Systematic Review Article

候选microRNA作为疟疾感染中的生物标志物:系统评价

卷 20, 期 1, 2020

页: [36 - 43] 页: 8

弟呕挨: 10.2174/1566524019666190820124827

价格: $65

摘要

疟疾是一个公共卫生问题,尤其是在热带国家,2017年已报告有445,000例与疟疾有关的死亡。MicroRNA(miRNA)是长度为18-24个核苷酸的小型非编码RNA,已被证明可调节基因表达。几个生物过程。 microRNA在转录过程中宿主免疫相关基因表达失调已被广泛报道在疟原虫侵袭红细胞中。候选人的miRNA将在将来和将来用作潜在的生物标记。在这项研究中,已经建立了关于miRNA作为疟疾感染候选临床生物标志物的系统评价。筛选电子数据库(Medline,EMBASE,CINAHL和Cochrane数据库),并根据既定的选择标准纳入文章。我们进行了全面搜索,以确定与疟疾和miRNA相关的出版物。遵循PRISMA指南,搜索了262篇文章,排除重复和无关的论文。该研究包括19篇文章。已发现疟疾寄生虫感染的肝脏或组织产生组织特异性miRNA,并释放到血流中。包括miR-16,miR-155,miR-150,miR-451和miR-223的miRNA与免疫相关基因表达失调的关联,例如PfEMP-1,IFN-γ,AGO-1 AGO-2;在早期,严重和/或脑部疟疾感染期间,IL4,CD80,CD86,CD36,ANG-1和ANG-2表明这些miRNA可能用作疟疾感染的生物标记。

关键词: 热带疾病,寄生虫病疟疾,恶性疟原虫,间日疟原虫系统评价,miRNA,宿主基因,生物标志物,免疫反应。

[1]
Dhangadamajhi G, Kar A, Rout R, Dhangadamajhi P. A meta-analysis of TLR4 and TLR9 SNPs implicated in severe malaria. Rev Soc Bras Med Trop 2017; 50(2): 153-60.
[http://dx.doi.org/10.1590/0037-8682-0475-2016] [PMID: 28562749]
[2]
Li P, Zhao Z, Xing H, et al. Plasmodium malariae and Plasmodium ovale infections in the China-Myanmar border area. Malar J 2016; 15(1): 557.
[http://dx.doi.org/10.1186/s12936-016-1605-y] [PMID: 27846879]
[3]
Organization WH. World malaria report 2015. World Health Organization 2016.
[4]
Sriwichai P, Karl S, Samung Y, et al. Imported Plasmodium falciparum and locally transmitted Plasmodium vivax: cross-border malaria transmission scenario in northwestern Thailand. Malar J 2017; 16(1): 258.
[http://dx.doi.org/10.1186/s12936-017-1900-2] [PMID: 28637467]
[5]
White NJ. Antimalarial drug resistance. J Clin Invest 2004; 113(8): 1084-92.
[http://dx.doi.org/10.1172/JCI21682] [PMID: 15085184]
[6]
Cohen A, Combes V, Grau GE. MicroRNAs and Malaria–a dynamic Interaction still incompletely understood. J Neuroinfect Dis 2015; 6(1): 165.
[PMID: 26005686]
[7]
Iwalokun BA, Oluwadun A, Iwalokun SO, Agomo P. Toll-like receptor (TLR4) Asp299Gly and Thr399Ile polymorphisms in relation to clinical falciparum malaria among Nigerian children: a multisite cross-sectional immunogenetic study in Lagos. Genes Environ 2015; 37(1): 3.
[http://dx.doi.org/10.1186/s41021-015-0002-z] [PMID: 27350800]
[8]
Coban C, Ishii KJ, Horii T, Akira S. Manipulation of host innate immune responses by the malaria parasite. Trends Microbiol 2007; 15(6): 271-8.
[http://dx.doi.org/10.1016/j.tim.2007.04.003] [PMID: 17466521]
[9]
Plattner F, Soldati-Favre D. Hijacking of host cellular functions by the Apicomplexa. Annu Rev Microbiol 2008; 62: 471-87.
[http://dx.doi.org/10.1146/annurev.micro.62.081307.162802] [PMID: 18785844]
[10]
Judice CC, Bourgard C, Kayano AC, Albrecht L, Costa FT. MicroRNAs in the host-apicomplexan parasites interactions: a review of immunopathological aspects. Front Cell Infect Microbiol 2016; 6: 5.
[http://dx.doi.org/10.3389/fcimb.2016.00005] [PMID: 26870701]
[11]
Jain V, Armah HB, Tongren JE, et al. Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 2008; 7(1): 83.
[http://dx.doi.org/10.1186/1475-2875-7-83] [PMID: 18489763]
[12]
Sha D, Lee AM, Shi Q, et al. Association study of the let-7 miRNA-complementary site variant in the 3′ untranslated region of the KRAS gene in stage III colon cancer (NCCTG N0147 Clinical Trial). Clin Cancer Res 2014; 20(12): 3319-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0069] [PMID: 24727325]
[13]
Barker KR, Lu Z, Kim H, et al. miR-155 modifies inflammation, endothelial activation and blood-brain barrier dysfunction in cerebral malaria. Mol Med 2017; 23: 24-33.
[http://dx.doi.org/10.2119/molmed.2016.00139] [PMID: 28182191]
[14]
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6(7)e1000097
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[15]
Gebreyohannes EA, Bhagavathula AS, Seid MA, Tegegn HG. Anti-malarial treatment outcomes in Ethiopia: a systematic review and meta-analysis. Malar J 2017; 16(1): 269.
[http://dx.doi.org/10.1186/s12936-017-1922-9] [PMID: 28673348]
[16]
Roberts AP, Lewis AP, Jopling CL. The role of microRNAs in viral infection Progress in molecular biology and translational science 102. Elsevier 2011; pp. 101-39.
[17]
Moro L, Bardají A, Macete E, et al. Placental microparticles and microRNAs in pregnant women with Plasmodium falciparum or HIV infection. PLoS One 2016; 11(1)e0146361
[http://dx.doi.org/10.1371/journal.pone.0146361] [PMID: 26757431]
[18]
Molyneux EM, Rochford R, Griffin B, et al. Burkitt’s lymphoma. Lancet 2012; 379(9822): 1234-44.
[http://dx.doi.org/10.1016/S0140-6736(11)61177-X] [PMID: 22333947]
[19]
Rainey JJ, Mwanda WO, Wairiumu P, Moormann AM, Wilson ML, Rochford R. Spatial distribution of Burkitt’s lymphoma in Kenya and association with malaria risk. Trop Med Int Health 2007; 12(8): 936-43.
[http://dx.doi.org/10.1111/j.1365-3156.2007.01875.x] [PMID: 17697088]
[20]
Bayer-Santos E, Marini MM, da Silveira JF. Non-coding RNAs in Host-Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites. Front Microbiol 2017; 8: 474.
[http://dx.doi.org/10.3389/fmicb.2017.00474] [PMID: 28377760]
[21]
Liu W, Huang H, Xing C, Li C, Tan F, Liang S. Identification and characterization of the expression profile of microRNAs in Anopheles anthropophagus. Parasit Vectors 2014; 7(1): 159.
[http://dx.doi.org/10.1186/1756-3305-7-159] [PMID: 24690438]
[22]
Winter F, Edaye S, Hüttenhofer A, Brunel C. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion. Nucleic Acids Res 2007; 35(20): 6953-62.
[http://dx.doi.org/10.1093/nar/gkm686] [PMID: 17933784]
[23]
Chamnanchanunt S, Fucharoen S, Umemura T. Circulating microRNAs in malaria infection: bench to bedside. Malar J 2017; 16(1): 334.
[http://dx.doi.org/10.1186/s12936-017-1990-x] [PMID: 28807026]
[24]
Seenprachawong K, Nuchnoi P, Nantasenamat C, Prachayasittikul V, Supokawej A. Computational identification of miRNAs that modulate the differentiation of mesenchymal stem cells to osteoblasts. PeerJ 2016; 4e: 1976.
[http://dx.doi.org/10.7717/peerj.1976] [PMID: 27168985]
[25]
Chamnanchanunt S, Kuroki C, Desakorn V, et al. Downregulation of plasma miR-451 and miR-16 in Plasmodium vivax infection. Exp Parasitol 2015; 155: 19-25.
[http://dx.doi.org/10.1016/j.exppara.2015.04.013] [PMID: 25913668]
[26]
Garley AE, Ivanovich E, Eckert E, Negroustoueva S, Ye Y. Gender differences in the use of insecticide-treated nets after a universal free distribution campaign in Kano State, Nigeria: post-campaign survey results. Malar J 2013; 12(1): 119.
[http://dx.doi.org/10.1186/1475-2875-12-119] [PMID: 23574987]
[27]
Malik EM, Hanafi K, Ali SH, Ahmed ES, Mohamed KA. Treatment-seeking behaviour for malaria in children under five years of age: implication for home management in rural areas with high seasonal transmission in Sudan. Malar J 2006; 5(1): 60.
[http://dx.doi.org/10.1186/1475-2875-5-60] [PMID: 16859565]
[28]
Hentzschel F, Hammerschmidt-Kamper C, Börner K, et al. AAV8-mediated in vivo overexpression of miR-155 enhances the protective capacity of genetically attenuated malarial parasites. Mol Ther 2014; 22(12): 2130-41.
[http://dx.doi.org/10.1038/mt.2014.172] [PMID: 25189739]
[29]
LaMonte G, Philip N, Reardon J, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 2012; 12(2): 187-99.
[http://dx.doi.org/10.1016/j.chom.2012.06.007] [PMID: 22901539]
[30]
Mantel P-Y, Hjelmqvist D, Walch M, et al. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun 2016; 7: 12727.
[http://dx.doi.org/10.1038/ncomms12727] [PMID: 27721445]
[31]
Rathjen T, Nicol C, McConkey G, Dalmay T. Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett 2006; 580(22): 5185-8.
[http://dx.doi.org/10.1016/j.febslet.2006.08.063] [PMID: 16963026]
[32]
Rubio M, Bassat Q, Estivill X, Mayor A. Tying malaria and microRNAs: from the biology to future diagnostic perspectives. Malar J 2016; 15(1): 167.
[http://dx.doi.org/10.1186/s12936-016-1222-9] [PMID: 26979504]
[33]
Baro B, Deroost K, Raiol T, et al. Plasmodium vivax gametocytes in the bone marrow of an acute malaria patient and changes in the erythroid miRNA profile. PLoS Negl Trop Dis 2017; 11(4)e0005365
[http://dx.doi.org/10.1371/journal.pntd.0005365] [PMID: 28384192]
[34]
El-Assaad F, Hempel C, Combes V, et al. Differential microRNA expression in experimental cerebral and noncerebral malaria. Infect Immun 2011; 79(6): 2379-84.
[http://dx.doi.org/10.1128/IAI.01136-10] [PMID: 21422175]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy