Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Culture Media Composition and Reduction Potential Optimization of Mycelia-free Filtrate for the Biosynthesis of Silver Nanoparticles Using the Fungus Tritirachium oryzae W5H

Author(s): Muhamad Al-limoun *, Haitham N. Qaralleh , Khaled M. Khleifat, Mohammed Al-Anber , Amjad Al-Tarawneh , Khalid Al-sharafa , Mohammed H. Kailani , Mohammed A. Zaitoun, Suzan A. Matar and Toqa Al-soub

Volume 16, Issue 5, 2020

Page: [757 - 769] Pages: 13

DOI: 10.2174/1573413715666190725111956

Price: $65

Abstract

Background: A major focus of nanotechnology concerns is the expansion of the optimization of nanomaterials in purity, size and dispersity.

Methods: In the current work, a two-step AgNP synthesis process was optimized at the mycelia-DI water suspension and AgNP formation reaction levels.

Results: Biomass filtrate from the fungal strain Tritirachium oryzae W5H was able to reduce silver nitrate into AgNPs after a 72 h reaction, as indicated by the development of intense brown color and by UV-vis spectra. The biosynthesis ability of AgNPs was markedly better in the presence of a single carbon and nitrogen source in the culture medium compared to multiple sources of carbon and nitrogen. The optimization results of AgNP formation were indifferent between the two steps and were 20 g biomass, 40°C, pH 7.0, 96 h and 1.0 mM AgNO3. The TEM images of the prepared AgNPs illustrated the presence of 7-75 nm, monodispersed and spherical- to ovular-shaped Ag nanoparticles.

Conclusion: The present work highlights the importance of investigating the process parameters by which the reductant mycelia-free filtrate was prepared. In addition, we explored the promising antibacterial action of the prepared AgNPs against bacterial infections.

Keywords: Culture media, reduction potential of mycelia-free filtrate, AgNPs biosynthesis, optimization, Tritirachium oryzae W5H, characterization, antibacterial activity.

Graphical Abstract

[1]
Satalkar, P.; Elger, B.S.; Shaw, D.M. Defining nano, nanotechnology and nanomedicine: why should it matter? Sci. Eng. Ethics, 2016, 22(5), 1255-1276.
[http://dx.doi.org/10.1007/s11948-015-9705-6] [PMID: 26373718]
[2]
Ingole, A.R.; Thakare, S.R.; Khati, N.T.; Wankhade, A.V.; Burghate, D.K. Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Lett., 2010, 7(7), 485-489.
[3]
Calderón-Jiménez, B.; Johnson, M.E.; Montoro Bustos, A.R.; Murphy, K.E.; Winchester, M.R.; Vega Baudrit, J.R. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front. Chem., 2017, 5, 6.
[http://dx.doi.org/10.3389/fchem.2017.00006] [PMID: 28271059]
[4]
Gentile, A.; Ruffino, F.; Grimaldi, M.G. Complex-morphology metal-based nanostructures: Fabrication, characterization, and applications. Nanomaterials (Basel), 2016, 6(6), 110.
[http://dx.doi.org/10.3390/nano6060110] [PMID: 28335236]
[5]
Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C, 2019, 97, 954-965.
[http://dx.doi.org/10.1016/j.msec.2018.12.102] [PMID: 30678983]
[6]
García-Barrasa, J.; López-de-luzuriaga, J.M.; Monge, M. Silver nanoparticles on zinc oxide thin film: An insight in fabrication and characterization. IOP Conf. Ser.: Mater. Sci. Eng, 2011, 64(1), 9-17.
[7]
Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. Int., 2011, 37(2), 517-531.
[http://dx.doi.org/10.1016/j.envint.2010.10.012] [PMID: 21159383]
[8]
Dallas, P.; Sharma, V.K.; Zboril, R. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv. Colloid Interface Sci., 2011, 166(1-2), 119-135.
[http://dx.doi.org/10.1016/j.cis.2011.05.008] [PMID: 21683320]
[9]
Chau, Y.C.; Wang, C.K.; Shen, L.; Lim, C.M.; Chiang, H.P.; Chao, C.C.; Huang, H.J.; Lin, C-T.; Kumara, N.T.R.N.; Voo, N.Y. Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep., 2017, 7(1), 16817.
[http://dx.doi.org/10.1038/s41598-017-17024-7] [PMID: 29196641]
[10]
Hsieh, L.Z.; Chau, Y.F.C.; Lim, C.M.; Lin, M.H.; Huang, H.J.; Lin, C.T.; Syafi’ie, M.I.M.N. Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt. Commun., 2016, 370, 85-90.
[http://dx.doi.org/10.1016/j.optcom.2016.03.009]
[11]
Majeed, S.; Danish, M.; Zahrudin, A.H.B.; Dash, G.K. Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala Int. J. Mod. Sci., 2018, 4(1), 86-92.
[http://dx.doi.org/10.1016/j.kijoms.2017.11.002]
[12]
Wang, H.; Jiang, Y.; Zhang, Y.; Zhang, Z.; Yang, X.; Ali, M.A.; Fox, E.M.; Gobius, K.S.; Man, C. Silver nanoparticles: A novel antibacterial agent for control of Cronobacter sakazakii. J. Dairy Sci., 2018, 101(12), 10775-10791.
[http://dx.doi.org/10.3168/jds.2018-15258] [PMID: 30316605]
[13]
Vijayabharathi, R.; Sathya, A.; Gopalakrishnan, S. Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatal. Agric. Biotechnol., 2018, 14, 166-171.
[http://dx.doi.org/10.1016/j.bcab.2018.03.006]
[14]
Sreekanth, T.V.M.; Nagajyothi, P.C.; Muthuraman, P.; Enkhtaivan, G.; Vattikuti, S.V.P.; Tettey, C.O.; Kim, D.H.; Shim, J.; Yoo, K. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J. Photochem. Photobiol. B, 2018, 188, 6-11.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.08.013] [PMID: 30176393]
[15]
Baharara, J.; Namvar, F.; Mousavi, M.; Ramezani, T.; Mohamad, R. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized using Saliva officinalis on chick chorioalantoic membrane (CAM). Molecules, 2014, 19(9), 13498-13508.
[http://dx.doi.org/10.3390/molecules190913498] [PMID: 25255752]
[16]
Al-Dhabi, N.A.; Ghilan, A.M.; Arasu, M.V.; Duraipandiyan, V. Green biosynthesis of silver nanoparticles produced from marine Streptomyces sp. Al-Dhabi-89 and their potential applications against wound infection and drug resistant clinical pathogens. J. Photochem. Photobiol. B, 2018, 189, 176-184.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.09.012] [PMID: 30390524]
[17]
Rasaee, I.; Ghannadnia, M.; Baghshahi, S. Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Microporous Mesoporous Mater., 2018, 264, 240-247.
[http://dx.doi.org/10.1016/j.micromeso.2018.01.032]
[18]
Dakhil, A.S. Biosynthesis of silver nanoparticle (AgNPs) using Lactobacillus and their effects on oxidative stress biomarkers in rats. J. King Saud Univ., 2017, 29(4), 462-467.
[http://dx.doi.org/10.1016/j.jksus.2017.05.013]
[19]
Jaidev, L.R.; Narasimha, G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf. B Biointerfaces, 2010, 81(2), 430-433.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.033] [PMID: 20708910]
[20]
Padalia, H.; Moteriya, P.; Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem., 2015, 8(5), 732-741.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.015]
[21]
Chau, Y.F.; Yeh, H.H.; Tsai, D.P. Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J. Electromagnet. Wave, 2010, 24, 1005-1014.
[22]
Kalimuthu, K.; Suresh Babu, R.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces, 2008, 65(1), 150-153.
[http://dx.doi.org/10.1016/j.colsurfb.2008.02.018] [PMID: 18406112]
[23]
Basavaraja, S.; Balaji, S.D.; Lagashetty, A.; Rajasab, A.H.; Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull., 2008, 43(5), 1164-1170.
[http://dx.doi.org/10.1016/j.materresbull.2007.06.020]
[24]
Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem, 2002, 3(5), 461-463.
[http://dx.doi.org/10.1002/1439-7633(20020503)3:5<461::AIDCBIC461>3.0.CO;2-X] [PMID: 12007181]
[25]
Kim, H.S.; Seo, Y.S.; Kim, K.; Han, J.W.; Park, Y.; Cho, S. Concentration effect of reducing agents on green synthesis of gold nanoparticles: size, morphology, and growth mechanism. Nanoscale Res. Lett., 2016, 11(1), 230.
[http://dx.doi.org/10.1186/s11671-016-1393-x] [PMID: 27119158]
[26]
Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomedicine, 2013, 8(1), 4277-4290.
[PMID: 24235826]
[27]
Khleifat, K.M.; Abboud, M.M.; Al-Mustafa, A.H.; Al-Sharafa, K.Y. Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of β-galactosidase in Enterobacter aerogenes. Curr. Microbiol., 2006, 53(4), 277-281.
[http://dx.doi.org/10.1007/s00284-005-0466-3] [PMID: 16972134]
[28]
Khleifat, K.M.; Sharaf, E.F.; Al-limoun, M.O. Biodegradation of 2-chlorobenzoic acid by Enterobacter cloacae: Growth kinetics and effect of growth conditions. Bioremediat. J., 2015, 19(3), 207-217.
[http://dx.doi.org/10.1080/10889868.2015.1029113]
[29]
Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng., 2009, 32(1), 79-84.
[http://dx.doi.org/10.1007/s00449-008-0224-6] [PMID: 18438688]
[30]
Velgosová, O.; Mražíková, A.; Marcinčáková, R. Influence of pH on green synthesis of Ag nanoparticles. Mater. Lett., 2016, 180, 336-339.
[http://dx.doi.org/10.1016/j.matlet.2016.04.045]
[31]
Singh, M.; Sinha, I.; Mandal, R.K. Role of pH in the green synthesis of silver nanoparticles. Mater. Lett., 2009, 63(3-4), 425-427.
[http://dx.doi.org/10.1016/j.matlet.2008.10.067]
[32]
Puchalski, M.; Dąbrowski, P.; Olejniczak, W.; Krukowski, P.; Kowalczyk, P.; Polański, K. The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis and scanning tunnelling microscopy. Mater. Sci., 2007, 25(2), 473-478.
[33]
Balachandran, Y.L.; Peranantham, P.; Selvakumar, R.; Gutleb, A.C.; Girija, S. Size-controlled green synthesis of silver nanoparticles using dual functional plant leaf extract at room temperature. Int. J. Green Nanotechnol., 2012, 4(3), 310-325.
[http://dx.doi.org/10.1080/19430892.2012.706183]
[34]
Gu, C.; Luo, G.Q.; Zhang, R.Z.; Zhang, J.; Li, Y.; Li, M.J.; Shen, Q.; Zhang, L.M. In situ synthesis of size-controlled silver/poly (methyl methacrylate) nanocomposite. Key Eng. Mater., 2017, 727, 514-518.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.727.514]
[35]
Wuithschick, M.; Paul, B.; Bienert, R.; Sarfraz, A.; Vainio, U.; Sztucki, M.; Kraehnert, R.; Strasser, P.; Rademann, K.; Emmerling, F.; Polte, J. Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem. Mater., 2013, 25(23), 4679-4689.
[http://dx.doi.org/10.1021/cm401851g]
[36]
Lara, H.H.; Garza-Treviño, E.N.; Ixtepan-Turrent, L.; Singh, D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology, 2011, 9, 30.
[http://dx.doi.org/10.1186/1477-3155-9-30] [PMID: 21812950]
[37]
Zgurskaya, H.I.; Löpez, C.A.; Gnanakaran, S. Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis., 2015, 1(11), 512-522.
[http://dx.doi.org/10.1021/acsinfecdis.5b00097] [PMID: 26925460]
[38]
van den Willems, W. Roadmap report on nanoparticles. 1st ed.; W&W Espana sl: Barcelona; , 2005.
[39]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[40]
Braydich-Stolle, L.; Hussain, S.; Schlager, J.J.; Hofmann, M.C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci., 2005, 88(2), 412-419.
[http://dx.doi.org/10.1093/toxsci/kfi256] [PMID: 16014736]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy