Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Genetic Polymorphisms of Pharmacogenomic VIP Variants in the Circassian Subpopulation from Jordan

Author(s): Laith N. AL-Eitan*, Namarg N. Mohammad, Haneen W. Al-Maqableh, Nancy M. Hakooz and Rana B. Dajani

Volume 20, Issue 8, 2019

Page: [674 - 681] Pages: 8

DOI: 10.2174/1389200220666190729124000

Price: $65

Abstract

Background: It has been suggested that genetic variation within candidate pharmacogenes contributes to the differences in drug safety and efficacy as well as risk of adverse drug reactions among different ethnic groups. Illustrating the polymorphic distribution of Very Important Pharmacogenes (VIPs) in various ethnic groups will contribute to the development of personalized medicine for those populations.

Objective: The present study aimed to identify the polymorphic distribution of VIPs in the Circassian subpopulation of Jordan and compare their allele frequencies with those of other populations.

Methods: A total of 130 healthy and unrelated Circassian adults from Jordan were randomly recruited and genotyped for eleven VIP variants within the thiopurine S-methyltransferase (TPMT), ATP-binding cassette, sub-family B, member 1 (ABCB1), and vitamin D receptor (VDR) genes via Sequenom’s MassARRAY® genotyping platform (iPLEX GOLD).

Results: Our data on the allelic frequencies of the investigated VIP variants were compared to those of 18 other populations, comprising 11 HapMap populations, 6 Exome Aggregation Consortium populations, and the Chechen- Jordanian population from Jordan. Circassian-Jordanians were found to most resemble the African, Chechen- Jordanian, European (Finnish), European (non-Finnish), and South-Asian populations.

Conclusion: Circassians from Jordan significantly differ from other populations in terms of the allelic frequencies of selected VIP variants. The present findings constitute the first set of pharmacogenetic data for Circassian population from Jordan, providing a basis for safe drug administration that may be useful in diagnosing and treating diseases in this ethnic group.

Keywords: VIP variants, Circassian, gene, pharmacogene, SNP, ethnicity.

Graphical Abstract

[1]
Shastry, B.S. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J., 2006, 6(1), 16-21.
[http://dx.doi.org/10.1038/sj.tpj.6500338] [PMID: 16302022]
[2]
Mamotte, C.D.S. Genotyping of single nucleotide substitutions. Clin. Biochem. Rev., 2006, 27(1), 63-75.
[PMID: 16886048]
[3]
Schork, N.J.; Fallin, D.; Lanchbury, J.S. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin. Genet., 2000, 58(4), 250-264.
[http://dx.doi.org/10.1034/j.1399-0004.2000.580402.x] [PMID: 11076050]
[4]
Johnson, J.A. Ethnic differences in cardiovascular drug response: Potential contribution of pharmacogenetics. Circulation, 2008, 118(13), 1383-1393.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.704023] [PMID: 18809808]
[5]
Wang, L.; Aikemu, A.; Yibulayin, A.; Du, S.; Geng, T.; Wang, B.; Zhang, Y.; Jin, T.; Yang, J. Genetic polymorphisms of pharmacogenomic VIP variants in the Uygur population from northwestern China. BMC Genet., 2015, 16, 66.
[http://dx.doi.org/10.1186/s12863-015-0232-x] [PMID: 26091847]
[6]
Jin, T.; Shi, X.; Wang, L.; Wang, H.; Feng, T.; Kang, L. Genetic polymorphisms of pharmacogenomic VIP variants in the Mongol of Northwestern China. BMC Genet., 2016, 17(1), 70.
[http://dx.doi.org/10.1186/s12863-016-0379-0] [PMID: 27233804]
[7]
He, Y.; Yang, H.; Geng, T.; Feng, T.; Yuan, D.; Kang, L.; Luo, M.; Jin, T. Genetic polymorphisms of pharmacogenomic VIP variants in the lhoba population of southwest China. Int. J. Clin. Exp. Pathol., 2015, 8(10), 13293-13303.
[PMID: 26722533]
[8]
Kristiansson, K.; Naukkarinen, J.; Peltonen, L. Isolated populations and complex disease gene identification. Genome Biol., 2008, 9(8), 109.
[http://dx.doi.org/10.1186/gb-2008-9-8-109] [PMID: 18771588]
[9]
Dajani, R.; Fathallah, R.; Arafat, A. AbdulQader, M.E.; Hakooz, N.; Al-Motassem, Y.; El-Khateeb, M. Prevalence of MTHFR C677T single nucleotide polymorphism in genetically isolated populations in Jordan. Biochem. Genet., 2013, 51(9-10), 780-788.
[http://dx.doi.org/10.1007/s10528-013-9606-9] [PMID: 23749065]
[10]
Barbujani, G.; Nasidze, I.S.; Whitehead, G.N. Genetic diversity in the Caucasus. Hum. Biol., 1994, 66(4), 639-668.
[PMID: 8088752]
[11]
Bulayeva, K.B. Overview of genetic-epidemiological studies in ethnically and demographically diverse isolates of Dagestan, Northern Caucasus, Russia. Croat. Med. J., 2006, 47(4), 641-648.
[PMID: 16912990]
[12]
Risch, N.; Burchard, E.; Ziv, E.; Tang, H. Categorization of humans in biomedical research: Genes, race and disease. Genome Biol., 2002, 3(7), 300.
[http://dx.doi.org/10.1186/gb-2002-3-7-comment2007]
[13]
Serre, D.; Pääbo, S. Evidence for gradients of human genetic diversity within and among continents. Genome Res., 2004, 14(9), 1679-1685.
[http://dx.doi.org/10.1101/gr.2529604] [PMID: 15342553]
[14]
Dajani, R.; Arafat, A.; Hakooz, N.; Al-Abbadi, Z.; Yousef, A.M.; El Khateeb, M.; Quadan, F. Polymorphisms in Factor II and Factor V thrombophilia genes among Circassians in Jordan. J. Thromb. Thrombolysis, 2013, 35(1), 83-89.
[http://dx.doi.org/10.1007/s11239-012-0772-0] [PMID: 23011539]
[15]
Dajani, R.; Li, J.; Wei, Z.; Glessner, J.T.; Chang, X.; Cardinale, C.J.; Pellegrino, R.; Wang, T.; Hakooz, N.; Khader, Y.; Sheshani, A.; Zandaki, D.; Hakonarson, H. CNV Analysis Associates AKNAD1 with type-2 diabetes in Jordan subpopulations. Sci. Rep., 2015, 5, 13391.
[http://dx.doi.org/10.1038/srep13391] [PMID: 26292654]
[16]
Fathallah, R.M-T.; Dajani, R. Comparison of population based cancer incidence rates among Circassians, Chechans and Arabs in Jordan (1996-2005). Asian Pac. J. Cancer Prev., 2013, 14(10), 6035-6040.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.6035] [PMID: 24289621]
[17]
Dajani, R.; Khader, Y.S.; Fatahallah, R.; El-Khateeb, M.; Shiyab, A.H.; Hakooz, N. Diabetes mellitus in genetically isolated populations in Jordan: Prevalence, awareness, glycemic control, and associated factors. J. Diabetes Complications, 2012, 26(3), 175-180.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.03.009] [PMID: 22502937]
[18]
Al-Eitan, L.N.; Nassar, A.M.; Dajani, R.B.; Almomani, B.A.; Saadeh, N.A. Diabetes mellitus in two genetically distinct populations in Jordan. A Comparison between Arabs and Circassians/Chechens living with diabetes. Saudi Med. J., 2017, 38(2), 163-169.
[http://dx.doi.org/10.15537/smj.2017.2.17910] [PMID: 28133689]
[19]
Dajani, R.; Khader, Y.S.; Hakooz, N.; Fatahalla, R.; Quadan, F. Metabolic syndrome between two ethnic minority groups (Circassians and Chechens) and the original inhabitants of Jordan. Endocrine, 2013, 43(1), 112-119.
[http://dx.doi.org/10.1007/s12020-012-9723-y] [PMID: 22740093]
[20]
Giacomini, K.M.; Brett, C.M.; Altman, R.B.; Benowitz, N.L.; Dolan, M.E.; Flockhart, D.A.; Johnson, J.A.; Hayes, D.F.; Klein, T.; Krauss, R.M.; Kroetz, D.L.; McLeod, H.L.; Nguyen, A.T.; Ratain, M.J.; Relling, M.V.; Reus, V.; Roden, D.M.; Schaefer, C.A.; Shuldiner, A.R.; Skaar, T.; Tantisira, K.; Tyndale, R.F.; Wang, L.; Weinshilboum, R.M.; Weiss, S.T.; Zineh, I. The pharmacogenetics research network: From SNP discovery to clinical drug response. Clin. Pharmacol. Ther., 2007, 81(3), 328-345.
[http://dx.doi.org/10.1038/sj.clpt.6100087] [PMID: 17339863]
[21]
Wolking, S.; Schaeffeler, E.; Lerche, H.; Schwab, M.; Nies, A.T. Impact of genetic polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on drug disposition and potential clinical implications: Update of the literature. Clin. Pharmacokinet., 2015, 54(7), 709-735.
[http://dx.doi.org/10.1007/s40262-015-0267-1] [PMID: 25860377]
[22]
Manna, I.; Gambardella, A.; Labate, A.; Mumoli, L.; Ferlazzo, E.; Pucci, F.; Aguglia, U.; Quattrone, A. Polymorphism of the multidrug resistance 1 gene MDR1/ABCB1 C3435T and response to antiepileptic drug treatment in temporal lobe epilepsy. Seizure, 2015, 24, 124-126.
[http://dx.doi.org/10.1016/j.seizure.2014.09.010] [PMID: 25458099]
[23]
Li, S-X.; Liu, Y-Y.; Wang, Q-B. ABCB1 gene C3435T polymorphism and drug resistance in epilepsy: Evidence based on 8,604 subjects. Med. Sci. Monit., 2015, 21, 861-868.
[http://dx.doi.org/10.12659/MSM.894023] [PMID: 25799371]
[24]
Farfan, M.J.; Salas, C.; Canales, C.; Silva, F.; Villarroel, M.; Kopp, K.; Torres, J.P.; Santolaya, M.E.; Morales, J. Prevalence of TPMT and ITPA gene polymorphisms and effect on mercaptopurine dosage in Chilean children with acute lymphoblastic leukemia. BMC Cancer, 2014, 14, 299.
[http://dx.doi.org/10.1186/1471-2407-14-299] [PMID: 24774509]
[25]
Katara, P.; Kuntal, H. TPMT Polymorphism: When shield becomes weakness. Interdiscip. Sci., 2016, 8(2), 150-155.
[http://dx.doi.org/10.1007/s12539-015-0111-1] [PMID: 26297310]
[26]
Roden, D.M.; Altman, R.B.; Benowitz, N.L.; Flockhart, D.A.; Giacomini, K.M.; Johnson, J.A.; Krauss, R.M.; McLeod, H.L.; Ratain, M.J.; Relling, M.V.; Ring, H.Z.; Shuldiner, A.R.; Weinshilboum, R.M.; Weiss, S.T. Pharmacogenomics: Challenges and opportunities. Ann. Intern. Med., 2006, 145(10), 749-757.
[http://dx.doi.org/10.7326/0003-4819-145-10-200611210-00007] [PMID: 17116919]
[27]
Zand, N.; Tajik, N.; Moghaddam, A.S.; Milanian, I. Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population. Clin. Exp. Pharmacol. Physiol., 2007, 34(1-2), 102-105.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04538.x] [PMID: 17201743]
[28]
Yang, Z.F.; Cui, H.W.; Hasi, T.; Jia, S.Q.; Gong, M.L.; Su, X.L. Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Mongolian population in China. Genet. Mol. Res., 2010, 9(3), 1844-1851.
[http://dx.doi.org/10.4238/vol9-3gmr938] [PMID: 20845310]
[29]
Jorde, L.B.; Wooding, S.P. Genetic variation, classification and ‘race’. Nat. Genet., 2004, 36(11)(Suppl.), S28-S33.
[http://dx.doi.org/10.1038/ng1435] [PMID: 15508000]
[30]
AL-Eitan, L.N.; Tarkhan, A.H. Practical challenges and translational issues in pharmacogenomics and personalized medicine from 2010 onwards. Curr. Pharmacogenomics Person. Med., 2017, 14, 7-17.
[http://dx.doi.org/10.2174/1875692115666161215103842]
[31]
Mitchell, A.A.; Cutler, D.J.; Chakravarti, A. Undetected genotyping errors cause apparent overtransmission of common alleles in the transmission/disequilibrium test. Am. J. Hum. Genet., 2003, 72(3), 598-610.
[http://dx.doi.org/10.1086/368203] [PMID: 12587097]
[32]
Higgins, C.F.; Callaghan, R.; Linton, K.J.; Rosenberg, M.F.; Ford, R.C. Structure of the multidrug resistance P-glycoprotein. Semin. Cancer Biol., 1997, 8(3), 135-142.
[http://dx.doi.org/10.1006/scbi.1997.0067] [PMID: 9441943]
[33]
Brinkmann, U.; Eichelbaum, M. Polymorphisms in the ABC drug transporter gene MDR1. Pharmacogenomics J., 2001, 1(1), 59-64.
[http://dx.doi.org/10.1038/sj.tpj.6500001] [PMID: 11913728]
[34]
Kim, R.B.; Fromm, M.F.; Wandel, C.; Leake, B.; Wood, A.J.; Roden, D.M.; Wilkinson, G.R. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest., 1998, 101(2), 289-294.
[http://dx.doi.org/10.1172/JCI1269] [PMID: 9435299]
[35]
Pauli-Magnus, C.; Kroetz, D.L. Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1). Pharm. Res., 2004, 21(6), 904-913.
[http://dx.doi.org/10.1023/B:PHAM.0000029276.21063.0b] [PMID: 15212152]
[36]
Seo, T.; Ishitsu, T.; Ueda, N.; Nakada, N.; Yurube, K.; Ueda, K.; Nakagawa, K. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics, 2006, 7(4), 551-561.
[http://dx.doi.org/10.2217/14622416.7.4.551] [PMID: 16753003]
[37]
Kravljaca, M.; Perovic, V.; Pravica, V.; Brkovic, V.; Milinkovic, M.; Lausevic, M.; Naumovic, R. The importance of MDR1 gene polymorphisms for tacrolimus dosage. Eur. J. Pharm. Sci., 2016, 83, 109-113.
[http://dx.doi.org/10.1016/j.ejps.2015.12.020] [PMID: 26705892]
[38]
Rafaniello, C.; Sessa, M.; Bernardi, F.F.; Pozzi, M.; Cheli, S.; Cattaneo, D.; Baldelli, S.; Molteni, M.; Bernardini, R.; Rossi, F.; Clementi, E.; Bravaccio, C.; Radice, S.; Capuano, A. The predictive value of ABCB1, ABCG2, CYP3A4/5 and CYP2D6 polymorphisms for risperidone and aripiprazole plasma concentrations and the occurrence of adverse drug reactions. Pharmacogenomics J., 2018, 18(3), 422-430.
[http://dx.doi.org/10.1038/tpj.2017.38] [PMID: 28719598]
[39]
Lakhan, R.; Misra, U.K.; Kalita, J.; Pradhan, S.; Gogtay, N.J.; Singh, M.K.; Mittal, B. No association of ABCB1 polymorphisms with drug-refractory epilepsy in a north Indian population. Epilepsy Behav., 2009, 14(1), 78-82.
[http://dx.doi.org/10.1016/j.yebeh.2008.08.019] [PMID: 18812236]
[40]
Qu, J.; Zhou, B-T.; Yin, J-Y.; Xu, X.J.; Zhao, Y.C.; Lei, G.H.; Tang, Q.; Zhou, H.H.; Liu, Z.Q. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci. Ther., 2012, 18(8), 647-651.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00336.x] [PMID: 22630058]
[41]
Singh, A.B.; Bousman, C.A.; Ng, C.H.; Byron, K.; Berk, M. ABCB1 polymorphism predicts escitalopram dose needed for remission in major depression. Transl. Psychiatry, 2012, 2, e198-e198.
[http://dx.doi.org/10.1038/tp.2012.115] [PMID: 23188198]
[42]
Zhou, Z.; Chen, Q.; Zuo, D.; Wang, H.; Hua, Y.; Cai, Z. ABCB1 (rs1128503) polymorphism and response to chemotherapy in patients with malignant tumors-evidences from a meta-analysis. Int. J. Clin. Exp. Med., 2015, 8(1), 265-272.
[PMID: 25784996]
[43]
Diekstra, M.H.M.; Swen, J.J.; Boven, E.; Castellano, D.; Gelderblom, H.; Mathijssen, R.H.; Rodríguez-Antona, C.; García-Donas, J.; Rini, B.I.; Guchelaar, H.J. CYP3A5 and ABCB1 polymorphisms as predictors for sunitinib outcome in metastatic renal cell carcinoma. Eur. Urol., 2015, 68(4), 621-629.
[http://dx.doi.org/10.1016/j.eururo.2015.04.018] [PMID: 25930089]
[44]
García-González, X.; Cortejoso, L.; García, M.I.; García-Alfonso, P.; Robles, L.; Grávalos, C.; González-Haba, E.; Marta, P.; Sanjurjo, M.; López-Fernández, L.A. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget, 2015, 6(8), 6422-6430.
[http://dx.doi.org/10.18632/oncotarget.3289] [PMID: 25691056]
[45]
Sanderson, J.; Ansari, A.; Marinaki, T.; Duley, J. Thiopurine methyltransferase: Should it be measured before commencing thiopurine drug therapy? Ann. Clin. Biochem., 2004, 41(Pt 4), 294-302.
[http://dx.doi.org/10.1258/0004563041201455] [PMID: 15298741]
[46]
Coulthard, S.; Hogarth, L. The thiopurines: an update. Invest. New Drugs, 2005, 23(6), 523-532.
[http://dx.doi.org/10.1007/s10637-005-4020-8] [PMID: 16267626]
[47]
Wang, L.; Pelleymounter, L.; Weinshilboum, R.; Johnson, J.A.; Hebert, J.M.; Altman, R.B.; Klein, T.E. Very important pharmacogene summary: thiopurine S-methyltransferase. Pharmacogenet. Genomics, 2010, 20(6), 401-405.
[http://dx.doi.org/10.1097/FPC.0b013e3283352860] [PMID: 20154640]
[48]
Garat, A.; Cauffiez, C.; Renault, N.; Lo-Guidice, J.M.; Allorge, D.; Chevalier, D.; Houdret, N.; Chavatte, P.; Loriot, M.A.; Gala, J.L.; Broly, F. Characterisation of novel defective thiopurine S-methyltransferase allelic variants. Biochem. Pharmacol., 2008, 76(3), 404-415.
[http://dx.doi.org/10.1016/j.bcp.2008.05.009] [PMID: 18602085]
[49]
Li, X.; Lian, F-M.; Guo, D.; Fan, L.; Tang, J.; Peng, J.B.; Deng, H.W.; Liu, Z.Q.; Xiao, X.H.; Wang, Y.R.; Qu, K.Y.; Deng, S.; Zhong, Q.; Sha, Y.L.; Zhu, Y.; Bai, Y.J.; Chen, X.Y.; Zhou, Q.; Zhou, H.H.; Tong, X.L.; Zhang, W. The rs1142345 in TPMT affects the therapeutic effect of traditional hypoglycemic herbs in prediabetes. Evid. Based Complement. Alternat. Med., 2013, 2013327629
[http://dx.doi.org/10.1155/2013/327629] [PMID: 23737827]
[50]
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 2012, 92(4), 414-417.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[51]
Hewison, M. Vitamin D and the immune system: new perspectives on an old theme. Endocrinol. Metab. Clin. North Am., 2010, 39(2), 365-379.
[http://dx.doi.org/10.1016/j.ecl.2010.02.010] [PMID: 20511058]
[52]
Poon, A.H.; Gong, L.; Brasch-Andersen, C.; Litonjua, A.A.; Raby, B.A.; Hamid, Q.; Laprise, C.; Weiss, S.T.; Altman, R.B.; Klein, T.E. Very important pharmacogene summary for VDR. Pharmacogenet. Genomics, 2012, 22(10), 758-763.
[http://dx.doi.org/10.1097/FPC.0b013e328354455c] [PMID: 22588316]
[53]
Wang, T-T.; Tavera-Mendoza, L.E.; Laperriere, D.; Libby, E.; MacLeod, N.B.; Nagai, Y.; Bourdeau, V.; Konstorum, A.; Lallemant, B.; Zhang, R.; Mader, S.; White, J.H. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol. Endocrinol., 2005, 19(11), 2685-2695.
[http://dx.doi.org/10.1210/me.2005-0106] [PMID: 16002434]
[54]
Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Venkataramanan, R.; Strom, S.; Thummel, K.; Boguski, M.S.; Schuetz, E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet., 2001, 27(4), 383-391.
[http://dx.doi.org/10.1038/86882] [PMID: 11279519]
[55]
Zhou, S-F.; Di, Y.M.; Chan, E.; Du, Y.M.; Chow, V.D.; Xue, C.C.; Lai, X.; Wang, J.C.; Li, C.G.; Tian, M.; Duan, W. Clinical pharmacogenetics and potential application in personalized medicine. Curr. Drug Metab., 2008, 9(8), 738-784.
[http://dx.doi.org/10.2174/138920008786049302] [PMID: 18855611]
[56]
Valdivielso, J.M.; Fernandez, E. Vitamin D receptor polymorphisms and diseases. Clin. Chim. Acta, 2006, 371(1-2), 1-12.
[http://dx.doi.org/10.1016/j.cca.2006.02.016] [PMID: 16563362]
[57]
Terrazzino, S.; Quaglia, M.; Stratta, P. The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients. Pharmacogenet. Genomics, 2012, 22, 642-645.
[http://dx.doi.org/10.1097/FPC.0b013e3283557c74] [PMID: 22786571]
[58]
Yunus, Z.; Liu, L.; Wang, H.; Zhang, L.; Li, X.; Geng, T.; Kang, L.; Jin, T.; Chen, C. Genetic polymorphisms of pharmacogenomic VIP variants in the Kyrgyz population from northwest China. Gene, 2013, 529(1), 88-93.
[http://dx.doi.org/10.1016/j.gene.2013.07.078] [PMID: 23954225]
[59]
Li, B.; Wang, L.; Lei, L.; Zhang, M.; Niu, F.; Chen, P.; Jin, T. Genetic polymorphisms of pharmacogenomic VIP variants in the Lisu population of southwestern China: A cohort study. Medicine (Baltimore), 2018, 97(38)e12231
[http://dx.doi.org/10.1097/MD.0000000000012231] [PMID: 30235667]
[60]
Jin, T.; Aikemu, A.; Zhang, M.; Geng, T.; Feng, T.; Kang, L.; Luo, M.L. Genetic polymorphisms analysis of pharmacogenomic VIP variants in Miao ethnic group of Southwest China. Med. Sci. Monit., 2015, 21, 3769-3776.
[http://dx.doi.org/10.12659/MSM.895191] [PMID: 26632549]
[61]
Glocke, M.; Lang, F.; Schaeffeler, E.; Lang, T.; Schwab, M.; Lang, U.E. Impact of vitamin D receptor VDR rs2228570 polymorphism in oldest old. Kidney Blood Press. Res., 2013, 37(4-5), 311-322.
[http://dx.doi.org/10.1159/000350159] [PMID: 24060611]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy