Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Amine Derivative from the Aerial Part of Spilanthes acmella Murr. and their Alkaline Phosphatase Activity

Author(s): Retno Widyowati*, Wiwied Ekasari and Neny Purwitasari

Volume 10, Issue 5, 2020

Page: [571 - 577] Pages: 7

DOI: 10.2174/2210315509666190807161413

Price: $65

Abstract

Background: Spilanthes acmella Murr. is included in Asteraceae family which is used as a traditional remedy for tooth-aches, and originated from Africa, America, Borneo, India, Sri Lanka, Bangladesh, China, Japan, Thailand, and Indonesia. The present research aims to isolate the amine derivative from the ethyl acetate layer of this plant and to evaluate the isolated compounds of alkaline phosphatase activity as a sign of bone formation.

Methods: The air-dried plants of Spilanthes acmella Murr. were extracted with methanol, then partitioned with n-hexane and ethyl acetate successively by using liquid-liquid extraction, and then the chromatographic techniques were repeated, such as silica gel, octadecyl silylated silica gel, and HPLC. The isolated compounds were determined by spectrometric analysis using ultraviolet, infrared, high-resolution electrospray ionization mass spectrometry, 1D and 2D NMR.

Results: Benzenepropanoic acid, 4 hydroxy-2-oxo-3 piperidinyl ester (1), was isolated from the ethyl acetate layer of the whole plants of Spilanthes acmella Murr. together with dendranthemoside A (2), uridine (3), icariside B2 (4), chicoriin (5), dendranthemoside B (6), and ampelopsisionoside (7) from their butanol layer.

Conclusion: An amine derivative, a benzenepropanoic acid that determined as 4 hydroxy-2-oxo-3 piperidinyl ester (1) was isolated and reported for the first time from the ethyl acetate layer of Spilanthes acmella naturally. All the isolated compounds from this plant stimulated alkaline phosphatase activity as a mark of bone formation up to 128%.

Keywords: Spilanthes acmella Murr., Asteraceae, benzenepropanoic, ethyl acetate, structure elucidation, alkaline phosphatase activity.

Graphical Abstract

[1]
Sharma, V.; Boonen, J.; Chauhan, N.S.; Thakur, M.; De Spiegeleer, B.; Dixit, V.K. Spilanthes acmella ethanolic flower extract: LC-MS alkylamide profiling and its effects on sexual behavior in male rats. Phytomedicine, 2011, 18(13), 1161-1169.
[http://dx.doi.org/10.1016/j.phymed.2011.06.001 ] [PMID: 21757328]
[2]
Tiwari, K.L.; Jadhav, S.K.; Joshi, V. An updated review on medicinal herb genus Spilanthes. J. Chin. Integr. Med., 2011, 9(11), 1170-1178.
[http://dx.doi.org/10.3736/jcim20111103 ] [PMID: 22088581]
[3]
Wongsawatkul, O.; Prachayasittikul, S.; Isarankura-Na-Ayudhya, C.; Satayavivad, J.; Ruchirawat, S.; Prachayasittikul, V. Vasorelaxant and antioxidant activities of Spilanthes acmella Murr. Int. J. Mol. Sci., 2008, 9(12), 2724-2744.
[http://dx.doi.org/10.3390/ijms9122724 ] [PMID: 19330100]
[4]
Ramsewak, R.S.; Erickson, A.J.; Nair, M.G. Bioactive Nisobutylamides from the flower buds of Spilanthes acmella. Phytochemistry, 1999, 51(6), 729-732.
[http://dx.doi.org/10.1016/S0031-9422(99)00101-6 ] [PMID: 10389272]
[5]
Narayana, K.R.; Reddy, M.S.; Chaluvadi, M.R.; Krishna, D.R. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol., 2001, 33, 2-16.
[6]
Chakraborty, A.; Devi, B.R.K.; Sanjebam, R.; Khumbong, S.; Thokchom, I.S. Preliminary studies on local anesthetic and antipyretic activities of Spilanthes acmella Murr. in experimental animal models. Indian J. Pharmacol., 2010, 42(5), 277-279.
[http://dx.doi.org/10.4103/0253-7613.70106 ] [PMID: 21206617]
[7]
Ratnasooriya, W.D.; Pieris, K.P.P. Attenuation of persistent pain and hyperalgesia by Spilanthus acmella flowers in rats. Pharm. Biol., 2005, 43, 614-619.
[http://dx.doi.org/10.1080/13880200500301944]
[8]
Bermúdez-Ocaña, D.Y.; Ambriz-Tututi, M.; Pérez-Severiano, F.; Granados-Soto, V. Pharmacological evidence for the participation of NO-cyclic GMP-PKG-K+ channel pathway in the antiallodynic action of resveratrol. Pharmacol. Biochem. Behav., 2006, 84(3), 535-542.
[http://dx.doi.org/10.1016/j.pbb.2006.06.019 ] [PMID: 16899286]
[9]
Arora, S.; Vijay, S.; Kumar, D. Phytochemical and antimicrobial studies on the leaves of Spilanthes acmella. J. Chem. Pharm. Res., 2011, 3, 145-150.
[10]
Prachayasittikul, S.; Suphapong, S.; Worachartcheewan, A.; Lawung, R.; Ruchirawat, S.; Prachayasittikul, V. Bioactive metabolites from Spilanthes acmella Murr. Molecules, 2009, 14(2), 850-867.
[http://dx.doi.org/10.3390/molecules14020850 ] [PMID: 19255544]
[11]
Phongpaichit, S.; Subhadhirasakul, S.; Wattanapiromsakul, C. Antifungal activities of extracts from Thai medicinal plants against opportunistic fungal pathogens associated with AIDS patients. Mycoses, 2005, 48(5), 333-338.
[http://dx.doi.org/10.1111/j.1439-0507.2005.01142.x ] [PMID: 16115104]
[12]
Rani, S.A.; Murty, S.U. Antifungal potential of flower head extract of Spilanthes acmella Linn. Afr. J. Biomed. Res., 2006, 9, 67-69.
[13]
Spelman, K.; Depoix, D.; McCray, M.; Mouray, E.; Grellier, P. The traditional medicine Spilanthes acmella, and the alkylamides spilanthol and undeca-2E-ene-8,10-diynoic acid isobutylamide, demonstrate in vitro and in vivo antimalarial activity. Phytother. Res., 2011, 25(7), 1098-1101.
[http://dx.doi.org/10.1002/ptr.3395 ] [PMID: 22692989]
[14]
Mbeunkui, F.; Grace, M.H.; Lategan, C.; Smith, P.J.; Raskin, I.; Lila, M.A. Isolation and identification of antiplasmodial Nalkylamides from Spilanthes acmella flowers using centrifugal partition chromatography and ESI-IT-TOF-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(21), 1886-1892.
[http://dx.doi.org/10.1016/j.jchromb.2011.05.013 ] [PMID: 21641879]
[15]
Pandey, V.; Agrawal, V. Efficient micro- propagation protocol of Spilanthes acmella L. possessing strong antimalarial activity. In Vitro Cell. Dev. Biol. Plant, 2009, 45, 491-499.
[http://dx.doi.org/10.1007/s11627-008-9184-4]
[16]
Bae, S.S.; Ehrmann, B.M.; Ettefagh, K.A.; Cech, N.B. A validated liquid chromatography-electrospray ionization-mass spectrometry method for quantification of spilanthol in Spilanthes acmella (L.). Murr. Phytochem. Anal., 2010, 21(5), 438-443.
[http://dx.doi.org/10.1002/pca.1215 ] [PMID: 20310072]
[17]
Wu, L.C.; Fan, N.C.; Lin, M.H.; Chu, I.R.; Huang, S.J.; Hu, C.Y.; Han, S.Y. Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J. Agric. Food Chem., 2008, 56(7), 2341-2349.
[http://dx.doi.org/10.1021/jf073057e ] [PMID: 18321049]
[18]
Nanasombat, S.; Teckchuen, N. Antimicrobial, antioxidant and anticancer activities of Thai local vegetables. J. Med. Plants Res., 2009, 3, 443-449.
[19]
Prachayasittikul, S.; Wongsawatkul, O.; Suksrichavalit, T.; Ruchirawat, S.; Pracha-yasittikul, V. Bioactivity evaluation of Eclipta prostrata linn: A potential vasorelaxant. Eur. J. Sci. Res., 2010, 44, 167-176.
[20]
Vanamala, U.; Elumalai, A.; Eswaraiah, M.C.; Shaik, A. An updated review on diuretic plants-2012. Int. J. Pharm. Biol. Arch., 2012, 3, 29-31.
[21]
Kumar, B.N.S.; Swamy, B.M.V.; Swamy, A.; Murali, A. A review on natural diuretics. Res. J. Pharm. Biol. Chem. Sci., 2010, 1, 615-634.
[22]
Ratnasooriya, W.D.; Pieris, K.P.P.; Samaratunga, U.; Jayakody, J.R.A.C. Diuretic activity of Spilanthes acmella flowers in rats. J. Ethnopharmacol., 2004, 91(2-3), 317-320.
[http://dx.doi.org/10.1016/j.jep.2004.01.006 ] [PMID: 15120455]
[23]
Savadi, R.; Yadav, R.; Yadav, N. Study on immunomodulato-ry activity of ethanolic extract Spilanthes acmella Murr. Leaves. Indian J. Nat. Prod. Resour., 2010, 1, 204-207.
[24]
Rios, M.Y. Natural alkamides: Pharmacology, chemistry and distribution. Drug Disc. Res. Pharmacogn, 2012, 107-144.
[25]
Barman, S.; Sahu, N.; Deka, S.; Dutta, S.; Das, S. Antiinflammatory and analgesic activity of leaves of Spilanthes acmella (ELSA) in experimental animal models. Pharmacologyonline, 2009, 1, 1027-1034.
[26]
Shah, S.N.; Mumtaz, A.; Chaudary, M.Z.; Bashir, N.; Ayaz, M.M.; Siddique, F.A.; Abbas, K. Hepatoprotective and hepatocurative effects of Spilanthes acmella Murr against paracetamol induced hepatotoxicity. Pak. J. Pharm. Sci., 2018, 31(5(Supplementary)), 2061-2068.
[PMID: 30393213]
[27]
Hossan, S.; Agarwala, B.; Sarwar, S.; Karim, M.; Jahan, R.; Rahmatullah, M. Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and sexually transmit-ted diseases. Ethnobot. Res. Appl., 2010, 8, 61-74.
[http://dx.doi.org/10.17348/era.8.0.61-74]
[28]
Dubey, S.; Maity, S.; Singh, M.; Saraf, S.A.; Saha, S. Phytochemistry, pharmacology and toxicology of Spilanthes acmella: A review. Adv. Pharmacol. Sci., 2013.2013423750
[http://dx.doi.org/10.1155/2013/423750 ] [PMID: 24371437]
[29]
Suthikrai, W.; Jintana, R.; Sophon, S.; Usawang, S.; Heng-takulsin, R. The study on testosterone, progesterone and estradiol 17-β levels in Thai. J. Toxicol., 2010, 25(2), 183.
[30]
Otsuka, H.; Takeda, Y.; Yamasaki, K.; Takeda, Y. Structural elucidation of Dendranthemosides A and B: Two new β-ionone glucosides from Dendranthema shiwogiku. Planta Med., 1992, 58(4), 373-375.
[http://dx.doi.org/10.1055/s-2006-961489 ] [PMID: 17226489]
[31]
Chen, H.X.; Geng, C.A.; Cao, T.W.; Zhang, X.M.; Ma, Y.B.; Huang, X.Y.; Chen, J.J. Chemical structure of capsicuoside A from fruits of Capsicum annuum. Zhongguo Zhongyao Zazhi, 2013, 38(12), 1934-1937.
[PMID: 24066587]
[32]
Miyase, T.; Ueno, A.; Takizawa, N.; Kobayashi, H.; Karasawa, H. Studies on the glycosides of Epimedium grandiflorum MORR. Var. thunbergianum (MIQ.) NAKAI. I. Chem. Pharm. Bull. (Tokyo), 1987, 35, 1109-1117.
[http://dx.doi.org/10.1248/cpb.35.1109]
[33]
Zhou, H.; Qin, M.; Hong, J.; Wu, G. Chemical constituents of Viola yedoensis. Chin. J. Nat. Med., 2009, 7, 290-292.
[http://dx.doi.org/10.3724/SP.J.1009.2008.00290]
[34]
De Marino, S.; Borbone, N.; Zollo, F.; Ianaro, A.; Di Meglio, P.; Iorizzi, M. Megastigmane and phenolic components from Laurus nobilis L. leaves and their inhibitory effects on nitric oxide production. J. Agric. Food Chem., 2004, 52(25), 7525-7531.
[http://dx.doi.org/10.1021/jf048782t ] [PMID: 15675799]
[35]
Cuong, N.X.; Tuan, T.A.; Kiem, P.V.; Minh, C.V.; Choi, E.M.; Kim, Y.H. New cembranoid diterpenes from the Vietnamese soft coral Sarcophyton mililatensis stimulate osteoblastic differentiation in MC3T3-E1 cells. Chem. Pharm. Bull. (Tokyo), 2008, 56(7), 988-992.
[http://dx.doi.org/10.1248/cpb.56.988 ] [PMID: 18591816]
[36]
Nishiyama, S.; Inagaki, T.; Yamamura, S.; Hasegawa, K. Syntheses of trans- and cis-3-methoxy-4-methylthio-2-piperidinethiones. Previously proposed structures for raphanusanins, structural revision and biological activities of their congeners. Bull. Chem. Soc. Jpn., 1992, 65, 3064-3067.
[http://dx.doi.org/10.1246/bcsj.65.3064]
[37]
Li, L.J.; Kim, S.N.; Cho, S.A. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), lasertreated, and laser and acid-treated Ti surfaces. J. Adv. Prosthodont., 2016, 8(3), 235-240.
[http://dx.doi.org/10.4047/jap.2016.8.3.235 ] [PMID: 27350860]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy