nanotechnol 2012; 12(6): 4472-7.
[http://dx.doi.org/10.1166/jnn.2012.6180] [PMID: 22905487]
[133]
Belhadj Z, Zhan C, Ying M, et al. Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment. Oncotarget 2017; 8(40): 66889-900.
[http://dx.doi.org/10.18632/oncotarget.17976] [PMID: 28978003]
[134]
Aryasomayajula B, Salzano G, Torchilin VP. Multifunctional liposomes. Methods Mol Biol 2017; 1530: 41-61.
[http://dx.doi.org/10.1007/978-1-4939-6646-2_3] [PMID: 28150195]
[135]
Zhao C-Y, Cheng R, Yang Z, Tian Z-M. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018; 23(4): 826.
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[136]
Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv 2015; 22(3): 231-42.
[http://dx.doi.org/10.3109/10717544.2014.882469] [PMID: 24524308]
[137]
Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. Thermosensitive liposomal drug delivery systems: State of the art review. Int J Nanomed 2014; 9: 4387-98.
[PMID: 25258529]
[138]
Zhang Y, Tan X, Ren T, Jia C, Yang Z, Sun H. Folate-modified carboxymethyl-chitosan/polyethylenimine/bovine serum albumin based complexes for tumor site-specific drug delivery. Carbohydr Polym 2018; 198: 76-85.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.055] [PMID: 30093044]
[139]
Zhang N, Zhang J, Wang P, et al. Investigation of an antitumor drug-delivery system based on anti-HER2 antibody-conjugated BSA nanoparticles. Anticancer Drugs 2018; 29(4): 307-22.
[http://dx.doi.org/10.1097/CAD.0000000000000586] [PMID: 29381491]
[140]
Ding C, Xu Y, Zhao Y, Zhong H, Luo X. fabrication of bsa@aunc-based nanostructures for cell fluoresce imaging and target drug delivery. ACS Appl Mater Interfaces 2018; 10(10): 8947-54.
[http://dx.doi.org/10.1021/acsami.7b18493] [PMID: 29457719]
[141]
Chen B, He XY, Yi XQ, Zhuo RX, Cheng SX. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl Mater Interfaces 2015; 7(28): 15148-53.
[http://dx.doi.org/10.1021/acsami.5b03866] [PMID: 26168166]
[142]
Nan Z, Yadan X, Xiaojing G, et al. Preparation, characterization, and in vitro targeted delivery of folate-conjugated 2-methoxyestradiol-loaded bovine serum albumin nanoparticles. J Nanopart Res 2014; 16(2390): 1-13.
[143]
Martínez A, Olmo R, Iglesias I, Teijón JM, Blanco MD. Folate-targeted nanoparticles based on albumin and albumin/alginate mixtures as controlled release systems of tamoxifen: synthesis and in vitro characterization. Pharm Res 2014; 31(1): 182-93.
[http://dx.doi.org/10.1007/s11095-013-1151-z] [PMID: 23921489]
[144]
Ming X, Carver K, Wu L. Albumin-based nanoconjugates for targeted delivery of therapeutic oligonucleotides. Biomaterials 2013; 34(32): 7939-49.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.066] [PMID: 23876758]
[145]
Fan D, Yu J, Yan R, et al. Preparation and evaluation of doxorubicin-loaded micelles based on glycyrrhetinic acid modified gelatin conjugates for targeting hepatocellular carcinoma. J Nanomater 2018; 20188467169
[http://dx.doi.org/10.1155/2018/8467169]
[146]
Teng Z, Luo Y, Wang T, Zhang B, Wang Q. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. J Agric Food Chem 2013; 61(10): 2556-64.
[http://dx.doi.org/10.1021/jf4001567] [PMID: 23414105]
[147]
Chaurasiya B, Huang L, Du Y, et al. Size-based anti-tumoral effect of paclitaxel loaded albumin microparticle dry powders for inhalation to treat metastatic lung cancer in a mouse model. Int J Pharm 2018; 542(1-2): 90-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.042] [PMID: 29496457]
[148]
Shi L, Xu L, Wu C, et al. Celecoxib-induced self-assembly of smart albumin-doxorubicin conjugate for enhanced cancer therapy. ACS Appl Mater Interfaces 2018; 10(10): 8555-65.
