Research Article

血清脂联素水平的降低和8-OHdG的增加:2型糖尿病老年患者认知障碍的罪魁祸首

卷 20, 期 1, 2020

页: [44 - 50] 页: 7

弟呕挨: 10.2174/1566524019666190819160403

价格: $65

摘要

背景:脂联素和8-Hydroxy-2''-deoxyguanosine(8-OHdG)被认为是2型糖尿病(T2DM)发病过程中的重要生物标志物。脂联素和8-OHdG是否与老年T2DM患者的认知能力下降有关,人们对此知之甚少。这项研究的目的是评估脂联素和8-OHdG在老年T2DM患者中的作用,并确定脂联素和8-OHdG在老年T2DM患者认知障碍中的作用。 方法:招募和分析57例个体,其中26例无认知障碍的T2DM和31例有认知障碍的T2DM。他们都在不同的时间接受了糖尿病和血糖的检查。糖尿病的初步诊断符合美国糖尿病协会(ADA)设定的诊断标准。统计显着性定义为P值小于0.05。 结果:根据探索每个变量的单因素分析,在无认知障碍和认知障碍的T2DM患者中,性别,年龄,体重指数(BMI),高血压,糖尿病,代谢综合征,腔隙性脑梗塞,吸烟和饮酒等变量均无差异。分别变量(p> 0.05)。血清脂联素和8-OHdG的水平以及MMSE和MoCA的量表存在显着差异(p <0.05)。因此,推断T2DM患者的葡萄糖代谢值与认知结果之间没有相关性。血清脂联素和8-OHdG水平可作为老年T2DM患者认知障碍程度的生物标志物。 结论:血清脂联素和8-OHdG水平可作为特异和敏感的生物标志物,对老年T2DM患者的认知障碍进行早期诊断和治疗。血清脂联素和8-OHdG水平与老年T2DM患者的神经认知结果密切相关。

关键词: 糖尿病,脂联素,8-OhdG,认知障碍,氧化应激,T2DM。

[1]
Zhang FL, Xing YQ, Guo ZN, Wu YH, Liu HY, Yang Y. Prevalence and risk factors for diabetes and impaired fasting glucose in northeast china: results from the 2016 china national stroke screening survey. Diabetes Res Clin Pract 2018; 144: 302-13.
[http://dx.doi.org/10.1016/j.diabres.2018.09.005] [PMID: 30217593]
[2]
Panton UH, Bagger M, Barquera S. Projected diabetes prevalence and related costs in three North American urban centres (2015-2040). Public Health 2018; 157: 43-9.
[http://dx.doi.org/10.1016/j.puhe.2017.12.023] [PMID: 29477788]
[3]
Feinkohl I, Lachmann G, Brockhaus WR, et al. Association of obesity, diabetes and hypertension with cognitive impairment in older age. Clin Epidemiol 2018; 10: 853-62.
[http://dx.doi.org/10.2147/CLEP.S164793] [PMID: 30100759]
[4]
Gorniak SL, Lu FY, Lee BC, Massman PJ, Wang J. Cognitive impairment and postural control deficit in adults with Type 2 diabetes. Diabetes Metab Res Rev 2019; 35(2)e3089
[http://dx.doi.org/10.1002/dmrr.3089] [PMID: 30338902]
[5]
Pal K, Mukadam N, Petersen I, Cooper C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol 2018; 53(11): 1149-60.
[http://dx.doi.org/10.1007/s00127-018-1581-3] [PMID: 30182156]
[6]
Groeneveld O, Reijmer Y, Heinen R, et al. COG-ID study group. Brain imaging correlates of mild cognitive impairment and early dementia in patients with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2018; 28(12): 1253-60.
[http://dx.doi.org/10.1016/j.numecd.2018.07.008] [PMID: 30355471]
[7]
Rodríguez-Sánchez E, Mora-Simón S, Patino-Alonso MC, et al. DERIVA Group. Cognitive impairment and dependence of patients with diabetes older than 65 years old in an urban area (DERIVA study). BMC Geriatr 2016; 16: 33.
[http://dx.doi.org/10.1186/s12877-016-0208-3] [PMID: 26832143]
[8]
Kim E, Lee SH, Lee KS, et al. AMPK γ2 subunit gene PRKAG2 polymorphism associated with cognitive impairment as well as diabetes in old age. Psychoneuroendocrinology 2012; 37(3): 358-65.
[http://dx.doi.org/10.1016/j.psyneuen.2011.07.005] [PMID: 21813245]
[9]
Lee AK, Rawlings AM, Lee CJ, et al. Severe hypoglycaemia, mild cognitive impairment, dementia and brain volumes in older adults with type 2 diabetes: the Atherosclerosis Risk in Communities (ARIC) cohort study. Diabetologia 2018; 61(9): 1956-65.
[http://dx.doi.org/10.1007/s00125-018-4668-1] [PMID: 29961106]
[10]
Li Y, Li Q, Pan CS, et al. Bushen huoxue attenuates diabetes-induced cognitive impairment by improvement of cerebral microcirculation: Involvement of RhoA/ROCK/moesin and Src signaling pathways. Front Physiol 2018; 9: 527.
[http://dx.doi.org/10.3389/fphys.2018.00527] [PMID: 29867568]
[11]
Mallorquí-Bagué N, Lozano-Madrid M, Toledo E, et al. Type 2 diabetes and cognitive impairment in an older population with overweight or obesity and metabolic syndrome: baseline cross-sectional analysis of the PREDIMED-plus study. Sci Rep 2018; 8(1): 16128.
[http://dx.doi.org/10.1038/s41598-018-33843-8] [PMID: 30382190]
[12]
Song J, Lee JE. Adiponectin as a new paradigm for approaching Alzheimer’s disease. Anat Cell Biol 2013; 46(4): 229-34.
[http://dx.doi.org/10.5115/acb.2013.46.4.229] [PMID: 24386594]
[13]
Cezaretto A, Suemoto CK, Bensenor I, Lotufo PA, de Almeida-Pititto B, Ferreira SRG. ELSA Research Group. Association of adiponectin with cognitive function precedes overt diabetes in the Brazilian Longitudinal Study of Adult Health: ELSA. Diabetol Metab Syndr 2018; 10: 54.
[http://dx.doi.org/10.1186/s13098-018-0354-1] [PMID: 30002734]
[14]
Shao C, Xiong S, Li GM, et al. Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer’s disease brain. Free Radic Biol Med 2008; 45(6): 813-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.06.003] [PMID: 18598755]
[15]
Lovell MA, Soman S, Bradley MA. Oxidatively modified nucleic acids in preclinical Alzheimer’s disease (PCAD) brain. Mech Ageing Dev 2011; 132(8-9): 443-8.
[http://dx.doi.org/10.1016/j.mad.2011.08.003] [PMID: 21878349]
[16]
Zuo Y. The role of adiponectin gene mediated by NF-κB signaling pathway in the pathogenesis of type 2 diabetes. Eur Rev Med Pharmacol Sci 2018; 22(4): 1106-12.
[PMID: 29509263]
[17]
Abdella NA, Mojiminiyi OA. Clinical applications of adiponectin measurements in type 2 diabetes mellitus: screening, diagnosis, and marker of diabetes control. Dis Markers 2018.20185187940
[http://dx.doi.org/10.1155/2018/5187940] [PMID: 30069271]
[18]
Hashimoto H, Yamamoto M, Sugiura E, et al. Adiponectin deficiency-induced diabetes increases TNFα and FFA via downregulation of PPARα. J Vet Med Sci 2018; 80(4): 662-6.
[http://dx.doi.org/10.1292/jvms.17-0641] [PMID: 29445073]
[19]
Wang Y, Meng RW, Kunutsor SK, et al. Plasma adiponectin levels and type 2 diabetes risk: a nested case-control study in a Chinese population and an updated meta-analysis. Sci Rep 2018; 8(1): 406.
[http://dx.doi.org/10.1038/s41598-017-18709-9] [PMID: 29321603]
[20]
Kashiwagi R, Yamada Y, Ito Y, et al. Increase in Adiponectin Level Prevents the Development of Type 2 Diabetes in Japanese Men With Low Adiponectin Levels. J Endocr Soc 2018; 2(7): 753-64.
[http://dx.doi.org/10.1210/js.2018-00033] [PMID: 29978152]
[21]
Yau SY, Lee TH, Li A, Xu A, So KF. Adiponectin mediates running-restored hippocampal neurogenesis in streptozotocin-induced type 1 diabetes in mice. Front Neurosci 2018; 12: 679.
[http://dx.doi.org/10.3389/fnins.2018.00679] [PMID: 30333718]
[22]
Choi W, Li Y, Ji YS, Yoon KC. Oxidative stress markers in tears of patients with Graves’ orbitopathy and their correlation with clinical activity score. BMC Ophthalmol 2018; 18(1): 303.
[http://dx.doi.org/10.1186/s12886-018-0969-x] [PMID: 30463536]
[23]
Zhang SY, Ji SX, Bai XM, et al. L-3-n-butylphthalide attenuates cognitive deficits in db/db diabetic mice. Metab Brain Dis 2018.
[PMID: 30506335]
[24]
Çalışkan Z, Mutlu T, Güven M, et al. SIRT6 expression and oxidative DNA damage in individuals with prediabetes and type 2 diabetes mellitus. Gene 2018; 642: 542-8.
[http://dx.doi.org/10.1016/j.gene.2017.11.071] [PMID: 29197589]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy