Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

New Hydrazone Derivatives of Pyrazole-4-carboxaldehydes Exhibited Anti-inflammatory Properties

Author(s): Mingxia Song, Bing Liu, Shengwang Yu, Shihui He, Yuqiu Liang, Sifan Li, Qiuyan Chen and Xianqing Deng*

Volume 17, Issue 4, 2020

Page: [502 - 511] Pages: 10

DOI: 10.2174/1570180816666190731113441

Abstract

Background: Several series of hydrazone derivatives of pyrazole-4-carboxaldehydes (4- 11) were designed and synthesized to screen their inflammatory activity.

Methods: The products were characterized by 1H NMR, 13C NMR and HRMS. In vitro LPS-induced TNF-α model and in vivo xylene-induced ear-edema model were used to evaluate their antiinflammatory activity.

Results and Conclusion: Bioassays indicated that most of the compounds markedly inhibited the expression of TNF-α at the concentration of 10 µg/mL. Compounds 7b and 11c, two of the most potent compounds, exhibited TNF-α inhibitory ability in a dose-dependent manner with IC50 values of 5.56 and 3.69 µM, respectively. In vivo, intraperitoneal administration with 7b and 11c markedly inhibited the ear edema at the doses of 20 and 50 mg/kg. Compound 11c, inhibited edema by 49.59 % at the dose of 20 mg/kg, was comparable to the reference drug dexamethasone at the same dose (with an inhibition of 50.49 %). To understand the binding pattern, molecular docking of representative 7b and 11c was performed, which demonstrated that both compounds have a forceful binding with the TNF-α, and that the phenyl and hydrazide moieties of them play a significant role in binding with the target site.

Keywords: Anti-inflammatory, hydrazine, pyrazole, TNF-α, docking, antiinflammatory activity.

Graphical Abstract

[1]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[PMID: 17223962]
[2]
Tilg, H.; Moschen, A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol., 2006, 6(10), 772-783.
[http://dx.doi.org/10.1038/nri1937] [PMID: 16998510]
[3]
Philip, M.; Rowley, D.A.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol., 2004, 14(6), 433-439.
[http://dx.doi.org/10.1016/j.semcancer.2004.06.006] [PMID: 15489136]
[4]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[5]
Syggelos, S.A.; Giannopoulou, E.; Gouvousis, P.A.; Andonopoulos, A.P.; Aletras, A.J.; Panagiotopoulos, E. In vitro effects of non-steroidal anti-inflammatory drugs on cytokine, prostanoid and matrix metalloproteinase production by interface membranes from loose hip or knee endoprostheses. Osteoarthritis Cartilage, 2007, 15(5), 531-542.
[http://dx.doi.org/10.1016/j.joca.2006.11.003] [PMID: 17188523]
[6]
Calixto, J.B.; Campos, M.M.; Otuki, M.F.; Santos, A.R. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med., 2004, 70(2), 93-103.
[http://dx.doi.org/10.1055/s-2004-815483] [PMID: 14994184]
[7]
Liu, Z.; Tang, L.; Zou, P.; Zhang, Y.; Wang, Z.; Fang, Q.; Jiang, L.; Chen, G.; Xu, Z.; Zhang, H.; Liang, G. Synthesis and biological evaluation of allylated and prenylated mono-carbonyl analogs of curcumin as anti-inflammatory agents. Eur. J. Med. Chem., 2014, 74, 671-682.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.061] [PMID: 24321865]
[8]
Hu, J.; Wang, Y.; Wei, X.; Wu, X.; Chen, G.; Cao, G.; Shen, X.; Zhang, X.; Tang, Q.; Liang, G.; Li, X. Synthesis and biological evaluation of novel thiazolidinone derivatives as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 64, 292-301.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.010] [PMID: 23644212]
[9]
Malaviya, R.; Laskin, J.D.; Laskin, D.L. Anti-TNFα therapy in inflammatory lung diseases. Pharmacol. Ther., 2017, 180, 90-98.
[PMID: 28642115]
[10]
Tageldin, G.N.; Fahmy, S.M.; Ashour, H.M.; Khalil, M.A.; Nassra, R.A.; Labouta, I.M. Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidines as anti-inflammatory agents. Bioorg. Chem., 2018, 78, 358-371.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.030]
[11]
Duncan, S.A.; Baganizi, D.R.; Sahu, R.; Singh, S.R.; Dennis, V.A. SOCS proteins as regulators of inflammatory responses induced by Bacterial Infections: A Review. Front. Microbiol., 2017, 8, 2431.
[http://dx.doi.org/10.3389/fmicb.2017.02431] [PMID: 29312162]
[12]
Bekhit, A.A.; Abdel-Aziem, T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem., 2004, 12(8), 1935-1945.
[http://dx.doi.org/10.1016/j.bmc.2004.01.037] [PMID: 15051061]
[13]
Hassan, G.S.; Abdel Rahman, D.E.; Abdelmajeed, E.A.; Refaey, R.H.; Alaraby Salem, M.; Nissan, Y.M. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur. J. Med. Chem., 2019, 171, 332-342.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.052] [PMID: 30928706]
[14]
Belkheiri, N.; Bouguerne, B.; Bedos-Belval, F.; Duran, H.; Bernis, C.; Salvayre, R.; Nègre-Salvayre, A.; Baltas, M. Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur. J. Med. Chem., 2010, 45(7), 3019-3026.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.031] [PMID: 20403645]
[15]
Kaplancikli, Z.A.; Altintop, M.D.; Ozdemir, A.; Turan-Zitouni, G.; Khan, S.I.; Tabanca, N. Synthesis and Biological Evaluation of Some Hydrazone Derivatives as Anti-inflammatory Agents. Lett. Drug Des. Discov., 2012, 9, 310-315.
[http://dx.doi.org/10.2174/157018012799129828]
[16]
Freitas, R.H.C.N.; Cordeiro, N.M.; Carvalho, P.R.; Alves, M.A.; Guedes, I.A.; Valerio, T.S.; Dardenne, L.E.; Lima, L.M.; Barreiro, E.J.; Fernandes, P.D.; Fraga, C.A.M. Discovery of naphthyl-N-acylhydrazone p38α MAPK inhibitors with in vivo anti-inflammatory and anti-TNF-α activity. Chem. Biol. Drug Des., 2018, 91(2), 391-397.
[http://dx.doi.org/10.1111/cbdd.13085] [PMID: 28815968]
[17]
Kajal, A.; Bala, S.; Sharma, N.; Kamboj, S.; Saini, V. Therapeutic potential of hydrazones as anti-inflammatory agents. Int. J. Med. Chem., 2014. 2014761030
[http://dx.doi.org/10.1155/2014/761030] [PMID: 25383223]
[18]
Dehestani, L.; Ahangar, N.; Hashemi, S.M.; Irannejad, H.; Honarchian Masihi, P.; Shakiba, A.; Emami, S. Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents. Bioorg. Chem., 2018, 78, 119-129.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.001] [PMID: 29550532]
[19]
Kaushik, D.; Khan, S.A.; Chawla, G.; Kumar, S.N. ′-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene] 2/4-substituted hydrazides: synthesis and anticonvulsant activity. Eur. J. Med. Chem., 2010, 45(9), 3943-3949.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.049] [PMID: 20573423]
[20]
Rasras, A.J.M.; Al-Tel, T.H.; Al-Aboudi, A.F.; Al-Qawasmeh, R.A. Synthesis and antimicrobial activity of cholic acid hydrazone analogues. Eur. J. Med. Chem., 2010, 45(6), 2307-2313.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.006] [PMID: 20181416]
[21]
Popiołek, Ł.; Biernasiuk, A.; Berecka, A.; Gumieniczek, A.; Malm, A.; Wujec, M. New hydrazide-hydrazones of isonicotinic acid: Synthesis, lipophilicity and in vitro antimicrobial screening. Chem. Biol. Drug Des., 2018, 91(4), 915-923.
[http://dx.doi.org/10.1111/cbdd.13158] [PMID: 29220872]
[22]
Polovic, S.; Bilic, V.L.; Budimir, A.; Kontrec, D.; Galic, N.; Kosalec, I. Antimicrobial assesment of aroylhydrazone derivatives in vitro. Acta Pharm., 2019, 67, 277-285.
[http://dx.doi.org/10.2478/acph-2019-0020]
[23]
Kumar, D.; Maruthi Kumar, N.; Ghosh, S.; Shah, K. Novel bis(indolyl)hydrazide-hydrazones as potent cytotoxic agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 212-215.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.031] [PMID: 22123320]
[24]
Hayat, M.; Mohammed, K.; Saeed, K.S.; Salar, U.; Khan, M. Baig, T.; Ahmad, A.; Parveen, S.; Taha, M. Antimicrobial Activities of Synthetic Arylidine Nicotinic and Isonicotinic Hydrazones. Lett. Drug Des. Discov., 2018, 15, 1057-1067.
[http://dx.doi.org/10.2174/1570180814666170914120337]
[25]
Altıntop, M.D.; Ozdemir, A.; Ilgın, S.; Atli, O. Synthesis and Biological Evaluation of New Pyrazole-based Thiazolyl Hydrazone Derivatives as Potential Anticancer Agents. Lett. Drug Des. Discov., 2014, 11, 833-839.
[http://dx.doi.org/10.2174/1570180811666140226235350]
[26]
Abdelgawad, M.A.; Labib, M.B.; Abdel-Latif, M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study. Bioorg. Chem., 2017, 74, 212-220.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.014] [PMID: 28865292]
[27]
El-Sayed, M.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.; El-Azab, A.S.; Asiri, Y.A.; Eltahir, K.E. Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorg. Med. Chem., 2011, 19(11), 3416-3424.
[http://dx.doi.org/10.1016/j.bmc.2011.04.027] [PMID: 21570309]
[28]
Mohammed, K.O.; Nissan, Y.M. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents. Chem. Biol. Drug Des., 2014, 84(4), 473-488.
[http://dx.doi.org/10.1111/cbdd.12336] [PMID: 24720475]
[29]
Liang, Z.C.; Huang, Y.P.; Wang, S.B.; Deng, X.Q. Synthesis and Biological Evaluation of Some Pyrazole derivatives, Containing (Thio) Semicarbazide, as Dual Anti-Inflammatory-Antimicrobial Agents. Lett. Drug Des. Discov., 2019, 16.
[http://dx.doi.org/10.2174/1570180816666190325163117]
[30]
Waseem, T.; Duxbury, M.; Ito, H.; Ashley, S.W.; Robinson, M.K. Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery, 2008, 143(3), 334-342.
[http://dx.doi.org/10.1016/j.surg.2007.09.039] [PMID: 18291254]
[31]
Guruvayoorappan, C.; Kuttan, G. (+)-Catechin inhibits tumour angiogenesis and regulates the production of nitric oxide and TNF-α in LPS-stimulated macrophages. Innate Immun., 2008, 14(3), 160-174.
[http://dx.doi.org/10.1177/1753425908093295] [PMID: 18562575]
[32]
Meng, A.; Wang, B.; Zhang, X.; Qi, N.; Liu, D.; Wu, J. Additive Suppression of LPS-Induced IL-10 and TNF-α by Pre-treatment of Dexamethasone and SB203580 in a Murine Alveolar Macrophage Cell Line (MH-S). Inflammation, 2015, 38(3), 1260-1266.
[http://dx.doi.org/10.1007/s10753-014-0093-x] [PMID: 25563207]
[33]
Xu, B.G.; Li, S.H.; Song, M.X.; Deng, X.Q. Study on Antibacterial and Anti-inflammatory Activity of Rhododendron Pulchrum and Its Active Fraction. Journal of Liaocheng University. Nat. Sci., 2018, 31, 86-92.
[34]
Luber-Narod, J.; Austin-Ritchie, T.; Hollins, C., III; Menon, M.; Malhotra, R.K.; Baker, S.; Carraway, R.E. Role of substance P in several models of bladder inflammation. Urol. Res., 1997, 25(6), 395-399.
[http://dx.doi.org/10.1007/BF01268854] [PMID: 9443648]
[35]
Kim, H.D.; Cho, H.R.; Moon, S.B.; Shin, H.D.; Yang, K.J.; Park, B.R.; Jang, H.J.; Kim, L.S.; Lee, H.S.; Ku, S.K. Effects of β-glucan from Aureobasidium pullulans on acute inflammation in mice. Arch. Pharm. Res., 2007, 30(3), 323-328.
[http://dx.doi.org/10.1007/BF02977613] [PMID: 17424938]
[36]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorg. Med. Chem., 2014, 22(21), 5804-5812.
[http://dx.doi.org/10.1016/j.bmc.2014.09.028] [PMID: 25311566]
[37]
Li, S.X.; Deng, X.D.; Jiang, F.L.; Zhao, Y.J.; Xiao, W.S.; Kuang, X.Z.; Sun, X.M. Design and Synthesis of Novel Diaryl Heterocyclic Derivatives as Selective Cyclooxygenase-2. Lett. Drug Des. Discov., 2008, 5, 127-133.
[http://dx.doi.org/10.2174/157018008783928517]

© 2025 Bentham Science Publishers | Privacy Policy