[http://dx.doi.org/10.1021/acsami.8b00875] [PMID: 29481741]
[149]
Gou Y, Zhang Z, Li D, et al. HSA-based multi-target combination therapy: Regulating drugs’ release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv 2018; 25(1): 321-9.
[http://dx.doi.org/10.1080/10717544.2018.1428245] [PMID: 29350051]
[150]
Li F, Zheng C, Xin J, et al. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base. Int J Nanomed 2016; 11: 3875-90.
[http://dx.doi.org/10.2147/IJN.S108689] [PMID: 27574421]
[151]
Yin T, Cai H, Liu J, et al. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel. Eur J Pharm Sci 2016; 83: 79-87.
[http://dx.doi.org/10.1016/j.ejps.2015.12.019] [PMID: 26699227]
[152]
Wu Y, Ihme S, Feuring-Buske M, et al. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv Healthc Mater 2013; 2(6): 884-94.
[http://dx.doi.org/10.1002/adhm.201200296] [PMID: 23225538]
[153]
Kolluru LP, Rizvi SAA, D’Souza M, D’Souza MJ. Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. J Drug Target 2013; 21(1): 77-86.
[http://dx.doi.org/10.3109/1061186X.2012.729214] [PMID: 23036042]
[154]
Wu Y, Shih EK, Ramanathan A, Vasudevan S, Weil T. Nano-sized albumin-copolymer micelles for efficient doxorubicin delivery. Biointerphases 2012; 7(1-4): 5.
[http://dx.doi.org/10.1007/s13758-011-0005-7] [PMID: 22589048]
[155]
Guo L, Peng Y, Yao J, Sui L, Gu A, Wang J. Anticancer activity and molecular mechanism of resveratrol-bovine serum albumin nanoparticles on subcutaneously implanted human primary ovarian carcinoma cells in nude mice. Cancer Biother Radiopharm 2010; 25(4): 471-7.
[http://dx.doi.org/10.1089/cbr.2009.0724] [PMID: 20735207]
[156]
Taheri A, Atyabi F, Nouri FS, et al. Nanoparticles of conjugated methotrexate-human serum albumin: preparation and cytotoxicity evaluations. J Nanomater 2011; 2011768201
[http://dx.doi.org/10.1155/2011/768201]
[157]
Iruthayapandi RS, Ramar T, Nishad FN. Polymeric micelle of a gelatin-oleylamine conjugate: a prominent drug delivery carrier for treating triple negative breast cancer cells. ACS Appl Bio Mater 2018; 1: 1725-34.
[http://dx.doi.org/10.1021/acsabm.8b00526]
[158]
Patel AK, Jain AP. Novel drug delivery system based on docetaxel-loaded gelatin nanoparticles treatment in human breast cancer cell line MCF-7. Asian J Pharm 2017; 11: 1-10.
[159]
Qingqing S. Williams, Gareth RW, Huanling W, Kailin L, Heyu L, Li-Min Z. Electrospun gelatin/sodium bicarbonate and poly (lactide-co-ε-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems. Mater Sci Eng C 2017; 81: 359-65.
[http://dx.doi.org/10.1016/j.msec.2017.08.007]
[160]
Suarasan S, Focsan M, Potara M, et al. Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: Formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl Mater Interfaces 2016; 8(35): 22900-13.
[http://dx.doi.org/10.1021/acsami.6b07583] [PMID: 27537061]
[161]
Han S, Li M, Liu X, Gao H, Wu Y. Construction of amphiphilic copolymer nanoparticles based on gelatin as drug carriers for doxorubicin delivery. Colloids Surf B Biointerfaces 2013; 102: 833-41.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.010] [PMID: 23107962]
[162]
Shapira A, Davidson I, Avni N, Assaraf YG, Livney YD. β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: Stability, target-activated release and cytotoxicity. Eur J Pharm Biopharm 2012; 80(2): 298-305.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.022] [PMID: 22085654]
[163]
Jayakrishnan A, Knepp WA, Goldberg EP. Casein microspheres: Preparation and evaluation as a carrier for controlled drug delivery. Int J Pharm 1994; 106: 221-8.
[http://dx.doi.org/10.1016/0378-5173(94)90005-1]
[164]
Shapira A, Assaraf YG, Epstein D, Livney YD. Beta-casein nanoparticles as an oral delivery system for chemotherapeutic drugs: Impact of drug structure and properties on co-assembly. Pharm Res 2010; 27(10): 2175-86.
[http://dx.doi.org/10.1007/s11095-010-0222-7] [PMID: 20703895]
[165]
Jin B, Zhou X, Li X, Lin W, Chen G, Qiu R. Self-assembled modified soy protein/dextran nanogel induced by ultrasonication as a delivery vehicle for riboflavin. Molecules 2016; 21(3): 282-96.
[http://dx.doi.org/10.3390/molecules21030282] [PMID: 26999081]
[166]
Lakkadwala S, Singh J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf B Biointerfaces 2019; 173: 27-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.047] [PMID: 30261346]
[167]
Pan XQ, Wang H, Lee RJ. Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 2003; 20(3): 417-22.
[http://dx.doi.org/10.1023/A:1022656105022] [PMID: 12669962]
[168]
Mamot C, Drummond DC, Noble CO, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005; 65(24): 11631-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1093] [PMID: 16357174]
[169]
Wong BC, Zhang H, Qin L, et al. Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro. Drug Des Devel Ther 2014; 8: 993-1001.
[PMID: 25092965]
[170]
Hatakeyama H, Akita H, Ishida E, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 2007; 342(1-2): 194-200.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.037] [PMID: 17583453]
[171]
Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm 2017; 115: 159-67.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.020] [PMID: 28257810]
[172]
Lee YK, Lee TS, Song IH, et al. Inhibition of pulmonary cancer progression by epidermal growth factor receptor-targeted transfection with Bcl-2 and survivin siRNAs. Cancer Gene Ther 2015; 22(7): 335-43.
[http://dx.doi.org/10.1038/cgt.2015.18] [PMID: 25857361]
[173]
Carter KA, Shao S, Hoopes MI, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun 2014; 5: 3546.
[http://dx.doi.org/10.1038/ncomms4546] [PMID: 24699423]
[174]
Chi Y, Yin X, Sun K, et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Control Release 2017; 261: 113-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.027] [PMID: 28666726]
[175]
Noyhouzer T, L’Homme C, Beaulieu I, et al. Ferrocene-modified phospholipid: An innovative precursor for redox-triggered drug delivery vesicles selective to cancer cells. Langmuir 2016; 32(17): 4169-78.
[http://dx.doi.org/10.1021/acs.langmuir.6b00511] [PMID: 26987014]
[176]
Zhao Y, Ren W, Zhong T, et al. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J Control Release 2016; 222: 56-66.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.006] [PMID: 26682502]
[177]
Yuba E, Osaki T, Ono M, et al. Bleomycin-loaded ph-sensitive polymer-lipid-incorporated liposomes for cancer chemotherapy. Polymers (Basel) 2018; 10(1): 74.
[http://dx.doi.org/10.3390/polym10010074] [PMID: 30966109]
[178]
Jose A, Ninave KM, Karnam S, Venuganti VVK. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment. J Liposome Res 2018; 11: 1-10.
[PMID: 30022700]
[179]
Affram K, Udofot O, Cat A, Agyare E. In vitro and in vivo antitumor activity of gemcitabine loaded thermosensitive liposomal nanoparticles and mild hyperthermia in pancreatic cancer. Int J Adv Res (Indore) 2015; 3(10): 859-74.
[PMID: 26677454]
[180]
Mock JN, Costyn LJ, Wilding SL, Arnold RD, Cummings BS. Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr Biol 2013; 5(1): 172-82.
[http://dx.doi.org/10.1039/c2ib20108a] [PMID: 22890797]
[181]
Zhu L, Kate P, Torchilin VP. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012; 6(4): 3491-8.
[http://dx.doi.org/10.1021/nn300524f] [PMID: 22409425]
[182]
Xiang B, Dong DW, Shi NQ, et al. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials 2013; 34(28): 6976-91.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.055] [PMID: 23777916]
[183]
Dozie-Nwachukwu SO, Obayemi JD, Danyuo Y, et al. A comparative study of the adhesion of biosynthesized gold and conjugated gold/prodigiosin nanoparticles to triple negative breast cancer cells. J Mater Sci Mater Med 2017; 28(9): 143.
[http://dx.doi.org/10.1007/s10856-017-5943-2] [PMID: 28819929]
[184]
Borker S, Patole M, Moghe A, Pokharkar V. Engineering of glycyrrhizin capped gold nanoparticles for liver targeting: In vitro evaluation and in vivo biodistribution study. RSC Advances 2016; 6: 44944-54.
[http://dx.doi.org/10.1039/C6RA05202A]
[185]
Pierson R, Kyubae L, Yuri C, Soo-Young P, Hyeong K, Inn-Kyu K. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles. J Nanopart Res 2015; 17: 311-23.
[http://dx.doi.org/10.1007/s11051-015-3118-y]
[186]
Yang Y, Gao N, Hu Y, et al. Gold nanoparticle-enhanced photodynamic therapy: Effects of surface charge and mitochondrial targeting. Ther Deliv 2015; 6(3): 307-21.
[http://dx.doi.org/10.4155/tde.14.115] [PMID: 25853307]
[187]
Unterweger H, Subatzus D, Tietze R, et al. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy. Int J Nanomed 2015; 10: 6985-96.
[http://dx.doi.org/10.2147/IJN.S92336] [PMID: 26648714]
[188]
Gunduz U, Keskin T, Tansık G, et al. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed Pharmacother 2014; 68(6): 729-36.
[http://dx.doi.org/10.1016/j.biopha.2014.08.013] [PMID: 25194441]
[189]
Soni K, Kohli K. Sulforaphane-decorated gold nanoparticle for anti-cancer activity: In vitro and in vivo studies. Pharm Dev Technol 2019; 24(4): 427-38.
[http://dx.doi.org/10.1080/10837450.2018.1507038] [PMID: 30063165]
[190]
Lara-Cruz C, Jiménez-Salazar JE, Ramón-Gallegos E, Damian-Matsumura P, Batina N. Increasing roughness of the human breast cancer cell membrane through incorporation of gold nanoparticles. Int J Nanomedicine 2016; 11: 5149-61.
[http://dx.doi.org/10.2147/IJN.S108768] [PMID: 27785020]
[191]
Ghorbani M, Hamishehkar H. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: A novel platform for targeting of anticancer agent. Mater Sci Eng C 2017; 81: 561-70.
[http://dx.doi.org/10.1016/j.msec.2017.08.021] [PMID: 28888010]
[192]
Wu C, Chen H, Wu X, et al. The influence of tumor-induced immune dysfunction on the immune cell distribution of gold nanoparticles in vivo. Biomater Sci 2017; 5(8): 1531-6.
[http://dx.doi.org/10.1039/C7BM00335H] [PMID: 28589972]
[193]
Woźniak A, Malankowska A, Nowaczyk G, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 2017; 28(6): 92-103.
[http://dx.doi.org/10.1007/s10856-017-5902-y] [PMID: 28497362]
[194]
Dinesh D, Jalalpure S, Jadhav K. Doxorubicin functionalized gold nanoparticles: Characterization and activity against human cancer cell lines. Process Biochem 2015; 50: 2298-306.
[http://dx.doi.org/10.1016/j.procbio.2015.10.007]
[195]
Li T, Zhang M, Wang J, et al. Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J 2016; 18(1): 146-55.
[http://dx.doi.org/10.1208/s12248-015-9828-3] [PMID: 26381779]
[196]
Seo JM, Kim EB, Hyun MS, Kim BB, Park TJ. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf B Biointerfaces 2015; 135: 27-34.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.022] [PMID: 26241913]
[197]
Pooja D, Panyaram S, Kulhari H, Reddy B, Rachamalla SS, Sistla R. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol 2015; 80: 48-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.022] [PMID: 26093321]
[198]
Ali HA, Hasan S, Keshan BS, et al. The in vitro therapeutic activity of ellagic acid-alginate-silver nanoparticles on breast cancer cells (MCF-7) and normal fibroblast cells (3T3). Sci Adv Mater 2016; 8: 545-53.
[http://dx.doi.org/10.1166/sam.2016.2673]
[199]
Li Z, Zhang J, Li X, Guo X, Zhang Z. Preparation and evaluation of multifunctional autofluorescent magnetic nanoparticle-based drug delivery systems against mammary cancer. J Pharm Sci 2018; 107(10): 2694-701.
[http://dx.doi.org/10.1016/j.xphs.2018.06.009] [PMID: 29935296]
[200]
Jamal Al Dine E, Ferjaoui Z, Ghanbaja J, et al. Thermo-responsive magnetic Fe3O4@P(MEO2MAX-OEGMA100-X) NPs and their applications as drug delivery systems. Int J Pharm 2017; 532(2): 738-47.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.019] [PMID: 28893585]
[201]
Jeon S, Subbiah R, Bonaedy T, Van S, Park K, Yun K. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields. J Cell Physiol 2018; 233(2): 1168-78.
[http://dx.doi.org/10.1002/jcp.25980] [PMID: 28464242]
[202]
Castillo PM, de la Mata M, Casula MF, Sánchez-Alcázar JA, Zaderenko AP. PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilstein J Nanotechnol 2014; 5: 1312-9.
[http://dx.doi.org/10.3762/bjnano.5.144] [PMID: 25247114]
[203]
Renyun Z, Chunhui W, Xuemei W, et al. Gang Enhancement effect of nano Fe3O4 to the drug accumulation of doxorubicin in cancer cells. ‎. Mater Sci Eng C 2009; 29: 1697-701.
[http://dx.doi.org/10.1016/j.msec.2009.01.021]
[204]
Huang H, Yang DP, Liu M, et al. pH-sensitive Au-BSA-DOX-FA nanocomposites for combined CT imaging and targeted drug delivery. Int J Nanomed 2017; 12: 2829-43.
[http://dx.doi.org/10.2147/IJN.S128270] [PMID: 28435261]
[205]
Garg S, De A, Nandi T, Mozumdar S. Synthesis of a smart gold nano-vehicle for liver specific drug delivery. AAPS PharmSciTech 2013; 14(3): 1219-26.
[http://dx.doi.org/10.1208/s12249-013-9999-0] [PMID: 23934434]
[206]
Deng W, Chen W, Clement S, et al. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat Commun 2018; 9(1): 2713.
[http://dx.doi.org/10.1038/s41467-018-05118-3] [PMID: 30006596]
[207]
Clares B, Biedma-Ortiz RA, Sáez-Fernández E, et al. Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer. Eur J Pharm Biopharm 2013; 85(3 Pt A): 329-38.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.028] [PMID: 23485475]
[208]
Baskar G, Lalitha K, Garrick BG, Chamundeeswari M. Conjugation, labeling and characterization of asparaginase bound silver nanoparticles for anticancer applications. Indian J Exp Biol 2017; 55: 421-6.
[209]
Linemann T, Thomsen LB, Jardin KG, et al. Development of a novel lipophilic, magnetic nanoparticle for in vivo drug delivery. Pharmaceutics 2013; 5(2): 246-60.
[http://dx.doi.org/10.3390/pharmaceutics5020246] [PMID: 24300449]
[210]
Batist G, Barton J, Chaikin P, Swenson C, Welles L. Myocet (liposome-encapsulated doxorubicin citrate): A new approach in breast cancer therapy. Expert Opin Pharmacother 2002; 3(12): 1739-51.
[http://dx.doi.org/10.1517/14656566.3.12.1739] [PMID: 12472371]
[211]
Green AE, Rose PG. Pegylated liposomal doxorubicin in ovarian cancer. Int J Nanomed 2006; 1(3): 229-39.
[PMID: 17717964]
[214]
FDA approves DaunoXome as first-line therapy for Kaposi’s sarcoma. J Int Assoc Physicians AIDS Care 1996; 2(5): 50-1.
[PMID: 11363534]
[215]
Sarris AH, Hagemeister F, Romaguera J, et al. Liposomal vincristine in relapsed non-Hodgkin’s lymphomas: Early results of an ongoing phase II trial. Ann Oncol 2000; 11(1): 69-72.
[http://dx.doi.org/10.1023/A:1008348010437] [PMID: 10690390]
[216]
Inman S. FDA approves second-line MM-398 regimen for metastatic pancreatic cancer. OncLive. 2015 http://www.onclive.com/web-exclusives/fda-approves-mm-398-regimen-for-metastatic- pancreatic-cancer
[217]
Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 2005; 23(31): 7794-803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[218]
NCT01655693. efficacy and safety doxorubicin transdrug study in patients suffering from advanced hepatocellular carcinoma (relive). Available at https://(clinicaltrials.gov/ct2/show/NCT01655693)
[219]
NCT01190982. efficacy and safety study of lep-etu to treat metastatic breast cancer. available at (https://clinicaltrials.gov/ct2/show/NCT01190982)
[220]
NCT00043199. A safety and effectiveness study of aroplatin in patients with advanced colorectal cancer resistant to standard therapies Available at (https://clinicaltrials.gov/ct2/show/NCT00043199)
[221]
NCT00005969. Liposomal tretinoin in treating patients with recurrent or refractory hodgkin’s disease Available at (https://clinicaltrials.gov/ct2/show/NCT00005969)
[222]
Boulikas T. Clinical overview on Lipoplatin: A successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 2009; 18(8): 1197-218.
[http://dx.doi.org/10.1517/13543780903114168] [PMID: 19604121]
[223]
NCT01876446. Pegylated irinotecan NKTR 102 in treating patients with relapsed small cell lung cancer Available at (https://clinicaltrials.gov/ct2/show/NCT01876446)
[224]
NCT00617981. Phase 3 study of thermodox with radiofrequency ablation (rfa) in treatment of hepatocellular carcinoma (hcc). Availabale at https://clinicaltrials.gov/ct2/show/NCT00617981
[225]
Bolling C, Graefe T, Lübbing C, et al. Phase II study of MTX-HSA in combination with cisplatin as first line treatment in patients with advanced or metastatic transitional cell carcinoma. Invest New Drugs 2006; 24(6): 521-7.
[http://dx.doi.org/10.1007/s10637-006-8221-6] [PMID: 16699974]
[226]
Zheng YR, Suntharalingam K, Johnstone TC, et al. Pt(IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J Am Chem Soc 2014; 136(24): 8790-8.
[http://dx.doi.org/10.1021/ja5038269] [PMID: 24902769]
[227]
Cirstea D, Hideshima T, Rodig S, et al. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther 2010; 9(4): 963-75.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0763] [PMID: 20371718]
[228]
NCT02582827. A trial of abi-011 administered weekly in patients with advanced solid tumors or lymphomas Available at: https://clinicaltrials.gov/ct2/show/NCT02582827
[229]
Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010; 16(24): 6139-49.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0978] [PMID: 20876255]
[230]
O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004; 209(2): 171-6.
[http://dx.doi.org/10.1016/j.canlet.2004.02.004] [PMID: 15159019]
[231]
NCT00355888. Safety Study of MBP-426 (liposomal oxaliplatin suspension for injection) to treat advanced or metastatic solid tumors. Available at https://clinicaltrials.gov/ct2/show/NCT00355888
[232]
Matsumura Y, Gotoh M, Muro K, et al. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 2004; 15(3): 517-25.
[http://dx.doi.org/10.1093/annonc/mdh092] [PMID: 14998859]
[233]
NCT02213744. MM-302 plus trastuzumab vs. chemotherapy of physician's choice plus trastuzumab in her2-positive locally advanced/ metastatic breast cancer patients (hermione). Available at https://clinicaltrials.gov/ct2/show/NCT02213744
[234]
NCT00103506. Study of doxil/caelyx (pegylated liposomal doxorubicin) and velcade (bortezomib) or velcade monotherapy for the treatment of relapsed multiple myeloma. Available at https://clinicaltrials.gov/ct2/show/results/NCT00103506
[235]
NCT00003165. Doxorubicin in Treating women with advanced breast cancer Available at https://clinicaltrials.gov/ct2/show/NCT00003165
[236]
NCT00470613. Safety study of infusion of SGT-53 to treat solid tumors Available at https://clinicaltrials.gov/ct2/show/NCT00470613
[237]
Jordan A, Scholz R, Wust P, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 1997; 13(6): 587-605.
[http://dx.doi.org/10.3109/02656739709023559] [PMID: 9421741]
[238]
Graeser R, Esser N, Unger H, et al. INNO-206, the (6-maleimidocaproyl hydrazone derivative of doxorubicin), shows superior antitumor efficacy compared to doxorubicin in different tumor xenograft models and in an orthotopic pancreas carcinoma model. Invest New Drugs 2010; 28(1): 14-9.
[http://dx.doi.org/10.1007/s10637-008-9208-2] [PMID: 19148580]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy