Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Review Article

Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators

Author(s): Samir F. de A. Cavalcante*, Alessandro B. C. Simas* and Kamil Kuča*

Volume 23, Issue 14, 2019

Page: [1539 - 1559] Pages: 21

DOI: 10.2174/1385272823666190806114017

Price: $65

Abstract

The use of nerve agents as warfare and in terrorist acts has drawn much attention from the governments and societies. Such toxic organophosphorus compounds are listed in Chemical Weapons Convention as Schedule 1 chemicals. The discussion about the chemical identity of the elusive Novichok agents, more potent compounds than best known G- and V-Agents, which have been implicated in recent rumorous assassination plots, clearly demonstrating the importance of the matter. Furthermore, accidents with pesticides or misuse thereof have been a pressing issue in many countries. In this context, the continued development of novel cholinesterase reactivators, antidotes for organophosphorus poisoning, a rather restricted class of pharmaceutical substances, is warranted. Testing of novel candidates may require use of actual nerve agents. Nonetheless, only a few laboratories comply with the requirements for storing, possession and manipulation of such toxic chemicals. To overcome such limitations, nerve agents’ surrogates may be a useful alternative, as they undergo the same reaction with cholinesterases, yielding similar adducts, allowing assays with novel antidote candidates, among other applications.

Keywords: Nerve Agents' surrogates, Cholinesterases, Drug development, Drug screening, Chemical Weapons Convention, Antidotes.

Graphical Abstract

[1]
Organisation for the Prohibition of Chemical Weapons - OPCW. Available at:. https://www.opcw.org/about-us/history
[2]
Chemical Weapons Convention - CWC. Available at:. https://www.opcw.org/chemical-weapons-convention
[3]
Darling, R.G.; Noste, R.E. Ciottone’s Disaster Medicine; Ciottone, G.R., Ed.; Elsevier Science B. V: Amsterdam, 2016, pp. 489-498.
[http://dx.doi.org/10.1016/B978-0-323-28665-7.00080-7]
[4]
Nepovimova, E.; Kuča, K. The history of poisoning: From ancient times until modern era. Arch. Toxicol., 2018, 93(1), 11-24.
[PMID: 30132046]
[5]
Vale, A.; Marrs, T.C.; Rice, P. Chemical terrorism and nerve agents. Medicine (Baltimore), 2016, 44(2), 106-108.
[http://dx.doi.org/10.1016/j.mpmed.2015.11.004]
[6]
Delfino, R.T.; Ribeiro, T.S.; Figueroa-Villar, J.D. Organophosphorus compounds as chemical warfare agents: A review. J. Braz. Chem. Soc., 2009, 20(3), 407-428.
[http://dx.doi.org/10.1590/S0103-50532009000300003]
[7]
Greenfield, R.A.; Brown, B.R.; Hutchins, J.B.; Iandolo, J.J.; Jackson, R.; Slater, L.N.; Bronze, M.S. Microbiological, biological, and chemical weapons of warfare and terrorism. Am. J. Med. Sci., 2002, 323(6), 326-340.
[http://dx.doi.org/10.1097/00000441-200206000-00005] [PMID: 12074487]
[8]
Ledgard, J. A Laboratory History of Chemical Warfare Agents; Jared Ledgard Publ, 2006.
[9]
Scientists Commit to Promoting Safety and Security Culture in Chemistry. Available at:. https://www.opcw.org/media-centre/news/2017/10/scientists-commit-promoting-safety-and-security-culture-chemistry-0
[10]
Tucker, J. 2007.
[11]
Schwenk, M. Chemical warfare agents. Classes and targets. Toxicol. Lett., 2018, 293, 253-263.
[http://dx.doi.org/10.1016/j.toxlet.2017.11.040] [PMID: 29197625]
[12]
Soltaninejad, K.; Shadnia, S. Basic and Clinical Toxicology of Organophosphorus Compounds; Balali-Mood, M; Abdollahi, M., Ed.; Springer-Verlag: London, 2014.
[13]
Moyer, R.A.; Sidell, F.R.; Salem, H. Encyclopedia of Toxicology; Wexler, P., Ed.; Elsevier Science B. V: Amsterdam, 2014, pp. 483-488.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00635-7]
[14]
Talabani, J.M.; Ali, A.I.; Kadir, A.M.; Rashid, R.; Samin, F.; Greenwood, D.; Hay, A. Long-term health effects of chemical warfare agents on children following a single heavy exposure. Hum. Exp. Toxicol., 2018, 37(8), 836-847.
[http://dx.doi.org/10.1177/0960327117734620] [PMID: 29069930]
[15]
Worek, F.; Wille, T.; Koller, M.; Thiermann, H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch. Toxicol., 2016, 90(9), 2131-2145.
[http://dx.doi.org/10.1007/s00204-016-1772-1] [PMID: 27349770]
[16]
Chowdhary, S.; Bhattacharyya, R.; Banerjee, D. Acute organophosphorus poisoning. Clin. Chim. Acta, 2014, 431, 66-76.
[http://dx.doi.org/10.1016/j.cca.2014.01.024] [PMID: 24508992]
[17]
Macilwain, C. Study proves Iraq used nerve gas. Nature, 1993, 363(6424), 3.
[http://dx.doi.org/10.1038/363003b0] [PMID: 8479533]
[18]
1988.Thousands die in Halabja gas attack., Available at:. http://www.bbc.com/onthisday/hi/dates/stories/march/16/newsid_4304000/4304853.stm
[19]
Patrick, K.; Stanbrook, M.; Flegel, K. Lest we forget: Why the use of chemical weapons must not go unchallenged. CMAJ, 2013, 185(15), 1299.
[http://dx.doi.org/10.1503/cmaj.131359] [PMID: 24013089]
[20]
As Syria Crisis Mounts, Scientist Looks Back 25 Years After Investigating the Halabja Gas Massacre. Available at: https://www.sciencemag.org/news/2013/08/syria-crisis-mounts-scientist-looks-back-25-years-after-investigating-halabja-gas
[21]
Enserink, M. Chemical weapons. U.N. taps special labs to investigate Syrian attack. Science, 2013, 341(6150), 1050-1051.
[http://dx.doi.org/10.1126/science.341.6150.1050] [PMID: 24009365]
[22]
Vogel, L. WHO releases guidelines for treating chemical warfare victims after possible Syria attacks. CMAJ, 2013, 185(14)E665
[http://dx.doi.org/10.1503/cmaj.109-4592] [PMID: 24003104]
[23]
Gulland, A. Lack of atropine in Syria hampers treatment after gas attacks. BMJ, 2013, 347, f5413.
[http://dx.doi.org/10.1136/bmj.f5413] [PMID: 24002814]
[24]
Asai, Y.; Arnold, J.L. Terrorism in Japan. Prehosp. Disaster Med., 2003, 18(2), 106-114.
[http://dx.doi.org/10.1017/S1049023X00000844] [PMID: 15074491]
[25]
Yanagisawa, N.; Morita, H.; Nakajima, T. Sarin experiences in Japan: Acute toxicity and long-term effects. J. Neurol. Sci., 2006, 249(1), 76-85.
[http://dx.doi.org/10.1016/j.jns.2006.06.007] [PMID: 16962140]
[26]
Nagao, M.; Takatori, T.; Matsuda, Y.; Nakajima, M.; Iwase, H.; Iwadate, K. Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol. Appl. Pharmacol., 1997, 144(1), 198-203.
[http://dx.doi.org/10.1006/taap.1997.8110] [PMID: 9169085]
[27]
Greaves, I.; Hunt, P. Responding to Terrorism: A Medical Handbook; Churchill Livingstone, 2011.
[28]
Litchfield, M.H. Estimates of acute pesticide poisoning in agricultural workers in less developed countries. Toxicol. Rev., 2005, 24(4), 271-278.
[http://dx.doi.org/10.2165/00139709-200524040-00006] [PMID: 16499408]
[29]
Tammelin, L.E. Dialkoxy-phosphorylthiocholines, alkoxy-methyl- phosphorylthiocholines and analogous choline esters. Syntheses, pKa of tertiary homologues and cholinesterase inhibition. Acta Chem. Scand., 1957, 11, 1340-1349.
[http://dx.doi.org/10.3891/acta.chem.scand.11-1340]
[30]
Tammelin, L.E. Methyl-fluoro-phosphorylcholines. Two synthetic cholinergic drugs and their tertiary homologues. Acta Chem. Scand., 1957, 11, 859-865.
[http://dx.doi.org/10.3891/acta.chem.scand.11-0859]
[31]
Costanzi, S.; Machado, J.H.; Mitchell, M. Nerve agents: What they are, how they work, how to counter them. ACS Chem. Neurosci., 2018, 9(5), 873-885.
[http://dx.doi.org/10.1021/acschemneuro.8b00148] [PMID: 29664277]
[32]
Black, R.M.; Harrison, J.M. 1996.
[33]
Statement By, H.E. Ambassador Ahmad Nazri Yusof Permanent Representative of Malaysia to the OPCW., Available at:. https://www.opcw.org/sites/default/files/documents/EC/87/en/ec87nat14_e_.pdf
[34]
Nozaki, H.; Aikawa, N.; Fujishima, S.; Suzuki, M.; Shinozawa, Y.; Hori, S.; Nogawa, S. A case of VX poisoning and the difference from sarin. Lancet, 1995, 346(8976), 698-699.
[http://dx.doi.org/10.1016/S0140-6736(95)92306-3] [PMID: 7658832]
[35]
Taylor, P. The cholinesterases. J. Biol. Chem., 1991, 266(7), 4025-4028.
[PMID: 1999397]
[36]
Taylor, P.; Radić, Z. The cholinesterases: From genes to proteins. Annu. Rev. Pharmacol. Toxicol., 1994, 34, 281-320.
[http://dx.doi.org/10.1146/annurev.pa.34.040194.001433] [PMID: 8042853]
[37]
Soreq, H.; Seidman, S. Acetylcholinesterase--new roles for an old actor. Nat. Rev. Neurosci., 2001, 2(4), 294-302.
[http://dx.doi.org/10.1038/35067589] [PMID: 11283752]
[38]
Silman, I.; Sussman, J.L. Acetylcholinesterase: ‘Classical’ and ‘non-classical’ functions and pharmacology. Curr. Opin. Pharmacol., 2005, 5(3), 293-302.
[http://dx.doi.org/10.1016/j.coph.2005.01.014] [PMID: 15907917]
[39]
Quinn, D.M. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev., 1987, 87, 955-979.
[http://dx.doi.org/10.1021/cr00081a005]
[40]
Chatonnet, A.; Lockridge, O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J., 1989, 260(3), 625-634.
[http://dx.doi.org/10.1042/bj2600625] [PMID: 2669736]
[41]
Sussman, J.L.; Silman, I. Acetylcholinesterase: Structure and use as a model for specific cation-protein interactions. Curr. Opin. Struct. Biol., 1992, 2, 721-729.
[http://dx.doi.org/10.1016/0959-440X(92)90207-N]
[42]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[http://dx.doi.org/10.1016/j.cbi.2010.01.042] [PMID: 20138030]
[43]
Saxena, A.; Redman, A.M.G.; Jiang, X.; Lockridge, O.; Doctor, B.P. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chem. Biol. Interact., 1999, 119-120, 61-69.
[http://dx.doi.org/10.1016/S0009-2797(99)00014-9] [PMID: 10421439]
[44]
Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther., 2015, 148, 34-46.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.011] [PMID: 25448037]
[45]
Zhang, P.; Jain, P.; Tsao, C.; Sinclair, A.; Sun, F.; Hung, H.C.; Bai, T.; Wu, K.; Jiang, S. Butyrylcholinesterase nanocapsule as a long circulating bioscavenger with reduced immune response. J. Control. Release, 2016, 230, 73-78.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.008] [PMID: 27063423]
[46]
Hörnberg, A.; Tunemalm, A.K.; Ekström, F. Crystal structures of acetylcholinesterase in complex with organophosphorus compounds suggest that the acyl pocket modulates the aging reaction by precluding the formation of the trigonal bipyramidal transition state. Biochemistry, 2007, 46(16), 4815-4825.
[http://dx.doi.org/10.1021/bi0621361] [PMID: 17402711]
[47]
Bartling, A.; Worek, F.; Szinicz, L.; Thiermann, H. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Toxicology, 2007, 233(1-3), 166-172.
[http://dx.doi.org/10.1016/j.tox.2006.07.003] [PMID: 16904809]
[48]
White, R.F.; Steele, L.; O’Callaghan, J.P.; Sullivan, K.; Binns, J.H.; Golomb, B.A.; Bloom, F.E.; Bunker, J.A.; Crawford, F.; Graves, J.C.; Hardie, A.; Klimas, N.; Knox, M.; Meggs, W.J.; Melling, J.; Philbert, M.A.; Grashow, R. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex, 2016, 74, 449-475.
[http://dx.doi.org/10.1016/j.cortex.2015.08.022] [PMID: 26493934]
[49]
Wright, L.K.M.; Lee, R.B.; Vincelli, N.M.; Whalley, C.E.; Lumley, L.A. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages. Toxicol. Lett., 2016, 241, 167-174.
[http://dx.doi.org/10.1016/j.toxlet.2015.11.023] [PMID: 26621540]
[50]
Yanagisawa, N. [The nerve agent sarin: History, clinical manifestations, and treatment]. Brain Nerve, 2014, 66(5), 561-569.
[PMID: 24807372]
[51]
Wagner, M.J.; Promes, S. Last Minute Emergency Medicine: A Concise Review for the Specialty Boards; McGraw-Hill Medical, 2007.
[52]
Nepovimova, E.; Kuča, K. Chemical warfare agent NOVICHOK - mini-review of available data. Food Chem. Toxicol., 2018, 121, 343-350.
[http://dx.doi.org/10.1016/j.fct.2018.09.015] [PMID: 30213549]
[53]
França, T.C.C.; Kitagawa, D.A.S.; Cavalcante, S.F.A.; da Silva, J.A.V.; Nepovimova, E.; Kuča, K. Novichoks: The dangerous fourth generation of chemical weapons. Int. J. Mol. Sci., 2019, 20(5), 1222-1231.
[http://dx.doi.org/10.3390/ijms20051222] [PMID: 30862059]
[54]
Organisation for the Prohibition of Chemical Weapons - OPCW. SAB Response to the Director-General’s Request to the Scientific Advisory Board to Provide Advice on New Types of Nerve Agents, 2018.
[55]
Bajgar, J.; Fusek, J.; Kassa, J.; Kuča, K.; Jun, D. Elsevier Handbook of Toxicology of Chemical Warfare Agents; Gupta, R.C., Ed.; Elsevier Science B. V: Amsterdam, 2009, pp. 677-684.
[56]
Yokoyama, K. Our recent experiences with sarin poisoning cases in Japan and pesticide users with references to some selected chemicals. Neurotoxicology, 2007, 28(2), 364-373.
[http://dx.doi.org/10.1016/j.neuro.2006.04.006] [PMID: 16730798]
[57]
Cannard, K. The acute treatment of nerve agent exposure. J. Neurol. Sci., 2006, 249(1), 86-94.
[http://dx.doi.org/10.1016/j.jns.2006.06.008] [PMID: 16945386]
[58]
Milatovic, D.; Jokanovic, M. Elsevier Handbook of Toxicology of Chemical Warfare Agents; Gupta, R.C., Ed.; Elsevier Science B. V: Amsterdam, 2009, pp. 985-994.
[http://dx.doi.org/10.1016/B978-012374484-5.00065-1]
[59]
Kuča, K.; Mušilek, K.; Jun, D.; Bajgar, J.; Kassa, J. Novel Oximes.Elsevier Handbook of Toxicology of Chemical Warfare Agents; Gupta, R.C., Ed.; Elsevier Science B. V: Amsterdam, 2009, pp. 997-1021.
[http://dx.doi.org/10.1016/B978-012374484-5.00066-3]
[60]
Worek, F.; Wille, T.; Koller, M.; Thiermann, H. Structural requirements for effective oximes-evaluation of kinetic in vitro data with phosphylated human AChE and structurally different oximes. Chem. Biol. Interact., 2013, 203(1), 125-128.
[http://dx.doi.org/10.1016/j.cbi.2012.07.003] [PMID: 22827894]
[61]
Kuča, K.; Juna, D.; Mušilek, K. Structural requirements of acetylcholinesterase reactivators. Mini Rev. Med. Chem., 2006, 6(3), 269-277.
[http://dx.doi.org/10.2174/138955706776073510] [PMID: 16515465]
[62]
Gorecki, L.; Korabecny, J.; Mušilek, K.; Nepovimova, E.; Malinak, D.; Kucera, T.; Dolezal, R.; Jun, D.; Soukup, O.; Kuča, K. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: A patent review (2006-2016). Expert Opin. Ther. Pat., 2017, 27(9), 971-985.
[http://dx.doi.org/10.1080/13543776.2017.1338275] [PMID: 28569609]
[63]
Gorecki, L.; Korabecny, J.; Mušilek, K.; Malinak, D.; Nepovimova, E.; Dolezal, R.; Jun, D.; Soukup, O.; Kuča, K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol., 2016, 90(12), 2831-2859.
[http://dx.doi.org/10.1007/s00204-016-1827-3] [PMID: 27582056]
[64]
de Jong, L.P.A.; Verhagen, M.A.A.; Langenberg, J.P.; Hagedorn, I.; Löffler, M. The bispyridinium-dioxime HLö-7. A potent reactivator for acetylcholinesterase inhibited by the stereoisomers of tabun and soman. Biochem. Pharmacol., 1989, 38(4), 633-640.
[http://dx.doi.org/10.1016/0006-2952(89)90209-8] [PMID: 2917018]
[65]
Bosković, B.; Kovacević, V.; Jovanović, D. PAM-2 Cl, HI-6, and HGG-12 in soman and tabun poisoning. Fundam. Appl. Toxicol., 1984, 4(2 Pt 2), S106-S115.
[PMID: 6724203]
[66]
Eyer, P.; Hagedorn, I.; Klimmek, R.; Lippstreu, P.; Löffler, M.; Oldiges, H.; Spöhrer, U.; Steidl, I.; Szinicz, L.; Worek, F. HLö 7 dimethanesulfonate, a potent bispyridinium-dioxime against anticholinesterases. Arch. Toxicol., 1992, 66(9), 603-621.
[http://dx.doi.org/10.1007/BF01981499] [PMID: 1482283]
[67]
Cabal, J.; Kuča, K.; Kassa, J. Specification of the structure of oximes able to reactivate tabun-inhibited acetylcholinesterase. Basic Clin. Pharmacol. Toxicol., 2004, 95(2), 81-86.
[http://dx.doi.org/10.1111/j.1742-7843.2004.950207.x] [PMID: 15379785]
[68]
Žunec, S.; Radić, B.; Kuča, K.; Mušilek, K.; Lucić Vrdoljak, A. Comparative determination of the efficacy of bispyridinium oximes in paraoxon poisoning. Arh. Hig. Rada Toksikol., 2015, 66(2), 129-134.
[http://dx.doi.org/10.1515/aiht-2015-66-2623] [PMID: 26110474]
[69]
Jokanović, M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: A review of recent data. Curr. Top. Med. Chem., 2012, 12(16), 1775-1789.
[http://dx.doi.org/10.2174/1568026611209061775] [PMID: 23030612]
[70]
Renou, J.; Dias, J.; Mercey, G.; Verdelet, T.; Rousseau, C.; Gastellier, A.J.; Arboléas, M.; Touvrey-Loiodice, M.; Baati, R.; Jean, L.; Nachon, F.; Renard, P.Y. Synthesis and in vitro evaluation of donepezil-based reactivators and analogues for nerve agent-inhibited human acetylcholinesterase. RSC Adv, 2016, 6, 17929-17940.
[http://dx.doi.org/10.1039/C5RA25477A]
[71]
Vayron, P.; Renard, P.Y.; Taran, F.; Créminon, C.; Frobert, Y.; Grassi, J.; Mioskowski, C. Toward antibody-catalyzed hydrolysis of organophosphorus poisons. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7058-7063.
[http://dx.doi.org/10.1073/pnas.97.13.7058] [PMID: 10860971]
[72]
Louise-Leriche, L.; Paunescu, E.; Saint-André, G.; Baati, R.; Romieu, A.; Wagner, A.; Renard, P.Y. A HTS assay for the detection of organophosphorus nerve agent scavengers. Chemistry, 2010, 16(11), 3510-3523.
[http://dx.doi.org/10.1002/chem.200902986] [PMID: 20143367]
[73]
Timperley, C.M.; Banks, R.E.; Young, I.M.; Haszeldine, R.N. Synthesis of some fluorine-containing pyridinealdoximes of potential use for the treatment of organophosphorus nerve-agent poisoning. J. Fluor. Chem., 2011, 132, 541-547.
[http://dx.doi.org/10.1016/j.jfluchem.2011.05.028]
[74]
Jeong, H.C.; Kang, N.S.; Park, N.J.; Yum, E.K.; Jung, Y.S. Reactivation potency of fluorinated pyridinium oximes for acetylcholinesterases inhibited by paraoxon organophosphorus agent. Bioorg. Med. Chem. Lett., 2009, 19(4), 1214-1217.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.070] [PMID: 19124241]
[75]
Jeong, H.C.; Park, N.J.; Chae, C.H.; Mušilek, K.; Kassa, J.; Kuča, K.; Jung, Y.S. Fluorinated pyridinium oximes as potential reactivators for acetylcholinesterases inhibited by paraoxon organophosphorus agent. Bioorg. Med. Chem., 2009, 17(17), 6213-6217.
[http://dx.doi.org/10.1016/j.bmc.2009.07.043] [PMID: 19665386]
[76]
Sit, R.K.; Radić, Z.; Gerardi, V.; Zhang, L.; Garcia, E.; Katalinić, M.; Amitai, G.; Kovarik, Z.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. J. Biol. Chem., 2011, 286(22), 19422-19430.
[http://dx.doi.org/10.1074/jbc.M111.230656] [PMID: 21464125]
[77]
Sit, R.K.; Fokin, V.V.; Amitai, G.; Sharpless, K.B.; Taylor, P.; Radić, Z. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. J. Med. Chem., 2014, 57(4), 1378-1389.
[http://dx.doi.org/10.1021/jm401650z] [PMID: 24571195]
[78]
Radić, Z.; Sit, R.K.; Kovarik, Z.; Berend, S.; Garcia, E.; Zhang, L.; Amitai, G.; Green, C.; Radić, B.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J. Biol. Chem., 2012, 287(15), 11798-11809.
[http://dx.doi.org/10.1074/jbc.M111.333732] [PMID: 22343626]
[79]
Radić, Z.; Dale, T.; Kovarik, Z.; Berend, S.; Garcia, E.; Zhang, L.; Amitai, G.; Green, C.; Radić, B.; Duggan, B.M.; Ajami, D.; Rebek, J.; Taylor, P. Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem. J., 2013, 450(1), 231-242.
[http://dx.doi.org/10.1042/BJ20121612] [PMID: 23216060]
[80]
Kovarik, Z.; Katalinić, M.; Sinko, G.; Binder, J.; Holas, O.; Jung, Y.S.; Musilova, L.; Jun, D.; Kuča, K. Pseudo-catalytic scavenging: Searching for a suitable reactivator of phosphorylated butyrylcholinesterase. Chem. Biol. Interact., 2010, 187(1-3), 167-171.
[http://dx.doi.org/10.1016/j.cbi.2010.02.023] [PMID: 20206154]
[81]
Kovarik, Z.; Maček, N.; Sit, R.K.; Radić, Z.; Fokin, V.V.; Barry Sharpless, K.; Taylor, P. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE. Chem. Biol. Interact., 2013, 203(1), 77-80.
[http://dx.doi.org/10.1016/j.cbi.2012.08.019] [PMID: 22960624]
[82]
Candiotti, K. A primer on nerve agents: What the emergency responder, anesthesiologist, and intensivist needs to know. Can. J. Anaesth., 2017, 64(10), 1059-1070.
[http://dx.doi.org/10.1007/s12630-017-0920-2] [PMID: 28766156]
[83]
Reddy, S.D.; Reddy, D.S. Midazolam as an anticonvulsant antidote for organophosphate intoxication--A pharmacotherapeutic appraisal. Epilepsia, 2015, 56(6), 813-821.
[http://dx.doi.org/10.1111/epi.12989] [PMID: 26032507]
[84]
Benfield, J.; Musto, A. Intranasal therapy to stop status epilepticus in prehospital settings. Drugs R D., 2018, 18(1), 7-17.
[http://dx.doi.org/10.1007/s40268-017-0219-3] [PMID: 29177587]
[85]
Wiener, S.W.; Hoffman, R.S. Nerve agents: A comprehensive review. J. Intensive Care Med., 2004, 19(1), 22-37.
[http://dx.doi.org/10.1177/0885066603258659] [PMID: 15035752]
[86]
Kapoor, M.; Cloyd, J.C.; Siegel, R.A. A review of intranasal formulations for the treatment of seizure emergencies. J. Control. Release, 2016, 237, 147-159.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.001] [PMID: 27397490]
[87]
McDonough, J.H.; Van Shura, K.E.; LaMont, J.C.; McMonagle, J.D.; Shih, T-M. Comparison of the intramuscular, intranasal or sublingual routes of midazolam administration for the control of soman-induced seizures. Basic Clin. Pharmacol. Toxicol., 2009, 104(1), 27-34.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00326.x] [PMID: 19053994]
[88]
Antonijevic, B.; Stojiljkovic, M.P. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin. Med. Res., 2007, 5(1), 71-82.
[http://dx.doi.org/10.3121/cmr.2007.701] [PMID: 17456837]
[89]
Aroniadou-Anderjaska, V.; Figueiredo, T.H.; Apland, J.P.; Prager, E.M.; Pidoplichko, V.I.; Miller, S.L.; Braga, M.F.M. Long-term neuropathological and behavioral impairments after exposure to nerve agents. Ann. N. Y. Acad. Sci., 2016, 1374(1), 17-28.
[http://dx.doi.org/10.1111/nyas.13028] [PMID: 27002925]
[90]
Aroniadou-Anderjaska, V.; Figueiredo, T.H.; Apland, J.P.; Qashu, F.; Braga, M.F.M. Primary brain targets of nerve agents: The role of the amygdala in comparison to the hippocampus. Neurotoxicology, 2009, 30(5), 772-776.
[http://dx.doi.org/10.1016/j.neuro.2009.06.011] [PMID: 19591865]
[91]
Moshiri, M.; Darchini-Maragheh, E.; Balali-Mood, M. Advances in toxicology and medical treatment of chemical warfare nerve agents. Daru, 2012, 20(1), 81.
[http://dx.doi.org/10.1186/2008-2231-20-81] [PMID: 23351280]
[92]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[93]
Shafferman, A.; Ordentlich, A.; Barak, D.; Stein, D.; Ariel, N.; Velan, B. Aging of phosphylated human acetylcholinesterase: Catalytic processes mediated by aromatic and polar residues of the active centre. Biochem. J., 1996, 318(Pt 3), 833-840.
[http://dx.doi.org/10.1042/bj3180833] [PMID: 8836126]
[94]
Masson, P.; Nachon, F.; Lockridge, O. Structural approach to the aging of phosphylated cholinesterases. Chem. Biol. Interact., 2010, 187(1-3), 157-162.
[http://dx.doi.org/10.1016/j.cbi.2010.03.027] [PMID: 20338153]
[95]
Carletti, E.; Aurbek, N.; Gillon, E.; Loiodice, M.; Nicolet, Y.; Fontecilla-Camps, J.C.; Masson, P.; Thiermann, H.; Nachon, F.; Worek, F. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. Biochem. J., 2009, 421(1), 97-106.
[http://dx.doi.org/10.1042/BJ20090091] [PMID: 19368529]
[96]
Millard, C.B.; Kryger, G.; Ordentlich, A.; Greenblatt, H.M.; Harel, M.; Raves, M.L.; Segall, Y.; Barak, D.; Shafferman, A.; Silman, I.; Sussman, J.L. Crystal structures of aged phosphonylated acetylcholinesterase: Nerve agent reaction products at the atomic level. Biochemistry, 1999, 38(22), 7032-7039.
[http://dx.doi.org/10.1021/bi982678l] [PMID: 10353814]
[97]
Radić, Z.; Kalisiak, J.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. Interaction kinetics of oximes with native, phosphylated and aged human acetylcholinesterase. Chem. Biol. Interact., 2010, 187(1-3), 163-166.
[http://dx.doi.org/10.1016/j.cbi.2010.04.014] [PMID: 20412789]
[98]
Sanson, B.; Nachon, F.; Colletier, J.P.; Froment, M.T.; Toker, L.; Greenblatt, H.M.; Sussman, J.L.; Ashani, Y.; Masson, P.; Silman, I.; Weik, M. Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime. J. Med. Chem., 2009, 52(23), 7593-7603.
[http://dx.doi.org/10.1021/jm900433t] [PMID: 19642642]
[99]
Chen, S.; Ruan, Y.; Brown, J.D.; Gallucci, J.; Maslak, V.; Hadad, C.M.; Badjić, J.D. Assembly of amphiphilic baskets into stimuli-responsive vesicles. Developing a strategy for the detection of organophosphorus chemical nerve agents. J. Am. Chem. Soc., 2013, 135(40), 14964-14967.
[http://dx.doi.org/10.1021/ja408585j] [PMID: 24063351]
[100]
Hiscock, J.R.; Piana, F.; Sambrook, M.R.; Wells, N.J.; Clark, A.J.; Vincent, J.C.; Busschaert, N.; Brown, R.C.D.; Gale, P.A. Detection of nerve agent via perturbation of supramolecular gel formation. Chem. Commun. (Camb.), 2013, 49(80), 9119-9121.
[http://dx.doi.org/10.1039/c3cc44841j] [PMID: 23994877]
[101]
Chen, S.; Yamasaki, M.; Polen, S.; Gallucci, J.; Hadad, C.M.; Badjić, J.D. Dual-cavity basket promotes encapsulation in water in an allosteric fashion. J. Am. Chem. Soc., 2015, 137(38), 12276-12281.
[http://dx.doi.org/10.1021/jacs.5b06041] [PMID: 26348904]
[102]
Chen, S.; Ruan, Y.; Brown, J.D.; Hadad, C.M.; Badjić, J.D. Recognition characteristics of an adaptive vesicular assembly of amphiphilic baskets for selective detection and mitigation of toxic nerve agents. J. Am. Chem. Soc., 2014, 136(49), 17337-17342.
[http://dx.doi.org/10.1021/ja510477q] [PMID: 25402739]
[103]
Grochmal, A.; Prout, L.; Makin-Taylor, R.; Prohens, R.; Tomas, S. Modulation of reactivity in the cavity of liposomes promotes the formation of peptide bonds. J. Am. Chem. Soc., 2015, 137(38), 12269-12275.
[http://dx.doi.org/10.1021/jacs.5b06207] [PMID: 26356087]
[104]
Trusso Sfrazzetto, G.; Millesi, S.; Pappalardo, A.; Tomaselli, G.A.; Ballistreri, F.P.; Toscano, R.M.; Fragalà, I.; Gulino, A. Nerve gas simulant sensing by a uranyl-salen monolayer covalently anchored on quartz substrates. Chemistry, 2017, 23(7), 1576-1583.
[http://dx.doi.org/10.1002/chem.201602292] [PMID: 27859726]
[105]
Puglisi, R.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular recognition of a CWA simulant by metal-salen complexes: The first multi-topic approach. Chem. Commun. (Camb.), 2018, 54(79), 11156-11159.
[http://dx.doi.org/10.1039/C8CC06425C] [PMID: 30226513]
[106]
Puglisi, R.; Pappalardo, A.; Gulino, A.; Sfrazzetto, G.T. Multitopic supramolecular detection of chemical warfare agents by fluorescent sensors. ACS Omega, 2019, 4, 7550-7555.
[http://dx.doi.org/10.1021/acsomega.9b00502]
[108]
Meek, E.C.; Chambers, H.W.; Coban, A.; Funck, K.E.; Pringle, R.B.; Ross, M.K.; Chambers, J.E. Synthesis and in vitro and in vivo inhibition potencies of highly relevant nerve agent surrogates. Toxicol. Sci., 2012, 126(2), 525-533.
[http://dx.doi.org/10.1093/toxsci/kfs013] [PMID: 22247004]
[109]
Chambers, J.E.; Chambers, H.W.; Funck, K.E.; Meek, E.C.; Pringle, R.B.; Ross, M.K. Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX. Chem. Biol. Interact., 2016, 259(Pt B), 154-159.
[http://dx.doi.org/10.1016/j.cbi.2016.07.004] [PMID: 27387540]
[110]
Cavalcante, S.F.A.; de Paula, R.L.; Kitagawa, D.A.S.; Barcellos, M.C.; Simas, A.B.C.; Granjeiro, J.M. Synthesis of reference compounds related to chemical weapons convention for verification and drug development purposes – a Brazilian endeavour. J. Phys. Conf. Ser., 2018, 975, 012020-012025.
[http://dx.doi.org/10.1088/1742-6596/975/1/012020]
[111]
Coban, A.; Carr, R.L.; Chambers, H.W.; Willeford, K.O.; Chambers, J.E. Comparison of inhibition kinetics of several organophosphates, including some nerve agent surrogates, using human erythrocyte and rat and mouse brain acetylcholinesterase. Toxicol. Lett., 2016, 248, 39-45.
[http://dx.doi.org/10.1016/j.toxlet.2016.03.002] [PMID: 26965078]
[112]
Cavalcante, S.F.A.; Kitagawa, D.A.S.; Rodrigues, R.B.; Silva, T.C.; Bernardo, L.B.; Correa, A.B.A.; Simas, A.B.C. One-Pot Synthesis of NEMP, a VX Surrogate, and Reactivation of NEMP-Inhibited Electrophorus Eel Acetylcholinesterase by current antidotes. J. Braz. Chem. Soc., 2018, 30(5), 1095-1102.
[http://dx.doi.org/10.21577/0103-5053.20180246]
[113]
Cavalcante, S.F.A. Síntese e Avaliação in vitro e in silico de Oximas como Protótipos para Desenvolvimento Racional de Reativadores da Acetilcolinesterase Inibida por Organofosforados Pesticidas e Análogos de Agentes Neurotóxicos (Synthesis and in vitro and in silico Evaluation of Oximes as Prototypes for Development of Acetycholinesterase Reactivators towards Organophosphorus Pesticides and Nerve Agents’ Surrogates). PhD Thesis, Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro: Rio de Janeiro. 2018.
[114]
Cavalcante, S.F.A.; Kitagawa, D.A.S.; Rodrigues, R.B.; Bernardo, L.B.; Silva, T.N.; Santos, W.V.; Correa, A.B.A. de Almeida, J.S.F.D.; França, T.C.C.; Kuča, K.; Simas, A.B.C. Synthesis and in vitro evaluation of neutral aryloximes as reactivators of Electrophorus eel acetylcholinesterase inhibited by NEMP, a VX surrogate. Chem.-Biol. Interact., 2019. ahead of print., 2019.
[115]
Karthikraj, R.; Sridhar, L.; Prabhakar, S.; Raju, N.P.; Murty, M.R.; Vairamani, M. Mass spectral characterization of the CWC-related isomeric dialkyl alkylphosphonothiolates/alkylphosphonothionates under gas chromatography/mass spectrometry conditions. Rapid Commun. Mass Spectrom., 2013, 27(13), 1461-1472.
[http://dx.doi.org/10.1002/rcm.6596] [PMID: 23722680]
[116]
Saeidian, H.; Mirkhani, V.; Faraz, S.M.; Sarabadani, M.; Naseri, M.T.; Ashraf, D.; Mirjafari, Z.; Babri, M. Mass spectral study of the CWC-related S-alkyl methylphosphonochloridothioites/S,S′-dialkyl (alkyl′)methylphosphonodithioites under gas chromatography–mass spectrometry conditions. Int. J. Mass Spectrom., 2016, 396, 13-21.
[http://dx.doi.org/10.1016/j.ijms.2015.12.004]
[117]
Panmand, D.S.; Tiwari, A.D.; Panda, S.S.; Monbaliu, J-C.M.; Beagle, L.M.; Asiri, A.M.; Stevens, C.V.; Steele, P.J.; Halla, D.; Katriztzky, A.R. New benzotriazole-based reagents for the phosphonylation of various N-, O-, and S-nucleophiles. Tetrahedron Lett., 2014, 55(43), 5898-5901.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.057]
[118]
Rodriguez, J.B.; Gallo-Rodriguez, C. The Role of the Phosphorus Atom in Drug Design., 2018.
[http://dx.doi.org/10.1002/cmdc.201800693]
[119]
Wang, T.; He, H.W. Synthesis and biological activity of α-oxo-2-pyridyl methyl phosphinates. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(8), 1884-1891.
[http://dx.doi.org/10.1080/10426500701792974]
[120]
Corey, E.J.; Kwiatkowski, G.T. Synthesis of olefins from carbonyl compounds and phosphonic acid bis amides. J. Am. Chem. Soc., 1968, 90(24), 6816-6821.
[http://dx.doi.org/10.1021/ja01026a045]
[121]
Soroka, M. A simple preparation of methylphosphonous dichloride. Synthesis, 1977, 7, 450-450.
[http://dx.doi.org/10.1055/s-1977-24435]
[122]
Pietrusiewicz, K.M.; Stankevic, M. Product class 8: Alkylphosphonous acids and derivatives. Sci. Synth., 2009, 42, 243-274.
[123]
Petrov, K.A.; Agafonov, S.V.; Pokatun, V.P.; Chizhov, V.M. Synthesis of halophosphines and phosphonic and thiophosphonic acid halides. 1987, 57(2), 299-302.
[124]
Wyatt, P.; Warren, S.; McPartlin, M.; Woodroffe, T. Synthesis, X-ray structures and chemistry of enantiomerically pure 10,11-dihydro-5-phenyl-5H-dibenzo[b,f]phosphepine 5-oxides. J. Chem. Soc., Perkin Trans. 1, 2001, 3, 279-297.
[http://dx.doi.org/10.1039/b006883g]
[125]
Samstag, W.; Engels, J.W. Stereoselective synthesis of phosphate-modified DNA building blocks. Angew. Chem., 1992, 104(10), 1367-1369.
[http://dx.doi.org/10.1002/ange.19921041011]
[126]
Baba, G.; Toure, S.A.; Tea, C.G.; Denis, J-M.; N’Guessan, T.Y. Synthesis of secondary free aromatic phosphines and the corresponding oxides. J. Soc. Ouest-Afr. Chim., 2002, 7(14), 25-41.
[127]
Black, R.M.; Clarke, R.J.; Read, R.W.; Reid, M.T. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J. Chromatogr. A, 1994, 662(2), 301-321.
[http://dx.doi.org/10.1016/0021-9673(94)80518-0] [PMID: 8143028]
[128]
Baygildiev, T.; Zatirakha, A.; Rodin, I.; Braun, A.; Stavrianidi, A.; Koryagina, N.; Rybalchenko, I.; Shpigun, O. Rapid IC-MS/MS determination of methylphosphonic acid in urine of rats exposed to organophosphorus nerve agents. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1058, 32-39.
[http://dx.doi.org/10.1016/j.jchromb.2017.05.005] [PMID: 28531843]
[129]
Lin, Y.; Chen, J.; Yan, L.; Guo, L.; Wu, B.; Li, C.; Feng, J.; Liu, Q.; Xie, J. Determination of nerve agent metabolites in human urine by isotope-dilution gas chromatography-tandem mass spectrometry after solid phase supported derivatization. Anal. Bioanal. Chem., 2014, 406(21), 5213-5220.
[http://dx.doi.org/10.1007/s00216-014-7695-x] [PMID: 24633564]
[130]
Miki, A.; Katagi, M.; Tsuchihashi, H.; Yamashita, M. Determination of alkylmethylphosphonic acids, the main metabolites of organophosphorus nerve agents, in biofluids by gas chromatography-mass spectrometry and liquid-liquid-solid-phase-transfer-catalyzed pentafluorobenzylation. J. Anal. Toxicol., 1999, 23(2), 86-93.
[http://dx.doi.org/10.1093/jat/23.2.86] [PMID: 10192410]
[131]
Huang, H.; Denne, J.; Yang, C-H.; Wang, H.; Kang, J.Y. Direct aryloxylation/alkyloxylation of dialkyl phosphonates for the synthesis of mixed phosphonates. Angew. Chem. Int. Ed. Engl., 2018, 57(22), 6624-6628.
[http://dx.doi.org/10.1002/anie.201802082] [PMID: 29660223]
[132]
Brunner, A.; Hintermann, L. A Sequential homologation of alkynes and aldehydes for chain elongation with optional 13C-Labeling. Chemistry, 2016, 22(8), 2787-2792.
[http://dx.doi.org/10.1002/chem.201504248] [PMID: 26788864]
[133]
Kins, C.F.; Brunklaus, G.; Spiess, H.W. New phosphonate-based additives for fortification in model epoxies. Macromolecules, 2013, 46(6), 2067-2077.
[http://dx.doi.org/10.1021/ma400093w]
[134]
Vugts, D.J.; Koningstein, M.M.; Schmitz, R.F.; de Kanter, F.J.J.; Groen, M.B.; Orru, R.V.A. Multicomponent synthesis of dihydropyrimidines and thiazines. Chemistry, 2006, 12(27), 7178-7189.
[http://dx.doi.org/10.1002/chem.200600168] [PMID: 16847990]
[135]
Kiddle, J.J. Microwave irradiation in organophosphorus chemistry. III. Moderate scale synthesis of reagents for olefin formation. Synth. Commun., 2001, 31(21), 3377-3382.
[http://dx.doi.org/10.1081/SCC-100106048]
[136]
Villemin, D.; Simeon, F.; Decreus, H.; Jaffres, P.A. Rapid and efficient Arbuzov reaction under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem., 1998, 133, 209-213.
[http://dx.doi.org/10.1080/10426509808032465]
[137]
Yuan, C.; Li, J.; Zhang, W. Studies on organophosphorus compounds 135. A facile chemoenzymatic method for the preparation of chiral 1,2-dihydroxy-3,3,3-trifluoropropanephosphonates. J. Fluor. Chem., 2006, 127(1), 44-47.
[http://dx.doi.org/10.1016/j.jfluchem.2005.08.017]
[138]
Norlin, R.; Lindberg, G. Synthesis of [14C]-Sarin. J. Labelled Comp. Radiopharm., 2003, 46(7), 599-604.
[http://dx.doi.org/10.1002/jlcr.699]
[139]
Teulade, M.P.; Savignac, P.; Aboujaoude, E.E.; Collignon, N. α-Lithiated phosphonate carbanions: Synthesis, basicity and stability to self-condensation. J. Organomet. Chem., 1986, 312(3), 283-295.
[http://dx.doi.org/10.1016/0022-328X(86)80314-X]
[140]
Breau, L.; Kayser, M.M. Synthesis of carbon-13-labeled unsymmetrically substituted maleic anhydrides. J. Labelled Comp. Radiopharm., 1988, 25(3), 301-312.
[http://dx.doi.org/10.1002/jlcr.2580250310]
[141]
Buechi, G.; Powell, J.E., Jr Claisen rearrangement of 3,4-dihydro-2H-pyranylethylenes. Synthesis of cyclohexenes. J. Am. Chem. Soc., 1970, 92(10), 3126-3133.
[http://dx.doi.org/10.1021/ja00713a034]
[142]
Briseño-Roa, L.; Hill, J.; Notman, S.; Sellers, D.; Smith, A.P.; Timperley, C.M.; Wetherell, J.; Williams, N.H.; Williams, G.R.; Fersht, A.R.; Griffiths, A.D. Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents. J. Med. Chem., 2006, 49(1), 246-255.
[http://dx.doi.org/10.1021/jm050518j] [PMID: 16392809]
[143]
Kadina, A.P.; Kashemirov, B.A.; Oertell, K.; Batra, V.K.; Wilson, S.H.; Goodman, M.F.; McKenna, C.E. Two Scaffolds from Two Flips: (α,β)/(β,γ) CH2/NH “Met-Im” Analogues of dTTP. Org. Lett., 2015, 17(11), 2586-2589.
[http://dx.doi.org/10.1021/acs.orglett.5b00799] [PMID: 25970636]
[144]
MacDonald, M.; Lanier, M.; Cashman, J. Solid-phase synthesis of phosphonylated peptides. Synlett, 2010, 13, 1951-1954.
[http://dx.doi.org/10.1055/s-0030-1258132]
[145]
Das, S.K.; Roy, N.K. Preparation of some novel phosphonamidates, their phytotoxicity and herbicidal properties. Pest Manag. Sci., 1998, 52(3), 263-267.
[http://dx.doi.org/10.1002/(SICI)1096-9063(199803)52:3<263:AID-PS697>3.0.CO;2-8]
[146]
Gupta, H.K.; Mazumder, A.; Garg, P.; Gutch, P.K.; Dubey, D.K.N. N-Dichloro poly(styrene-co-divinyl benzene) sulfonamide polymeric beads: An efficient and recyclable reagent for the synthesis of dialkyl chlorophosphates from dialkylphosphites at room temperature. Tetrahedron Lett., 2008, 49(47), 6704-6706.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.044]
[147]
Acharya, J.; Gupta, A.K.; Shakya, P.D.; Kaushik, M.P. Trichloroisocyanuric acid: An efficient reagent for the synthesis of dialkyl chlorophosphates from dialkyl phosphites. Tetrahedron Lett., 2005, 46(32), 5293-5295.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.024]
[148]
Shakya, P.D.; Dubey, D.K. Pardasani, Deepak; Palit, Meehir; Gupta, A. K. Efficient and cost-effective synthesis of dialkyl chlorophosphates. Org. Prep. Proced. Int., 2005, 37(6), 569-574.
[http://dx.doi.org/10.1080/00304940509354988]
[149]
Kumar, V.; Kaushik, M.P. N-tert-butyl-N-chlorocyanamide: A mild and efficient chlorinating agent for the synthesis of dialkyl/diaryl chlorophosphates. Chem. Lett., 2006, 35(3), 312-313.
[http://dx.doi.org/10.1246/cl.2006.312]
[150]
Koh, Y.J.; Oh, D.Y. Tellurium tetrachloride as an efficient chlorinating agent for di- or trialkyl phosphites: novel synthesis of dialkyl chlorophosphates. Synth. Commun., 1993, 23(12), 1771-1774.
[http://dx.doi.org/10.1080/00397919308011275]
[151]
Kabachnik, M.M.; Snyatkova, E.V.; Novikova, Z.S.; Lutsenko, I.F. New method of synthesizing dialkylphosphorous acid chlorides. Zh. Obshch. Khim., 1980, 50(1), 227-228.
[152]
Mundy, J.L.; Harrison, J.M.; Watts, P.; Timperley, C.M. Isotopically labelled phosphorus compounds: some deuterated methyl and ethyl derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181(8), 1847-1857.
[http://dx.doi.org/10.1080/10426500500543008]
[153]
Hakimelahi, G.H.; Just, G. Trifluoromethanesulfonyl chloride, a mild chlorinating agent. Tetrahedron Lett., 1979, 38, 3643-3644.
[http://dx.doi.org/10.1016/S0040-4039(01)95485-1]
[154]
Rueck-Braun, K.; Freysoldt, T. Synthesis by addition across C-O bonds. Sci. Synth., 2007, 35, 251-269.
[155]
Timperley, C.M. Best Synthetic Methods., 2014.
[156]
Ledgard, J. The Preparatory Manual of Chemical Warfare Agents, 3rd ed; UVKCHEM, 2006.
[157]
Bartelt-Hunt, S.L.; Knappe, D.R.U.; Barlaz, M.A. A review of chemical warfare agent simulants for the study of environmental behavior. Crit. Rev. Environ. Sci. Technol., 2008, 38(2), 112-136.
[http://dx.doi.org/10.1080/10643380701643650]
[158]
Deshpande, L.S.; Carter, D.S.; Blair, R.E.; DeLorenzo, R.J. Development of a prolonged calcium plateau in hippocampal neurons in rats surviving status epilepticus induced by the organophosphate diisopropylfluorophosphate. Toxicol. Sci., 2010, 116(2), 623-631.
[http://dx.doi.org/10.1093/toxsci/kfq157] [PMID: 20498005]
[159]
Pessah, I.N.; Rogawski, M.A.; Tancredi, D.J.; Wulff, H.; Zolkowska, D.; Bruun, D.A.; Hammock, B.D.; Lein, P.J. Models to identify treatments for the acute and persistent effects of seizure-inducing chemical threat agents. Ann. N. Y. Acad. Sci., 2016, 1378(1), 124-136.
[http://dx.doi.org/10.1111/nyas.13137] [PMID: 27467073]
[160]
Kadriu, B.; Guidotti, A.; Costa, E.; Davis, J.M.; Auta, J. Acute imidazenil treatment after the onset of DFP-induced seizure is more effective and longer lasting than midazolam at preventing seizure activity and brain neuropathology. Toxicol. Sci., 2011, 120(1), 136-145.
[http://dx.doi.org/10.1093/toxsci/kfq356] [PMID: 21097996]
[161]
Phillips, K.F.; Deshpande, L.S. Repeated low-dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of gulf war illness. Neurotoxicology, 2016, 52, 127-133.
[http://dx.doi.org/10.1016/j.neuro.2015.11.014] [PMID: 26619911]
[162]
Millard, C.B.; Kryger, G.; Ordentlich, A.; Greenblatt, H.M.; Harel, M.; Raves, M.L.; Segall, Y.; Barak, D.; Shafferman, A.; Silman, I.; Sussman, J.L. Crystal structures of aged phosphonylated acetylcholinesterase: Nerve agent reaction products at the atomic level. Biochemistry, 1999, 38(22), 7032-7039.
[http://dx.doi.org/10.1021/bi982678l] [PMID: 10353814]
[163]
Chaubey, K.; Alam, S.I.; Waghmare, C.K.; Singh, L.; Srivastava, N.; Bhattacharya, B.K. Differential proteome analysis of rat plasma after Diisopropyl Fluorophosphate (DFP) intoxication, a surrogate of nerve agent sarin. Chem. Biol. Interact., 2019, 298, 66-71.
[http://dx.doi.org/10.1016/j.cbi.2018.10.026] [PMID: 30389396]
[164]
Wu, X.; Kuruba, R.; Reddy, D.S. Midazolam-resistant seizures and brain injury after acute intoxication of diisopropylfluorophosphate, an organophosphate pesticide and surrogate for nerve agents. J. Pharmacol. Exp. Ther., 2018, 367(2), 302-321.
[http://dx.doi.org/10.1124/jpet.117.247106] [PMID: 30115757]
[165]
Koo, B-B.; Michalovicz, L.T.; Calderazzo, S.; Kelly, K.A.; Sullivan, K.; Killiany, R.J.; O’Callaghan, J.P. Corticosterone potentiates DFP-induced neuroinflammation and affects high-order diffusion imaging in a rat model of Gulf War Illness. Brain Behav. Immun., 2018, 67, 42-46.
[http://dx.doi.org/10.1016/j.bbi.2017.08.003] [PMID: 28782715]
[166]
Curtin, B.F.; Tetz, L.M.; Compton, J.R.; Doctor, B.P.; Gordon, R.K.; Nambiar, M.P. Histone acetylase inhibitor trichostatin A induces acetylcholinesterase expression and protects against organophosphate exposure. J. Cell. Biochem., 2005, 96(4), 839-849.
[http://dx.doi.org/10.1002/jcb.20591] [PMID: 16149071]
[167]
Curtin, B.F.; Pal, N.; Gordon, R.K.; Nambiar, M.P. Forskolin, an inducer of cAMP, up-regulates acetylcholinesterase expression and protects against organophosphate exposure in neuro 2A cells. Mol. Cell. Biochem., 2006, 290(1-2), 23-32.
[http://dx.doi.org/10.1007/s11010-005-9084-4] [PMID: 16924422]
[168]
Eterović, V.A.; Del Valle-Rodriguez, A.; Pérez, D.; Carrasco, M.; Khanfar, M.A.; El Sayed, K.A.; Ferchmin, P.A. Protective activity of (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol analogues against diisopropylfluorophosphate neurotoxicity: Preliminary structure-activity relationship and pharmacophore modeling. Bioorg. Med. Chem., 2013, 21(15), 4678-4686.
[http://dx.doi.org/10.1016/j.bmc.2013.05.018] [PMID: 23769165]
[169]
Ferchmin, P.A.; Andino, M.; Reyes Salaman, R.; Alves, J.; Velez-Roman, J.; Cuadrado, B.; Carrasco, M.; Torres-Rivera, W.; Segarra, A.; Martins, A.H.; Lee, J.E.; Eterovic, V.A. 4R-cembranoid protects against diisopropylfluorophosphate-mediated neurodegeneration. Neurotoxicology, 2014, 44, 80-90.
[http://dx.doi.org/10.1016/j.neuro.2014.06.001] [PMID: 24928201]
[170]
Ferchmin, P.A.; Pérez, D.; Cuadrado, B.L.; Carrasco, M.; Martins, A.H.; Eterović, V.A. Neuroprotection against diisopropylfluorophosphate in acute hippocampal slices. Neurochem. Res., 2015, 40(10), 2143-2151.
[http://dx.doi.org/10.1007/s11064-015-1729-4] [PMID: 26438150]
[171]
Mete, A.; Kucukbay, H.; Ozmen, M.; Sener, S. In vitro and in vivo acetylcholinesterase‐inhibiting effect of new classes of organophosphorus compounds. Environ. Toxicol. Chem., 1999, 18(2), 241-246.
[http://dx.doi.org/10.1002/etc.5620180221]
[172]
Ordentlich, A.; Barak, D.; Kronman, C.; Ariel, N.; Segall, Y.; Velan, B.; Shafferman, A. The architecture of human acetylcholinesterase active center probed by interactions with selected organophosphate inhibitors. J. Biol. Chem., 1996, 271(20), 11953-11962.
[http://dx.doi.org/10.1074/jbc.271.20.11953] [PMID: 8662593]
[173]
Sakaguchi, T.; Katsura, Y.; Yamamoto, M.; Nishida, T. Monofluorophosphate ester salt, method for producing same, and fluorine ion-releasing composition; PCT Int. Appl, 2017.
[174]
Gupta, H.K.; Pardasani, D.; Mazumder, A.; Purohit, A.K.; Dubey, D.K. Tetrabutylammonium tetra (tert-butyl alcohol) coordinated fluoride-an efficient reagent for the synthesis of fluorine derivatives of phosphorus (V) compounds. Tetrahedron Lett., 2009, 50(22), 2697-2699.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.151]
[175]
Sierakowski, T.; Kiddle, J.J. Rapid and efficient solid-supported reagent synthesis of fluorine derivatives of phosphorus(V) compounds. Tetrahedron Lett., 2005, 46(13), 2215-2217.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.026]
[176]
Purohit, A.K.; Pardasani, D.; Kumar, A.; Goud, D.R.; Jain, R.; Dubey, D.K. A single-step one pot synthesis of dialkyl fluorophosphates from dialkylphosphites. Tetrahedron Lett., 2015, 56(31), 4593-4595.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.014]
[177]
Acharya, J.; Gupta, A.K.; Pardasani, D.; Dubey, D.K.; Kaushik, M.P. Trichloroisocyanuric acid-KF as an efficient reagent for one-pot synthesis of dialkylfluorophosphates from dialkylphosphite. Synth. Commun., 2008, 38(21), 3760-3765.
[http://dx.doi.org/10.1080/00397910802215880]
[178]
Gupta, A.K.; Acharya, J.; Dubey, D.K.; Kaushik, M.P. Dichlorodimethylhydantoin-KF as an efficient reagent for one pot synthesis of dialkylfluorophosphates from dialkylphosphites. J. Fluor. Chem., 2008, 129(3), 226-229.
[http://dx.doi.org/10.1016/j.jfluchem.2007.11.008]
[179]
Heiss, D.R.; Zehnder, D.W., II; Jett, D.A.; Platoff, G.E., Jr; Yeung, D.T.; Brewer, B.N. Synthesis and storage stability of diisopropylfluorophosphate. J. Chem., 2016, 1-5.
[http://dx.doi.org/10.1155/2016/3190891]
[180]
Gupta, A.K.; Acharya, J.; Pardasani, D.; Dubey, D.K. Single step fluorination of dialkyl phosphites: Trichloroacetonitrile-KF as an efficient reagent for the synthesis of dialkyl fluorophosphates. Tetrahedron Lett., 2008, 49(14), 2232-2235.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.051]
[181]
Lermontov, S.A.; Popov, A.V.; Sukhozhenko, I.I.; Pushin, A.N.; Martynov, I.V. Fluorination of hydrophosphoryl compounds with 2-hydroperfluoropropyl azide. Izv. Akad. Nauk SSSR [Khim], 1990, 4, 933-935.
[http://dx.doi.org/10.1007/BF00960364]
[182]
Kiselev, A.S.; Gakh, A.A.; Kagramanov, N.D.; Semenov, V.V. Reactions of N-fluoropyridinium salts with phosphorus- and arsenic-containing nucleophiles. Mendeleev Commun., 1991, 4, 128-129.
[http://dx.doi.org/10.1070/MC1991v001n04ABEH000079]
[183]
Greenhalgh, R.; Blanchfield, J.R. The cleavage of phosphorus to nitrogen bonds with hydrogen fluoride. Can. J. Chem., 1966, 44(4), 501-504.
[http://dx.doi.org/10.1139/v66-067]
[184]
Dabkowski, W.; Michalski, J. Fluorination of trimethylsilyl phosphites and their structural analogs by sulfuryl chloride fluoride. A facile preparation of phosphorofluoridates and related compounds. J. Chem. Soc. Chem. Commun., 1987, 10, 755-756.
[http://dx.doi.org/10.1039/c39870000755]
[185]
Bhattacharya, A.K.; Thyagarajan, G. Michaelis-Arbuzov rearrangement. Chem. Rev., 1981, 81(4), 415-430.
[http://dx.doi.org/10.1021/cr00044a004]
[186]
Lafuente, M.; Pellejero, I.; Sebastian, V.; Urbiztondo, M.A.; Mallada, R.; Pina, M.P.; Santamaria, J. Highly sensitive SERS quantification of organophosphorous chemical warfare agents: A major step towards the real time sensing in the gas phase. Sens. Actuators B Chem., 2018, 267, 457-466.
[http://dx.doi.org/10.1016/j.snb.2018.04.058]
[187]
McDaniel, L.N.; Romero, N.A.; Boyd, J.; Coimbatore, G.; Cobb, G.P. Tandem capillary column gas chromatography-mass spectrometric determination of the organophosphonate nerve agent surrogate dimethyl methylphosphonate in gaseous phase. Talanta, 2010, 81(4-5), 1568-1571.
[http://dx.doi.org/10.1016/j.talanta.2010.03.003] [PMID: 20441940]
[188]
Bentahir, M.; Laduron, F.; Irenge, L.; Ambroise, J.; Gala, J-L. Rapid and efficient filtration-based procedure for separation and safe analysis of CBRN mixed samples. PLoS One, 2014, 9(2), 1-10.
[189]
Amitai, G.; Adani, R.; Limanovich, O.; Teitlboim, S.; Yishay, S.; Tveria, L.; Yacov, G.; Meshulam, H.; Raveh, L. Characterization of asymmetric fluorogenic phosphonates as probes for developing organophosphorus hydrolases with broader stereoselectivity. Chem. Biol. Interact., 2008, 175(1-3), 249-254.
[http://dx.doi.org/10.1016/j.cbi.2008.05.036] [PMID: 18588863]
[190]
Shunmugam, R.; Tew, G.N. Terpyridine-lanthanide complexes respond to fluorophosphate containing nerve gas G-agent surrogates. Chemistry, 2008, 14(18), 5409-5412.
[http://dx.doi.org/10.1002/chem.200800461] [PMID: 18454436]
[191]
Wagner, R.; Wetzel, S.J.; Kern, J.; Kingston, H.M. Improved sample preparation of glyphosate and methylphosphonic acid by EPA method 6800A and time-of-flight mass spectrometry using novel solid-phase extraction. J. Mass Spectrom., 2012, 47(2), 147-154.
[http://dx.doi.org/10.1002/jms.2038] [PMID: 22359323]
[192]
Singer, B.C.; Hodgson, A.T.; Destaillats, H.; Hotchi, T.; Revzan, K.L.; Sextro, R.G. Indoor sorption of surrogates for sarin and related nerve agents. Environ. Sci. Technol., 2005, 39(9), 3203-3214.
[http://dx.doi.org/10.1021/es049144u] [PMID: 15926571]
[193]
Tomkins, B.A.; Griest, W.H.; Hearle, D.R. Determination of small dialkyl organophosphonates at microgram/L concentrations in contaminated groundwaters using multiple extraction membrane disks. Anal. Lett., 1997, 30(9), 1697-1717.
[http://dx.doi.org/10.1080/00032719708001688]
[194]
Allert, M.; Rizk, S.S.; Looger, L.L.; Hellinga, H.W. Computational design of receptors for an organophosphate surrogate of the nerve agent soman. Proc. Natl. Acad. Sci. USA, 2004, 101(21), 7907-7912.
[http://dx.doi.org/10.1073/pnas.0401309101] [PMID: 15148405]
[195]
Zhong, B.; He, X.; Wang, Y.; Liu, H. Acyclic nucleoside phosphonate derivative and medicine use thereof; PCT Int. Appl, 2011.
[196]
Patel, C.K.N.; Pushkarsky, M.E.; Webber, M.C.; MacDonald, T. System and method for high sensitivity optical detection of gases. U.S. Pat. Appl. Publ., 2007.
[197]
Pushkarsky, M.E.; Webber, M.C.; MacDonald, T.; Patel, C.K.N. High-sensitivity, high-selectivity detection of chemical warfare agents. Appl. Phys. Lett., 2006, 88(4), 044103/1-044103/3.
[http://dx.doi.org/10.1063/1.2166692]
[198]
Pushkarsky, M.E.; Webber, M.C.; MacDonald, T.; Patel, C.K.N. High-sensitivity photoacoustic detection of chemical warfare agents. Proc. SPIE, 2004, 5617, 128-135.
[http://dx.doi.org/10.1117/12.579102]
[199]
Chambers, J.E.; Meek, E.C.; Bennett, J.P.; Bennett, W.S.; Chambers, H.W.; Leach, C.A.; Pringle, R.B.; Wills, R.W. Novel substituted phenoxyalkyl pyridinium oximes enhance survival and attenuate seizure-like behavior of rats receiving lethal levels of nerve agent surrogates. Toxicology, 2016, 339, 51-57.
[http://dx.doi.org/10.1016/j.tox.2015.12.001] [PMID: 26705700]
[200]
Meek, E.C.; Chambers, H.W.; Pringle, R.B.; Chambers, J.E. The effect of PON1 enhancers on reducing acetylcholinesterase inhibition following organophosphate anticholinesterase exposure in rats. Toxicology, 2015, 336, 79-83.
[http://dx.doi.org/10.1016/j.tox.2015.08.002] [PMID: 26275814]
[201]
Gilley, C.; MacDonald, M.; Nachon, F.; Schopfer, L.M.; Zhang, J.; Cashman, J.R.; Lockridge, O. Nerve agent analogues that produce authentic soman, sarin, tabun, and cyclohexyl methylphosphonate-modified human butyrylcholinesterase. Chem. Res. Toxicol., 2009, 22(10), 1680-1688.
[http://dx.doi.org/10.1021/tx900090m] [PMID: 19715348]
[202]
Midey, A.J.; Miller, T.M.; Viggiano, A.A.; Bera, N.C.; Maeda, S.; Morokuma, K. Ion chemistry of VX surrogates and ion energetics properties of VX: new suggestions for VX chemical ionization mass spectrometry detection. Anal. Chem., 2010, 82(9), 3764-3771.
[http://dx.doi.org/10.1021/ac100176r] [PMID: 20384284]
[203]
Dale, T.J.; Rebek, J., Jr Hydroxy oximes as organophosphorus nerve agent sensors. Angew. Chem. Int. Ed. Engl., 2009, 48(42), 7850-7852.
[http://dx.doi.org/10.1002/anie.200902820] [PMID: 19757467]
[204]
Barakat, N.H.; Zheng, X.; Gilley, C.B.; MacDonald, M.; Okolotowicz, K.; Cashman, J.R.; Vyas, S.; Beck, J.M.; Hadad, C.M.; Zhang, J. Chemical synthesis of two series of nerve agent model compounds and their stereoselective interaction with human acetylcholinesterase and human butyrylcholinesterase. Chem. Res. Toxicol., 2009, 22(10), 1669-1679.
[http://dx.doi.org/10.1021/tx900096j] [PMID: 19715346]
[205]
Kinnear, A.M.; Perren, E.A. Formation of organo-phosphorus compounds by the reaction of alkyl chlorides with phosphorus trichloride in the presence of aluminium chloride. J. Chem. Soc., 1952, 0, 3437-3445.
[http://dx.doi.org/10.1039/jr9520003437]
[206]
Li, W.S.; Lum, K.T.; Chen-Goodspeed, M.; Sogorb, M.A.; Raushel, F.M. Stereoselective detoxification of chiral sarin and soman analogues by phosphotriesterase. Bioorg. Med. Chem., 2001, 9(8), 2083-2091.
[http://dx.doi.org/10.1016/S0968-0896(01)00113-4] [PMID: 11504644]
[207]
Amitai, G.; Adani, R.; Yacov, G.; Yishay, S.; Teitlboim, S.; Tveria, L.; Limanovich, O.; Kushnir, M.; Meshulam, H. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity. Toxicology, 2007, 233(1-3), 187-198.
[http://dx.doi.org/10.1016/j.tox.2006.09.020] [PMID: 17129656]
[208]
Yeung, D.T.; Smith, J.R.; Sweeney, R.E.; Lenz, D.E.; Cerasoli, D.M. A gas chromatographic-mass spectrometric approach to examining stereoselective interaction of human plasma proteins with soman. J. Anal. Toxicol., 2008, 32(1), 86-91.
[http://dx.doi.org/10.1093/jat/32.1.86] [PMID: 18269799]
[209]
Berman, H.A.; Leonard, K. Chiral reactions of acetylcholinesterase probed with enantiomeric methylphosphonothioates. Noncovalent determinants of enzyme chirality. J. Biol. Chem., 1989, 264(7), 3942-3950.
[PMID: 2917983]
[210]
Hosea, N.A.; Berman, H.A.; Taylor, P. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases. Biochemistry, 1995, 34(36), 11528-11536.
[http://dx.doi.org/10.1021/bi00036a028] [PMID: 7547883]
[211]
Hosea, N.A.; Radić, Z.; Tsigelny, I.; Berman, H.A.; Quinn, D.M.; Taylor, P. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates. Biochemistry, 1996, 35(33), 10995-11004.
[http://dx.doi.org/10.1021/bi9611220] [PMID: 8718893]
[212]
Hall, C.R.; Inch, T.D. Preparation and absolute configuration of some chiral O, S-dialkyl phosphoramidothioates. Tetrahedron Lett., 1977, 18(42), 3761-3764.
[http://dx.doi.org/10.1016/S0040-4039(01)83348-7]
[213]
Hall, C.R.; Inch, T.D.; Chiral, O. S-dialkyl phosphoamidothioates - their preparation, absolute-configuration, and stereochemistry of their reactions in acid and base. J. Chem. Soc.-Perkin Trans., 1979, 1, 1646-1655.
[http://dx.doi.org/10.1039/p19790001646]
[214]
Ohta, H.; Ohmori, T.; Suzuki, S.; Ikegaya, H.; Sakurada, K.; Takatori, T. New safe method for preparation of sarin-exposed human erythrocytes acetylcholinesterase using non-toxic and stable sarin analogue isopropyl p-nitrophenyl methylphosphonate and its application to evaluation of nerve agent antidotes. Pharm. Res., 2006, 23(12), 2827-2833.
[http://dx.doi.org/10.1007/s11095-006-9123-1] [PMID: 17096183]
[215]
Khersonsky, O.; Malitsky, S.; Rogachev, I.; Tawfik, D.S. Role of chemistry versus substrate binding in recruiting promiscuous enzyme functions. Biochemistry, 2011, 50(13), 2683-2690.
[http://dx.doi.org/10.1021/bi101763c] [PMID: 21332126]
[216]
Ruark, C.D.; Hack, C.E.; Robinson, P.J.; Gearhart, J.M. Quantitative structure-activity relationships for organophosphates binding to trypsin and chymotrypsin. J. Toxicol. Environ. Health A, 2011, 74(1), 1-23.
[http://dx.doi.org/10.1080/15287394.2010.501716] [PMID: 21120745]
[217]
Petrescu, A-M.; Putz, M.V.; Ilia, G. Quantitative structure-activity/ecotoxicity relationships (QSAR/QEcoSAR) of a series of phosphonates. Environ. Toxicol. Pharmacol., 2015, 40(3), 800-824.
[http://dx.doi.org/10.1016/j.etap.2015.08.032] [PMID: 26462182]
[218]
Xiang, D.F.; Patskovsky, Y.; Nemmara, V.V.; Toro, R.; Almo, S.C.; Raushel, F.M. Function discovery and structural characterization of a methylphosphonate esterase. Biochemistry, 2015, 54(18), 2919-2930.
[http://dx.doi.org/10.1021/acs.biochem.5b00199] [PMID: 25873441]
[219]
Chambers, J.E.; Chambers, H.W.; Meek, E.C.; Funck, K.E.; Bhavaraju, M.H.; Gwaltney, S.R.; Pringle, R.B. Novel nucleophiles enhance the human serum paraoxonase 1 (PON1)-mediated detoxication of organophosphates. Toxicol. Sci., 2015, 143(1), 46-53.
[http://dx.doi.org/10.1093/toxsci/kfu205] [PMID: 25304213]
[220]
Xiang, D.F.; Kumaran, D.; Swaminathan, S.; Raushel, F.M. Structural characterization and function determination of a nonspecific carboxylate esterase from the amidohydrolase superfamily with a promiscuous ability to hydrolyze methylphosphonate esters. Biochemistry, 2014, 53(21), 3476-3485.
[http://dx.doi.org/10.1021/bi5004266] [PMID: 24832101]
[221]
Chen, S.; Zhang, J.; Lumley, L.; Cashman, J.R. Immunodetection of serum albumin adducts as biomarkers for organophosphorus exposure. J. Pharmacol. Exp. Ther., 2013, 344(2), 531-541.
[http://dx.doi.org/10.1124/jpet.112.201368] [PMID: 23192655]
[222]
Touvrey, C.; Courageux, C.; Guillon, V.; Terreux, R.; Nachon, F.; Brazzolotto, X. X-ray structures of human bile-salt activated lipase conjugated to nerve agents surrogates. Toxicology, 2019, 411, 15-23.
[http://dx.doi.org/10.1016/j.tox.2018.10.015] [PMID: 30359675]
[223]
Fry, I.J.; DeFrank, J.J. Hydrolysis of nerve agent surrogates by hybrid silica nanocomposite OPAA and OPH enzyme hydrogels. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2005, 46, 1197-1198.
[224]
Santoni, G.; de Sousa, J.; de la Mora, E.; Dias, J.; Jean, L.; Sussman, J.L.; Silman, I.; Renard, P-Y.; Brown, R.C.D.; Weik, M.; Baati, R.; Nachon, F. Structure-based optimization of nonquaternary reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. J. Med. Chem., 2018, 61(17), 7630-7639.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00592] [PMID: 30125110]
[225]
Stojanovic, M.; Katz, F.; Landry, D.W. Testing of novel brain-penetrating oxime reactivators of acetylcholinesterase inhibited by nerve agent surrogates. Chem. Biol. Interact., 2014, 203(1), 135-138.
[226]
Chambers, J.E.; Chambers, H.W.; Meek, E.C.; Pringle, R.B. Testing of novel brain-penetrating oxime reactivators of acetylcholinesterase inhibited by nerve agent surrogates. Chem. Biol. Interact., 2013, 203(1), 135-138.
[http://dx.doi.org/10.1016/j.cbi.2012.10.017] [PMID: 23123249]
[227]
Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity – USA. Apidologie (Celle), 2010, 41(3), 312-331.
[http://dx.doi.org/10.1051/apido/2010018]
[228]
Eddleston, M.; Eyer, P.; Worek, F.; Juszczak, E.; Alder, N.; Mohamed, F.; Senarathna, L.; Hittarage, A.; Azher, S.; Jeganathan, K.; Jayamanne, S.; von Meyer, L.; Dawson, A.H.; Sheriff, M.H.R.; Buckley, N.A. pralidoxime in acute organophosphorus insecticide poisoning -a randomised controlled trial. PLoS Med., 6, 1-2.
[229]
Amitai, G.; Moorad, D.; Adani, R.; Doctor, B.P. Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon. Biochem. Pharmacol., 1998, 56(3), 293-299.
[http://dx.doi.org/10.1016/S0006-2952(98)00035-5] [PMID: 9744565]
[230]
Topal, A.; Şişecioğlu, M.; Atamanalp, M.; Işık, A.; Yılmaz, B. The invitro and invivo effects of chlorpyrifos on acetylcholinesterase activity of rainbow trout brain. J. Appl. Anim. Res., 2016, 44(1), 243-247.
[http://dx.doi.org/10.1080/09712119.2015.1031776]
[231]
Yen, J.; Donerly, S.; Levin, E.D.; Linney, E.A. Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotoxicol. Teratol., 2011, 33(6), 735-741.
[http://dx.doi.org/10.1016/j.ntt.2011.10.004] [PMID: 22036888]
[232]
Venkateswara Rao, J.; Surya Pavan, Y.; Madhavendra, S.S. Toxic effects of chlorpyrifos on morphology and acetylcholinesterase activity in the earthworm, Eisenia foetida. Ecotoxicol. Environ. Saf., 2003, 54(3), 296-301.
[http://dx.doi.org/10.1016/S0147-6513(02)00013-1] [PMID: 12651185]
[233]
Boone, J.S.; Tyler, J.W.; Davis, M.K.; Chambers, J.E. Effects of topical phosmet on fur residue and cholinesterase activity of dogs. Toxicol. Mech. Methods, 2006, 16(5), 275-280.
[http://dx.doi.org/10.1080/15376520500195566] [PMID: 20021025]
[234]
Stewart, P.A.; Fears, T.; Kross, B.; Ogilvie, L.; Blair, A. Exposure of farmers to phosmet, a swine insecticide. Scand. J. Work Environ. Health, 1999, 25(1), 33-38.
[http://dx.doi.org/10.5271/sjweh.380] [PMID: 10204668]
[235]
Zak, J.; Ron, D.; Riva, E.; Harding, H.P.; Cross, B.C.S.; Baxendale, I.R. Establishing a flow process to coumarin-8-carbaldehydes as important synthetic scaffolds. Chemistry, 2012, 18(32), 9901-9910.
[http://dx.doi.org/10.1002/chem.201201039] [PMID: 22782929]
[236]
Weick, J.; Thorn, R.S. Effects of acute sublethal exposure to coumaphos or diazinon on acquisition and discrimination of odor stimuli in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol., 2002, 95(2), 227-236.
[http://dx.doi.org/10.1603/0022-0493-95.2.227] [PMID: 12019994]
[237]
Pardío, V.T. Ibarra, Nde.J.; Waliszewski, K.N.; López, K.M. Effect of coumaphos on cholinesterase activity, hematology, and biochemical blood parameters of bovines in tropical regions of Mexico. J. Environ. Sci. Health B, 2007, 42(4), 359-366.
[http://dx.doi.org/10.1080/03601230701310500] [PMID: 17474014]
[238]
Pardío, V.T.; Ibarra, N.; Rodríguez, M.A.; Waliszewski, K.N. Use of cholinesterase activity in monitoring organophosphate pesticide exposure of cattle produced in tropical areas. J. Agric. Food Chem., 2001, 49(12), 6057-6062.
[http://dx.doi.org/10.1021/jf010431g] [PMID: 11743808]
[239]
Rodriguez-Dominguez, J.C.; Kirsch, G. Zirconyl chloride: A useful catalyst in the Pechmann Coumarin synthesis. Synthesis, 2006, 11, 1895-1897.
[240]
Xie, S-S.; Wang, X.; Jiang, N.; Yu, W.; Wang, K.D.; Lan, J.S.; Li, Z.R.; Kong, L.Y. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur. J. Med. Chem., 2015, 95, 153-165.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.040] [PMID: 25812965]
[241]
Rodriguez-Dominguez, J.C.; Kirsch, G. Sulfated zirconia, a mild alternative to mineral acids in the synthesis of hydroxycoumarins. Tetrahedron Lett., 2016, 47(19), 3279-3281.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.030]
[242]
Sharghi, H.; Al Jokar, M. 2O3/MeSO3H (AMA) as a novel heterogeneous system for synthesis of coumarins under mild conditions. Heterocycles, 2007, 71(12), 2721-2733.
[http://dx.doi.org/10.3987/COM-07-11175]
[243]
Raju, B.C.; Tiwari, A.K.; Kumar, J.A.; Ali, A.Z.; Agawane, S.B.; Saidachary, G.; Madhusudana, K. α-Glucosidase inhibitory antihyperglycemic activity of substituted chromenone derivatives. Bioorg. Med. Chem., 2010, 18(1), 358-365.
[http://dx.doi.org/10.1016/j.bmc.2009.10.047] [PMID: 19932027]
[244]
Gadakh, S.K.; Dey, S.; Sudalai, A. Rh-Catalyzed synthesis of coumarin derivatives from phenolic acetates and acrylates via C-H Bond Activation. J. Org. Chem., 2015, 80(22), 11544-11550.
[http://dx.doi.org/10.1021/acs.joc.5b01713] [PMID: 26509478]
[245]
Li, Y.; Qi, Z.; Wang, H.; Fu, X.; Duan, C. Palladium-catalyzed oxidative Heck coupling reaction for direct synthesis of 4-arylcoumarins using coumarins and arylboronic acids. J. Org. Chem., 2012, 77(4), 2053-2057.
[http://dx.doi.org/10.1021/jo202577m] [PMID: 22248005]
[246]
Metternich, J.B.; Gilmour, R. One Photocatalyst, n activation modes strategy for cascade catalysis: Emulating coumarin biosynthesis with (-)-riboflavin. J. Am. Chem. Soc., 2016, 138(3), 1040-1045.
[http://dx.doi.org/10.1021/jacs.5b12081] [PMID: 26714650]
[247]
Phadhodee, W.; Duangkamol, C.; Yamano, D. Pattarawarapanm >. Ph3P/I2-mediated synthesis of 3-Aryl-Substituted and 3,4-Disubstituted Coumarins. Synlett, 2017, 28, 825-830.
[http://dx.doi.org/10.1055/s-0036-1588941]
[248]
Hou, J.; Ee, A.; Feng, W.; Xu, J.H.; Zhao, Y.; Wu, J. Visible-light-driven alkyne hydro-/carbocarboxylation using CO2via iridium/cobalt dual catalysis for divergent heterocycle synthesis. J. Am. Chem. Soc., 2018, 140(15), 5257-5263.
[http://dx.doi.org/10.1021/jacs.8b01561] [PMID: 29596743]
[249]
Sashidhara, K.V.; Avula, S.R.; Kumar, A. Efficient and general synthesis of 3-aryl coumarins using cyanuric chloride. Synlett, 2012, 23, 611-621.
[http://dx.doi.org/10.1055/s-0031-1290344]
[250]
Silveira Pinto, L.S.; de Souza, M.V.N. Sonochemistry as a General Procedure for the synthesis of coumarins, including multigram synthesis. Synthesis, 2017, 49, 2555-2561.
[251]
De, S.K.; Gibbs, R.A. An efficient and practical procedure for the synthesis of 4-substituted coumarins. Synthesis, 2005, 8, 1231-1233.
[http://dx.doi.org/10.1055/s-2005-865282]
[252]
Potdar, M.K.; Mohile, S.S.; Salunke, M.M. Coumarin syntheses via Pechmann condensation in Lewis acidic chloroaluminate ionic liquid. Tetrahedron Lett., 2001, 42, 9285-9287.
[http://dx.doi.org/10.1016/S0040-4039(01)02041-X]
[253]
Vekariya, R.H.; Patel, H.D. Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: A review. Synth. Commun., 2014, 44(19), 2756-2788.
[http://dx.doi.org/10.1080/00397911.2014.926374]
[254]
Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K.; Donda, S.T.; Patil, D.A. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(9), 2434-2450.
[http://dx.doi.org/10.1016/j.bmc.2013.02.017] [PMID: 23517722]
[255]
Zambare, A.S.; Khan, F.A.K.; Zambare, S.P.; Shinde, S.D.; Sangshetti, J.N. Recent advances in the synthesis of coumarin derivatives via pechmann condensation. Curr. Org. Chem., 2016, 20(7), 798-828.
[http://dx.doi.org/10.2174/1385272820666151026224227]
[256]
Jung, J.W.; Kim, N.J.; Yun, H.; Han, Y.T. Recent advances in synthesis of 4-arylcoumarins. Molecules, 2018, 23(10), 1-28.
[http://dx.doi.org/10.3390/molecules23102417] [PMID: 30241375]
[257]
Tajti, Á.; Keglevich, G. The importance of organophosphorus compounds as biologically active agents.Organophosphorus Chemistry - Novel Developments; Keglevich, G., Ed.; De Gruyter: Berlin, Boston, 2018, pp. 53-65.
[http://dx.doi.org/10.1515/9783110535839-003]
[258]
World Health Organization – WHO. Available at:. https://www.who.int/bulletin/volumes/86/3/07-041814/en/
[259]
Krstić, D.Z.; Colović, M.; Kralj, M.B.; Franko, M.; Krinulović, K.; Trebse, P.; Vasić, V. Inhibition of AChE by malathion and some structurally similar compounds. J. Enzyme Inhib. Med. Chem., 2008, 23(4), 562-573.
[http://dx.doi.org/10.1080/14756360701632031] [PMID: 18608787]
[260]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[261]
Schofield, D.A.; Dinovo, A.A. Generation of a mutagenized organophosphorus hydrolase for the biodegradation of the organophosphate pesticides malathion and demeton-S. J. Appl. Microbiol., 2010, 109(2), 548-557.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04672.x] [PMID: 20132373]
[262]
Vallet, V.; Cruz, C.; Licausi, J.; Bazire, A.; Lallement, G.; Boudry, I. Percutaneous penetration and distribution of VX using in vitro pig or human excised skin validation of demeton-S-methyl as adequate simulant for VX skin permeation investigations. Toxicology, 2008, 246(1), 73-82.
[http://dx.doi.org/10.1016/j.tox.2007.12.027] [PMID: 18294748]
[263]
Bazire, A.; Gillon, E.; Lockridge, O.; Vallet, V.; Nachon, F. The kinetic study of the inhibition of human cholinesterases by demeton-S-methyl shows that cholinesterase-based titration methods are not suitable for this organophosphate. Toxicol. In Vitro, 2011, 25(3), 754-759.
[http://dx.doi.org/10.1016/j.tiv.2011.01.006] [PMID: 21238577]
[264]
Jeong, Y.S.; Choi, J.M.; Kyeong, H.H.; Choi, J.Y.; Kim, E.J.; Kim, H.S. Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent. Biochem. Biophys. Res. Commun., 2014, 449(3), 263-267.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.155] [PMID: 24824182]
[265]
Joshi, K.A.; Prouza, M.; Kum, M.; Wang, J.; Tang, J.; Haddon, R.; Chen, W.; Mulchandani, A. V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode. Anal. Chem., 2006, 78(1), 331-336.
[http://dx.doi.org/10.1021/ac051052f] [PMID: 16383345]
[266]
Grimsley, J.K.; Singh, W.P.; Wild, J.R.; Giletto, A. A novel, enzyme-based method for the wound-surface removal and decontamination of organophosphorus nerve agents.ACS Symp. Ser; , 2001, 792, .
[http://dx.doi.org/10.1021/bk-2001-0792.ch003]
[267]
Hoskin, F.C.G.; Walker, J.E.; Stote, R. Degradation of nerve gases by CLECS and cells: Kinetics of heterogenous systems. Chem. Biol. Interact., 1999, 119-120, 439-444.
[http://dx.doi.org/10.1016/S0009-2797(99)00056-3] [PMID: 10421481]
[268]
Fikes, J.D. Toxicology of selected pesticides, drugs, and chemicals. Organophosphorus and carbamate insecticides. Vet. Clin. North Am. Small Anim. Pract., 1990, 20(2), 353-367.
[http://dx.doi.org/10.1016/S0195-5616(90)50029-7] [PMID: 2180181]
[269]
Geller, R.J.; Lopez, G.P.; Cutler, S.; Lin, D.; Bachman, G.F.; Gorman, S.E. Atropine availability as an antidote for nerve agent casualties: Validated rapid reformulation of high-concentration atropine from bulk powder. Ann. Emerg. Med., 2003, 41(4), 453-456.
[http://dx.doi.org/10.1067/mem.2003.103] [PMID: 12658242]
[270]
Uner, N.; Oruç, E.Ö.; Sevgiler, Y.; Sahin, N.; Durmaz, H.; Usta, D. Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environ. Toxicol. Pharmacol., 2006, 21(3), 241-245.
[http://dx.doi.org/10.1016/j.etap.2005.08.007] [PMID: 21783664]
[271]
Gillett, J.W.; Harr, J.R.; Lindstrom, F.T.; Mount, D.A.; St Clair, A.D.; Weber, L.J. Evaluation of human health hazards on use of dichlorvos (DDVP), especially in resin strips. Residue Rev., 1972, 44, 115-159.
[http://dx.doi.org/10.1007/978-1-4615-8491-9_6] [PMID: 4576326]
[272]
Pancetti, F.; Olmos, C.; Dagnino-Subiabre, A.; Rozas, C.; Morales, B. Noncholinesterase effects induced by organophosphate pesticides and their relationship to cognitive processes: Implication for the action of acylpeptide hydrolase. J. Toxicol. Environ. Health B Crit. Rev., 2007, 10(8), 623-630.
[http://dx.doi.org/10.1080/10937400701436445] [PMID: 18049927]
[273]
Booth, E.D.; Jones, E.; Elliott, B.M. Review of the in vitro and in vivo genotoxicity of dichlorvos. Regul. Toxicol. Pharmacol., 2007, 49(3), 316-326.
[http://dx.doi.org/10.1016/j.yrtph.2007.08.011] [PMID: 17936460]
[274]
Kaur, K.; Helgesen, K.O.; Bakke, M.J.; Horsberg, T.E. Mechanism behind resistance against the organophosphate azamethiphos in salmon lice (Lepeophtheirus salmonis). PLoS One, 2015, 10(4), 1-20.
[275]
Fallang, A.; Ramsay, J.M.; Sevatdal, S.; Burka, J.F.; Jewess, P.; Hammell, K.L.; Horsberg, T.E. Evidence for occurrence of an organophosphate-resistant type of acetylcholinesterase in strains of sea lice (Lepeophtheirus salmonis Krøyer). Pest Manag. Sci., 2004, 60(12), 1163-1170.
[http://dx.doi.org/10.1002/ps.932] [PMID: 15578596]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy