Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

A Comparative Adsorption Study on Low-cost Synthetic, Nano and Doped ZnO for the Removal of Copper Surfactants Urea Complexes: Equilibrium, Kinetics, and Thermodynamics

Author(s): Priyanka Kumawat, Rashmi Sharma and Arun K. Sharma*

Volume 10, Issue 6, 2020

Page: [790 - 805] Pages: 16

DOI: 10.2174/2210681209666190723120309

Price: $65

Abstract

Background: The effective removal of heavy metals from aqueous wastes is among the most important issues for many industrialized countries. Present paper reports about the synthesis of copper neem urea complex (CNU) and its characterization using elemental and spectroscopic techniques such as IR, NMR, and ESR.

Methods: The NPs of ZnO and doped with SiO2 which was extracted from industrial ash’s) was synthesized by precipitation method and characterized through UV, SEM-EDX and XRD techniques. Three low cost adsorbents such as synthetic ZnO, nano ZnO and doped ZnO with SiO2 were chosen for the adsorption of copper surfactant complex of urea from non-aqueous solutions i.e. petroleum ether. Effect of various parameters like contact time, pH, adsorbent dosage, temperature and initial metal concentration on the removal through degradation and adsorption of CNU were investigated and optimized.

Results: Isothermal studies indicated that the adsorption of CNU followed Langmuir adsorption isotherm. Kinetic studies indicated that removal of the CNU by the three adsorbents followed second order kinetics. With a maximum adsorption capacity of 7.58 mg/g using all three adsorbents showed an effective and efficient removal 95.8% of CNU from non-aqueous solutions by using ZnO doped with SiO2 compare to synthetic ZnO and nano ZnO. This is the first report of removal of the CNU complex based on the three adsorbents.

Conclusion: The potential of application for the treatment of solutions containing these complexes in multi-metal solutions is indicated.

Keywords: Zinc oxide, urea, SiO2, copper surfactants, IR, NMR, ESR, pseudo second order kinetics, langmuir isotherms, temkin isotherm, Freundlich isotherm.

Graphical Abstract

[1]
Sharma, A.K.; Sharma, R.; Gangwal, A. Antifungal activities and characterization of some new environmentally safe Cu (II) surfactants substituted 2-amino-6-methyl benzothiazole. Open Phar. Sci. J., 2018, 5, 3-12.
[http://dx.doi.org/10.2174/187484490180501]
[2]
Kumawat, P.; Sharma, R.; Sharma A.K. Spectral, thermo gravimetric, antimicrobial analysis and L-H kinetic expression for the photocatalytic degradation of copper neem urea complex by synthetic, nano and doped ZnO in non-aqueous media Int. J. Environ. An. Ch., 2020, 100(11), 1259-1286.
[http://dx.doi.org/10.1080/03067319.2019.1651302]
[3]
Sar, P.; Ghosh, A.; Malik, S.; Ray, D.; Das, B.; Saha, B. Selective heteroaromatic nitrogen base promoted chromium (VI) oxidation of isomeric pentanols in aqueous micellar media at room temperature. J. Ind. Eng. Chem., 2016, 42, 53-62.
[http://dx.doi.org/10.1016/j.jiec.2016.07.028]
[4]
Lakshmi, M.D.; Rajput, G.; Pandya, N.; Varade, D. Enhanced foamability and foam stability of polyoxyethylenecholesteryl ether in occurrence of ionic surfactants. Colloids Surf. A Physicochem. Eng. Asp., 2018, 551, 81-86.
[http://dx.doi.org/10.1016/j.colsurfa.2018.04.069]
[5]
Tank, P.; Sharma, R.; Sharma, A.K. Micellar features and various interactions of copper soap complexes derived from edible mustard oil in benzene at 303.15 K. Curr. Phy. Chem., 2018, 8(1), 46-57.
[http://dx.doi.org/10.2174/1877946808666180102152443]
[6]
Khan, S.; Sharma, R.; Sharma, A.K. Acoustic studies and other acoustic parameters of Cu (II) soap derived from non-edible neem oil (Azadirectaindica), in non-aqueous media at 298.15. Acta Acus. Unit. Acus.,, 2018, 104, 277-283.
[http://dx.doi.org/10.3813/AAA.919170.]
[7]
Mehrotra, K.N.; Varma, R.P. Studies on surface tension of the system: Barium soap-water and propanol-1. J. Am. Chem. Soc., 1969, 46(3), 152-154.
[http://dx.doi.org/10.1007/BF02635721]
[8]
Mehrotra, K.N.; Chauhan, M.; Shukla, R.K. Surfactants & detergents: Influence of alkanols on the micellar behavior of samarium soaps. J. Am. Oil Chem. Soc., 1990, 67(7), 446-450.
[http://dx.doi.org/10.1007/BF02638959]
[9]
Mehrotra, K.N.; Jain, M. Viscometric and spectrophotometric studies of chromium soaps in a benzene—dimethylformamide mixture. Colloids Surf. A Phys. Chem. Eng. Asp., 1994, 85, 75-80.
[http://dx.doi.org/10.1016/0927-7757(93)02728-W]
[10]
Mehrotra, K.N.; Varma, R.P. Studies on the physical properties of the system: Barium caproate*-water and propanol-1. J. Am. Oil Chem. Soc., 1969, 46, 568-592.
[http://dx.doi.org/10.1007/BF02544973]
[11]
Mehrotra, K.N.; Tonton, K.; Rawat, M.K. Conductivity, viscosity and spectral studies on manganese caprylate in alkanols Colloids Surf., 1991, 57(1), 125-138.
[http://dx.doi.org/10.1016/0166-6622(91)80185-Q]
[12]
Mehrotra, K.N.; Mehta, V.P.; Nagar, T.N. Determination of critical micelle concentration of copper soaps in non-aqueous solvents J. Prakt. Chem., 1970, 312, 545-553.
[http://dx.doi.org/10.1002/PRAC.19703120402]
[13]
Millard, E.B. Surface tension of alkaline soap solutions. Ind. Eng. Chem., 1923, 15(8), 810-811.
[http://dx.doi.org/DOI:10.1021/IE50164A016]
[14]
Mathur, N.; Jain, N.; Sharma, A.K. Synthesis, characterization and biological analysis of some novel complexes of phenyl thiourea derivatives with copper. Open Chem. J., 2018, 5, 182-195.
[http://dx.doi.org/10.2174/1874842201805010182]
[15]
Mehta, V.P.; Hasan, M.; Heda, L.C. Surface tension behavior and micellization of Cadmium (II) soap-benzene and methanol at 40°C. J. Macromol. Sci. A,, 1983, 19(2), 171-179.
[http://dx.doi.org/10.1080/00222338308069432]
[16]
Sharma, A.K.; Sharma, R.; Gangwal, A. Surface tension studies of ternary system: Cu (II) Surfactants-2-amino-6-methyl Benzothiazole complex plus methanol plus benzene at 311 K. Curr. Phys. Chem., 2018, 8(2), 151-161.
[http://dx.doi.org/:10.2174/1877946808666180914164134]
[17]
Mondal, M.H.; Malik, S.; De, S.; Bhattacharyya, S.S.; Saha, B. Employment and resurrection of surfactants in bipyridine promoted oxidation of butanal using bivalent copper at NTP. Res. Chem. Intermed., 2017, 43, 1651-1670.
[http://dx.doi.org/10.1007/S11164-016-2721-6]
[18]
Mathur, N.; Jain, N.; Sharma, A.K. Biocidal activities of substituted benzothiazole of copper surfactants over Candida albicans & Trichoderma harzianumon Muller Hinton Agar Open Phar. Sci. J.,, 2018, 5, 24-35.
[http://dx.doi.org/10.2174/1874844901805010024]
[19]
Sharma, A.K.; Saxena, M.; Sharma, R. Ultrasonic studies of Cu (II) Soaps derived from Groundnut and Sesame oils. Tenside. Surf. Det.,, 2018, 55(2), 127-134.
[http://dx.doi.org/10.3139/113.110544]
[20]
Sharma, A.K.; Saxena, M.; Sharma, R. Ultrasonic studies of copper soaps urea complexes derived from mustard and soyabean oils J. Phys. Sci.,, 2018, 29(3), 67-82.
[http://dx.doi.org/10.21315/JPS2018.29.3.6]
[21]
Joram, A.; Sharma, R.; Sharma, A.K. Thermal degradation of complexes derived from Cu (II) groundnut soap (Arachishypogaea) and Cu (II) sesame soap (Sesamumindicum). Z. Phys. Chem., 2018, 232(4), 459-470.
[http://dx.doi.org/10.1515/ZPCH-2017-1073]
[22]
Varade, D.; Haraguchi, K. Clay-supported novel bimetallic core–shell Co-Pt and Ni-Pt nanocrystals with high catalytic activities Phys. Chem. Chem. Phys., 2014, 16(47), 25770-25774.
[http://dx.doi.org/DX.DOI.ORG/10.1039/C9CP00700H]
[23]
Sharma, S.; Sharma, R.; Sharma, A.K. Photo catalytic and kinetic study of ZnO catalyzed degradation of Copper stearate surfactant Curr. Environ. Eng., 2018, 5, 221-229.
[http://dx.doi.org/DOI:10.2174/2212717805666180801143324]
[24]
Agarwal, S.; Rani, A. Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: Equilibrium, kinetics and thermodynamics. J. Environ. Chem. Eng., 2017, 5, 526-538.
[http://dx.doi.org/10.1016/J.JECE.2016.11.035]
[25]
Subramonian, W.; Wu, T.Y. Effect of enhancers and inhibitors on photocatalytic sunlight treatment of methylene blue Water Air Soil Pollut., 2014, 225, 1-15.
[http://dx.doi.org/10.1007/S11270-014-1922-0]
[26]
Agarwal, S.; Rajoria, P.; Rani, A. Adsorption of Tannic Acid from aqueous solution ontoChitosan/NaOH/fly ash composites: Equilibrium, kinetics, thermodynamics and modeling. J. Environ. Chem. Eng., 2018, 6, 1486-1499.
[http://dx.doi.org/10.1016/J.JECE.2017.11.075]
[27]
Varade, D. Creation of gold nanoparticles by UV photoactivation of polyoxyethylenecholesteryl ether J. NANOFLUIDS, 2017, 5, 1-4.
[http://dx.doi.org/10.1166/JON.2017.1378]
[28]
Abdel-Halim, S.H.; Shehata, A.M.A.; El Shahat, M.F. Removal of lead ions from industrial waste water by different types of natural materials. Water Res., 2003, 37, 1678-1683.
[http://dx.doi.org/10.1016/S0043-1354(02)00554-7]
[29]
Han, R.; Zhang, J.; Zou, W.; Shi, J.; Liu, H. Equilibrium biosorption isotherm for lead ion on chaff J. Hazard. Mater., 2005, 125, 266-271.
[http://dx.doi.org/10.1016/J.JHAZMAT.2005.05.031]
[30]
Zulkali, M.M.D.; Ahmad, A.L.; Norulakmal, N.H. Oryza sativa L. husk as heavymetal adsorbent: Optimization with lead as model solution. Bioresour. Technol., 2006, 97, 21-25.
[http://dx.doi.org/10.1016/J.BIORTECH.2005.02.007]
[31]
Shukla, S.R.; Pai, R.S. Comparison of Pb(II) uptake by coir and dye loaded coirfibres in a fixed bed column J. Hazard. Mater., 2005, 125, 147-153.
[http://dx.doi.org/10.1016/J.JHAZMAT.2005.05.018]
[32]
Noeline, B.F.; Manohar, D.M.; Anirudhan, T.S. Kinetic and equilibrium modeling of lead (II) sorption from water and wastewater by polymerized banana stem in a batch reactor Sep. Purif. Technol.,, 2005, 45, 131-140.
[http://dx.doi.org/DX.DOI.ORG/10.1016%2FJ.SEPPUR.2005.03.004]
[33]
Bulut, Y.; Baysal, Z. Removal of Pb (II) from wastewater using wheat bran. J. Environ. Manage., 2006, 78, 107-113.
[http://dx.doi.org/10.1016/J.JENVMAN.2005.03.010]
[34]
Gonzalez, R.G.; Córdova, F.J.C.; Leon, A.M.G.; Regalado, E.S.; Guzman, N.E.D.; Rabago, J.J.S. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN J. Taiwan Inst. Chem. Eng., 2016, 68, 201-210.
[35]
Ho, Y.S.; Huang, C.T.; Huang, H.W. Equilibrium sorption isotherm for metal ions on tree fern Process Biochem., 2002, 37, 1421-1430.
[http://dx.doi.org/10.1016/J.JTICE.2016.08.038]
[36]
Ucun, H.; Bayhan, Y.K.; Kaya, K.; Cakici, A.; Algur, O.F. Biosorption of lead (II) from aqueous solution by cone biomass of Pinus sylvestris. Desalination,, 2003, 154, 233-238.
[http://dx.doi.org/10.1016/S0011-9164(03)80038-3]
[37]
Saeed, A.; Iqbal, M.; Akhtar, M.W. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J. Hazard. Mater., 2005, 117, 65-73.
[http://dx.doi.org/10.1016/J.JHAZMAT.2004.09.008]
[38]
El-Ashtoukhy, E.S.Z.; Amin, N.K.; Abdelwahab, O. Removal of lead(II) and copper(II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination, 2008, 223, 162-173.
[http://dx.doi.org/10.1016/J.DESAL.2007.01.206]
[39]
Randall, J.M.; Hautala, E.; Donald, G.M. Binding of heavy metalions by formaldehyde-polymerized peanut skins J. Appl. Polymer Sci.,, 1978, 22, 379-387.
[http://dx.doi.org/10.1002/APP.1978.070220207]
[40]
Kumar, S.; Venkateswarlu, P.; Rao, V.R.; Rao, G.N. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett., 2013, 3(30), 1-6.
[http://dx.doi.org/10.1186/2228-5326-3-30]
[41]
Sharma, A.K.; Saxena, M.; Sharma, R. Fungicidal activities and characterization of novel biodegradable Cu (II) surfactants derived from lauric acid Open Chem. J., 2018, 5, 89-105.
[http://dx.doi.org/DOI:10.2174/1874842201805010089]
[42]
Soni, H.; Kumar, N.K.; Kumar, R.N. Photocatalytic decoloration of three commercial dyes in aqueous phase and industrial effluents using TiO2 nanoparticles Desalin. Water Treat, 2016, 57(14), 6355-6364.
[http://dx.doi.org/10.1080/19443994.2015.1005147]
[43]
Jain, R.; Sikarwar, S.; Goyal, S. Kinetics and isotherm studies on the adsorption of an antiparkinsonism drug Entacapone from aqueous solutions using unsaturated polyester resin (UPR). Desalin. Water Treat, 2015, 54, 3169-3176.
[http://dx.doi.org/10.1080/19443994.2014.910140]
[44]
Zhang, A.; Zhou, J.; Das, P.; Xiao, Y. Revisiting metal electrodeposition in porous anodic alumina: Toward tailored preparation of metal nanotube arrays J. Electro. Chem, 2018, 165(3), 129-134.
[http://dx.doi.org/DOI:10.1149/2.0651803JES]
[45]
Mallick, P. Effect of solvent on microstructure and band gap of ZnO nano particles Ind. J. Pure Appl. Phys., 2017, 55, 187-192.
[46]
Joram, A.; Sharma, R.; Sharma, A.K. Spectroscopic characterization and Thermo-Gravimetric Analysis of bioactive copper 2-amino 6- methyl benzothiazole complexes derived from various oils Curr. Phys. Chem., 2019, 9, 58-76.
[http://dx.doi.org/DOI:10.2174/1877946809666190320144208]
[47]
Langmuir, I. The constitution and fundamental properties of solids and liquids, Part 1. Solids J. Am. Chem. Soc., 1916, 38, 2221-2295.
[http://dx.doi.org/10.1016/S0016-0032(17)90938-X]
[48]
Freundlich, H.M.F. Over the adsorption in solution J. Phys. Chem., 1906, 57, 385-471.
[http://dx.doi.org/DOI:10.4236/WSN.2009.140405,710]
[49]
Tempkin, M.I. Adsorption equilibrium and process kinetics on in homogeneous surfaces with interaction between adsorbed molecules. Zh. Fiz. Khim.,, 1941, 15, 296-332.
[http://dx.doi.org/10.1016/J.ARABJC.2011.03.002]
[50]
Huang, J.H.; Liu, Y.F.; Wang, X.G. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay. J. Hazard. Mater., 2008, 160, 382-387.
[http://dx.doi.org/10.1016/J.JHAZMAT.2008.03.008]
[51]
Fernada, S.C.D.A.; Eunice, F.S.V.; Antini, R.C. Interaction of indigo carmine dye with chitosan evaluated by adsorption and thermochemical data J. Colloid Interface Sci., 2002, 253, 243-246.
[http://dx.doi.org/10.1006/JCIS.2002.8537]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy