Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects

Author(s): J. Pérez-Manríquez , N. Escalona and J.R. Pérez-Correa *

Volume 17, Issue 1, 2020

Page: [91 - 112] Pages: 22

DOI: 10.2174/1570193X16666190723112623

Price: $65

Abstract

Beer, one of the most commonly consumed alcoholic beverages, is rich in polyphenols and is the main dietary source of xanthohumol and related prenylflavonoids. However, to avoid haze formation caused by the interaction between polyphenols and proteins, most phenolic compounds are removed from beer and lost in the brewery waste stream via polyvinylpolypyrrolidone (PVPP) adsorption. This waste stream contains several polyphenols with high antioxidant capacity and pharmacological effects; that waste could be used as a rich, low-cost source of these compounds, though little is known about its composition and potential attributes. This work aims to review the polyphenols present in this brewery waste stream, as well as the health benefits associated with their consumption.

Keywords: Beer, hop (Humulus lupulus L.), hop bitter acids, malt, prenylated chalcones, PVPP brewery waste stream, xanthohumol.

Graphical Abstract

[1]
Wunderlich, S.; Back, W. Overview of manufacturing beer: Ingredients, processes, and quality criteria. Beer in Health and Disease Prevention; Preedy, V.R.; Ed.; Freising-Weihenstephan: Elsevier Inc. , 2009; p. pp. 3-16.
[http://dx.doi.org/10.1016/B978-0-12-373891-2.00001-8]
[2]
Duarte, I.; Barros, A.; Belton, P.S.; Righelato, R.; Spraul, M.; Humpfer, E.; Gil, A.M. High-resolution nuclear magnetic resonance spectroscopy and multivariate analysis for the characterization of beer. J. Agric. Food Chem., 2002, 50(9), 2475-2481.
[http://dx.doi.org/10.1021/jf011345j] [PMID: 11958608]
[3]
Barbosa-Pereira, L.; Bilbao, A.; Vilches, P.; Angulo, I.; Lluis, J.; Fité, B.; Paseiro-Losada, P.; Cruz, J.M. Brewery waste as a potential source of phenolic compounds: Optimisation of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chem., 2014, 145, 191-197.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.033] [PMID: 24128467]
[4]
Sławińska-Brych, A.; Zdzisińska, B.; Dmoszyńska-Graniczka, M.; Jeleniewicz, W.; Kurzepa, J.; Gagoś, M.; Stepulak, A. Xanthohumol inhibits the Extracellular signal Regulated Kinase (ERK) signalling pathway and suppresses cell growth of lung adenocarcinoma cells. Toxicology, 2016, 357-358, 65-73.
[http://dx.doi.org/10.1016/j.tox.2016.06.008] [PMID: 27317025]
[5]
Chiva-Blanch, G.; Arranz, S.; Lamuela-Raventos, R.M.; Estruch, R. Effects of wine, alcohol and polyphenols on cardiovascular disease risk factors: Evidences from human studies. Alcohol Alcohol., 2013, 48(3), 270-277.
[http://dx.doi.org/10.1093/alcalc/agt007] [PMID: 23408240]
[6]
Kanno, H.; Kawakami, Z.; Tabuchi, M.; Mizoguchi, K.; Ikarashi, Y.; Kase, Y. Protective effects of glycycoumarin and procyanidin B1, active components of traditional Japanese medicine yokukansan, on amyloid β oligomer-induced neuronal death. J. Ethnopharmacol., 2015, 159, 122-128.
[http://dx.doi.org/10.1016/j.jep.2014.10.058] [PMID: 25446602]
[7]
Yang, H.; Xiao, L.; Yuan, Y.; Luo, X.; Jiang, M.; Ni, J.; Wang, N. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem. Pharmacol., 2014, 92(4), 599-606.
[http://dx.doi.org/10.1016/j.bcp.2014.10.001] [PMID: 25450671]
[8]
Suganuma, M.; Takahashi, A.; Watanabe, T.; Iida, K.; Matsuzaki, T.; Yoshikawa, H.Y.; Fujiki, H. Biophysical approach to mechanisms of cancer prevention and treatment with green tea catechins. Molecules, 2016, 21(11), 1566.
[http://dx.doi.org/10.3390/molecules21111566] [PMID: 27869750]
[9]
Laborde, B.; Moine-Ledoux, V.; Richard, T.; Saucier, C.; Dubourdieu, D.; Monti, J-P.; Doner, L.W.; Becard, G.; Irwin, P.L. Binding of flavonoids by polyvinylpolypyrrolidone. J. Agric. Food Chem., 1993, 41, 753-757.
[http://dx.doi.org/10.1021/jf00029a014]
[10]
Doner, L.W.; Becard, G.; Irwin, P.L. Binding of flavonoids by polyvinylpolypyrrolidone. J. Agric. Food Chem., 1993, 41, 753-757.
[http://dx.doi.org/10.1021/jf00029a014]
[11]
Gerhäuser, C.; Alt, P.; Klimo, K.; Knauft, J.; Frank, N.; Becker, H. Isolation and potential cancer chemopreventive activities of phenolic compounds of beer. Phytochem. Rev., 2002, 1, 369-377.
[http://dx.doi.org/10.1023/A:1026082325529]
[12]
Barbosa-Pereira, L.; Angulo, I.; Paseiro-Losada, P.; Cruz, J.M. Phenolic profile and antioxidant properties of a crude extract obtained from a brewery waste stream. Food Res. Int., 2013, 51, 663-669.
[http://dx.doi.org/10.1016/j.foodres.2013.01.042]
[13]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[14]
Rentzsch, M.; Wilkens, A.; Winterhalter, P. Wine chemistry and biochemistry. Wine Chemistry and Biochemistry; Moreno-Arribas, M.V.; Polo, C., Eds.; Springer Science & Business: New York, USA 2009, pp. 509-527.
[http://dx.doi.org/10.1007/978-0-387-74118-5_23]
[15]
Havsteen, B.H. The biochemistry & medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[16]
Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int., 2011, 44, 1115-1126.
[http://dx.doi.org/10.1016/j.foodres.2011.03.050]
[17]
Frego, J.A.; Meynell, R.; Lai, A.K.H.; Wong, M.C.Y.; Martin, C.R.; Wiseman, H.; Preedy, V.R. The antioxidant capacity of beer: Relationships between assays of antioxidant capacity, color and other alcoholic and non-alcoholic beverages. Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Elsevier Inc: London, UK,. 2009.
[18]
Floridi, S.; Montanari, L.; Marconi, O.; Fantozzi, P. Determination of free phenolic acids in wort and beer by coulometric array detection. J. Agric. Food Chem., 2003, 51(6), 1548-1554.
[http://dx.doi.org/10.1021/jf0260040] [PMID: 12617582]
[19]
Dvořáková, M.; Hulín, P.; Karabín, M.; Dostálek, P. Determination of polyphenols in beer by an effective method based on solid-phase extraction and high performance liquid chromatography with diode-array detection. Czech J. Food Sci., 2007, 25, 182-188.
[http://dx.doi.org/10.17221/690-CJFS]
[20]
Quifer-Rada, P.; Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R. A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS). Food Chem., 2015, 169, 336-343.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.154] [PMID: 25236235]
[21]
Munekata, P.E.S.; Franco, D.; Trindade, M.A.; Lorenzo, J.M. Characterization of phenolic composition in chestnut leaves and beer residue by LC-DAD-ESI-MS. Lebensm. Wiss. Technol., 2016, 68, 52-58.
[http://dx.doi.org/10.1016/j.lwt.2015.11.017]
[22]
Gerhäuser, C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer, 2005, 41(13), 1941-1954.
[http://dx.doi.org/10.1016/j.ejca.2005.04.012] [PMID: 15953717]
[23]
De Keukeleire, D. Fundamentals of beer and hop chemistry. Quim. Nova, 2000, 23(1), 108-112.
[24]
Taniguchi, Y.; Matsukura, Y.; Taniguchi, H.; Koizumi, H.; Katayama, M. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components. Biosci. Biotechnol. Biochem., 2015, 79(10), 1684-1694.
[http://dx.doi.org/10.1080/09168451.2015.1042832] [PMID: 25996959]
[25]
Magalhães, P.J.; Vieira, J.S.; Gonçalves, L.M.; Pacheco, J.G.; Guido, L.F.; Barros, A.A. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: Characterization by High-Performance Liquid Chromatography-diode array detection-electrospray tandem mass spectrometry. J. Chromatogr. A, 2010, 1217(19), 3258-3268.
[http://dx.doi.org/10.1016/j.chroma.2009.10.068] [PMID: 19913228]
[26]
Madigan, D.; McMurrough, I.; Smyth, M.R. Determination of proanthocyanidins and catechins in beer and barley by high-performance liquid chromatography with dual-electrode electrochemical detection. Analyst (Lond.), 1994, 119(5), 863-868.
[http://dx.doi.org/10.1039/an9941900863] [PMID: 8067536]
[27]
McMurrough, I.; Madigan, D.; Smyth, M.R. Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley. J. Agric. Food Chem., 1996, 44, 1731-1735.
[http://dx.doi.org/10.1021/jf960139m]
[28]
McMurrough, I.; Madigan, D.; Smyth, M.R. Adsorption by polyvinylpolypyrrolidone of catechins and proanthocyanidins from beer. J. Agric. Food Chem., 1995, 43, 2687-2691.
[http://dx.doi.org/10.1021/jf00058a025]
[29]
McMurrough, I.; Baert, T. Identification of proanthocyanidins in beer and their direct measurement with a dual electrode electrochemical detector. J. Inst. Brew., 1994, 100, 409-416.
[http://dx.doi.org/10.1002/j.2050-0416.1994.tb00839.x]
[30]
Żołnierczyk, A.K.; Mączka, W.K.; Grabarczyk, M.; Wińska, K.; Woźniak, E.; Anioł, M. Isoxanthohumol--biologically active hop flavonoid. Fitoterapia, 2015, 103, 71-82.
[http://dx.doi.org/10.1016/j.fitote.2015.03.007] [PMID: 25771121]
[31]
Possemiers, S.; Bolca, S.; Grootaert, C.; Heyerick, A.; Decroos, K.; Dhooge, W.; De Keukeleire, D.; Rabot, S.; Verstraete, W.; Van de Wiele, T. The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J. Nutr., 2006, 136(7), 1862-1867.
[http://dx.doi.org/10.1093/jn/136.7.1862] [PMID: 16772450]
[32]
Achilli, G.; Piero Cellerino, G.; Gamache, P.H.; Vico Melzi d’Eril, G. Identification and determination of phenolic constituents in natural beverages and plant extracts by means of a coulometric electrode array system. J. Chromatogr. A, 1993, 632, 111-117.
[http://dx.doi.org/10.1016/0021-9673(93)80033-5]
[33]
Jandera, P.; Skeifíková, V.; Rehová, L.; Hájek, T.; Baldriánová, L.; Skopová, G.; Kellner, V.; Horna, A. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a coularray detector. J. Sep. Sci., 2005, 28(9-10), 1005-1022.
[http://dx.doi.org/10.1002/jssc.200500003] [PMID: 16013828]
[34]
Chiva-Blanch, G.; Urpi-Sarda, M.; Rotchés-Ribalta, M.; Zamora-Ros, R.; Llorach, R.; Lamuela-Raventós, R.M.; Estruch, R.; Andrés-Lacueva, C. Determination of resveratrol and piceid in beer matrices by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2011, 1218(5), 698-705.
[http://dx.doi.org/10.1016/j.chroma.2010.12.012] [PMID: 21196008]
[35]
Schmalreck, A.F.; Teuber, M.; Reininger, W.; Hartl, A. Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Can. J. Microbiol., 1975, 21(2), 205-212.
[http://dx.doi.org/10.1139/m75-029] [PMID: 803401]
[36]
Steenackers, B.; De Cooman, L.; De Vos, D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chem., 2015, 172, 742-756.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.139] [PMID: 25442616]
[37]
Shimura, M.; Hasumi, A.; Minato, T.; Hosono, M.; Miura, Y.; Mizutani, S.; Kondo, K.; Oikawa, S.; Yoshida, A. Isohumulones modulate blood lipid status through the activation of PPAR alpha. Biochim. Biophys. Acta, 2005, 1736(1), 51-60.
[PMID: 16099209]
[38]
Van Cleemput, M.; Cattoor, K.; De Bosscher, K.; Haegeman, G.; De Keukeleire, D.; Heyerick, A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod., 2009, 72(6), 1220-1230.
[http://dx.doi.org/10.1021/np800740m] [PMID: 19476340]
[39]
Bland, J.S.; Minich, D.; Lerman, R.; Darland, G.; Lamb, J.; Tripp, M.; Grayson, N. Isohumulones from hops (Humulus lupulus) and their potential role in medical nutrition therapy. PharmaNutrition, 2015, 3, 46-52.
[http://dx.doi.org/10.1016/j.phanu.2015.03.001]
[40]
Cattoor, K.; Bracke, M.; Deforce, D.; De Keukeleire, D.; Heyerick, A. Transport of hop bitter acids across intestinal Caco-2 cell monolayers. J. Agric. Food Chem., 2010, 58(7), 4132-4140.
[http://dx.doi.org/10.1021/jf904079h] [PMID: 20329731]
[41]
Tagashira, M.; Watanabe, M.; Uemitsu, N. Antioxidative activity of hop bitter acids and their analogues. Biosci. Biotechnol. Biochem., 1995, 59(4), 740-742.
[http://dx.doi.org/10.1271/bbb.59.740] [PMID: 7772843]
[42]
Gorjanović, S.; Pastor, F.T.; Vasić, R.; Novaković, M.; Simonović, M.; Milić, S.; Sužnjević, D. Electrochemical versus spectrophotometric assessment of antioxidant activity of hop (Humulus lupulus L.) Products and individual compounds. J. Agric. Food Chem., 2013, 61(38), 9089-9096.
[http://dx.doi.org/10.1021/jf401718z] [PMID: 23971792]
[43]
Aron, P.M.; Ting, P.L.; Shellhammer, T.H. HPLC-ESI-MS identification of hop-derived polyphenols that contribute antioxidant capacity and flavor potential to beer. ACS Symp. Ser., 2012, 1104, 217-234.
[http://dx.doi.org/10.1021/bk-2012-1104.ch014]
[44]
Ting, P.L.; Lusk, L.; Refling, J.; Kay, S.; Ryder, D. Identification of antiradical hop compounds. J. Am. Soc. Brew. Chem., 2008, 66, 116-126.
[http://dx.doi.org/10.1094/ASBCJ-2008-0310-01]
[45]
Wietstock, P.; Kunz, T.; Shellhammer, T.; Schön, T.; Methner, F-J. Behaviour of antioxidants derived from hops during wort boiling. J. Inst. Brew., 2010, 116, 157-166.
[http://dx.doi.org/10.1002/j.2050-0416.2010.tb00412.x]
[46]
Nozawa, H.; Nakao, W.; Zhao, F.; Kondo, K. Dietary supplement of isohumulones inhibits the formation of aberrant crypt foci with a concomitant decrease in prostaglandin E2 level in rat colon. Mol. Nutr. Food Res., 2005, 49(8), 772-778.
[http://dx.doi.org/10.1002/mnfr.200500027] [PMID: 15968705]
[47]
Tripp, M.; Darland, G.; Lerman, R.; Lukaczer, D.; Bland, J.; Babish, J. Hop and modified hop extracts have potent in vitro anti-inflammatory properties. Acta Hortic., 2005, 217-228.
[http://dx.doi.org/10.17660/ActaHortic.2005.668.28]
[48]
Hougee, S.; Faber, J.; Sanders, A.; Berg, W.B.; Garssen, J.; Smit, H.F.; Hoijer, M.A. Selective inhibition of COX-2 by a standardized CO2 extract of Humulus lupulus in vitro and its activity in a mouse model of zymosan-induced arthritis. Planta Med., 2006, 72(3), 228-233.
[http://dx.doi.org/10.1055/s-2005-916212] [PMID: 16534727]
[49]
Hall, A.J.; Babish, J.G.; Darland, G.K.; Carroll, B.J.; Konda, V.R.; Lerman, R.H.; Bland, J.S.; Tripp, M.L. Safety, efficacy and anti-inflammatory activity of rho iso-alpha-acids from hops. Phytochemistry, 2008, 69(7), 1534-1547.
[http://dx.doi.org/10.1016/j.phytochem.2008.02.001] [PMID: 18358504]
[50]
Konda, V.R.; Desai, A.; Darland, G.; Bland, J.S.; Tripp, M.L. Rho iso-alpha acids from hops inhibit the GSK-3/NF-kappab pathway and reduce inflammatory markers associated with bone and cartilage degradation. J. Inflamm. (Lond.), 2009, 6, 26.
[http://dx.doi.org/10.1186/1476-9255-6-26] [PMID: 19712471]
[51]
Yamamoto, K.; Wang, J.; Yamamoto, S.; Tobe, H. Suppression of cyclooxygenase-2 gene transcription by humulon of beer hop extract studied with reference to glucocorticoid. FEBS Lett., 2000, 465(2-3), 103-106.
[http://dx.doi.org/10.1016/S0014-5793(99)01727-5] [PMID: 10631313]
[52]
Lamy, V.; Roussi, S.; Chaabi, M.; Gossé, F.; Schall, N.; Lobstein, A.; Raul, F. Chemopreventive effects of lupulone, a hop β-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis, 2007, 28(7), 1575-1581.
[http://dx.doi.org/10.1093/carcin/bgm080] [PMID: 17434926]
[53]
Tobe, H.; Kubota, M.; Yamaguchi, M.; Kocha, T.; Aoyagi, T. Apoptosis to HL-60 by humulone. Biosci. Biotechnol. Biochem., 1997, 61(6), 1027-1029.
[http://dx.doi.org/10.1271/bbb.61.1027] [PMID: 9214766]
[54]
Chen, W.J.; Lin, J.K. Mechanisms of cancer chemoprevention by hop bitter acids (beer aroma) through induction of apoptosis mediated by Fas and caspase cascades. J. Agric. Food Chem., 2004, 52(1), 55-64.
[http://dx.doi.org/10.1021/jf034737u] [PMID: 14709013]
[55]
Honma, Y.; Tobe, H.; Makishima, M.; Yokoyama, A.; Okabe-Kado, J. Induction of differentiation of myelogenous leukemia cells by humulone, a bitter in the hop. Leuk. Res., 1998, 22(7), 605-610.
[http://dx.doi.org/10.1016/S0145-2126(98)00046-0] [PMID: 9680110]
[56]
Tyrrell, E.; Archer, R.; Skinner, G.A.; Singh, K.; Colston, K.; Driver, C. Structure elucidation and an investigation into the in vitro effects of hop acids on human cancer cells. Phytochem. Lett., 2010, 3, 17-23.
[http://dx.doi.org/10.1016/j.phytol.2009.10.006]
[57]
Saugspier, M.; Dorn, C.; Czech, B.; Gehrig, M.; Heilmann, J.; Hellerbrand, C. Hop bitter acids inhibit tumorigenicity of hepatocellular carcinoma cells in vitro. Oncol. Rep., 2012, 28(4), 1423-1428.
[http://dx.doi.org/10.3892/or.2012.1925] [PMID: 22825405]
[58]
Yasukawa, K.; Takeuchi, M.; Takido, M. Humulon, a bitter in the hop, inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology, 1995, 52(2), 156-158.
[http://dx.doi.org/10.1159/000227448] [PMID: 7854777]
[59]
Lee, J.C.; Kundu, J.K.; Hwang, D.M.; Na, H.K.; Surh, Y.J. Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-kappaB and AP-1: IkappaB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis, 2007, 28(7), 1491-1498.
[http://dx.doi.org/10.1093/carcin/bgm054] [PMID: 17372274]
[60]
Shimamura, M.; Hazato, T.; Ashino, H.; Yamamoto, Y.; Iwasaki, E.; Tobe, H.; Yamamoto, K.; Yamamoto, S. Inhibition of angiogenesis by humulone, a bitter acid from beer hop. Biochem. Biophys. Res. Commun., 2001, 289(1), 220-224.
[http://dx.doi.org/10.1006/bbrc.2001.5934] [PMID: 11708802]
[61]
Minich, D.M.; Lerman, R.H.; Darland, G.; Babish, J.G.; Pacioretty, L.M.; Bland, J.S.; Tripp, M.L. Hop and acacia phytochemicals decreased lipotoxicity in 3t3-l1 adipocytes, db/db mice, and individuals with metabolic syndrome. J. Nutr. Metab., 2010, 2010 Article ID 467316
[62]
Tripp, M.L.; Darland, G.; Konda, V.R.; Pacioretty, L.M.; Chang, J.L.; Bland, J.S.; Babish, J.G. Optimized mixture of hops rho iso-alpha acids-rich extract and acacia proanthocyanidins-rich extract reduces insulin resistance in 3T3-L1 adipocytes and improves glucose and insulin control in db/db mice. Nutr. Res. Pract., 2012, 6(5), 405-413.
[http://dx.doi.org/10.4162/nrp.2012.6.5.405] [PMID: 23198019]
[63]
Vroegrijk, I.O.C.M.; van Diepen, J.A.; van den Berg, S.A.; Romijn, J.A.; Havekes, L.M.; van Dijk, K.W.; Darland, G.; Konda, V.; Tripp, M.L.; Bland, J.S.; Voshol, P.J. META060 protects against diet-induced obesity and insulin resistance in a high-fat-diet fed mouse. Nutrition, 2013, 29(1), 276-283.
[http://dx.doi.org/10.1016/j.nut.2012.05.004] [PMID: 22985971]
[64]
Everard, A.; Geurts, L.; Van Roye, M.; Delzenne, N.M.; Cani, P.D. Tetrahydro iso-alpha acids from hops improve glucose homeostasis and reduce body weight gain and metabolic endotoxemia in high-fat diet-fed mice. PLoS One, 2012, 7(3) e33858
[http://dx.doi.org/10.1371/journal.pone.0033858] [PMID: 22470484]
[65]
Sumiyoshi, M.; Kimura, Y. Hop (Humulus lupulus L.) Extract inhibits obesity in mice fed a high-fat diet over the long term. Br. J. Nutr., 2013, 109(1), 162-172.
[http://dx.doi.org/10.1017/S000711451200061X] [PMID: 22715886]
[66]
Konda, V.R.; Desai, A.; Darland, G.; Grayson, N.; Bland, J.S. KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes. PLoS One, 2014, 9(1) e87848
[http://dx.doi.org/10.1371/journal.pone.0087848] [PMID: 24498211]
[67]
Obara, K.; Mizutani, M.; Hitomi, Y.; Yajima, H.; Kondo, K. Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes. Clin. Nutr., 2009, 28(3), 278-284.
[http://dx.doi.org/10.1016/j.clnu.2009.03.012] [PMID: 19395131]
[68]
Lerman, R.H.; Minich, D.M.; Darland, G.; Lamb, J.J.; Schiltz, B.; Babish, J.G.; Bland, J.S.; Tripp, M.L. Enhancement of a modified Mediterranean-style, low glycemic load diet with specific phytochemicals improves cardiometabolic risk factors in subjects with metabolic syndrome and hypercholesterolemia in a randomized trial. Nutr. Metab. (Lond.), 2008, 5, 29.
[http://dx.doi.org/10.1186/1743-7075-5-29] [PMID: 18983673]
[69]
Jones, J.L.; Fernandez, M.L.; McIntosh, M.S.; Najm, W.; Calle, M.C.; Kalynych, C.; Vukich, C.; Barona, J.; Ackermann, D.; Kim, J.E.; Kumar, V.; Lott, M.; Volek, J.S.; Lerman, R.H.A. Mediterranean-style low-glycemic-load diet improves variables of metabolic syndrome in women, and addition of a phytochemical-rich medical food enhances benefits on lipoprotein metabolism. J. Clin. Lipidol., 2011, 5(3), 188-196.
[http://dx.doi.org/10.1016/j.jacl.2011.03.002] [PMID: 21600524]
[70]
Lerman, R.H.; Minich, D.M.; Darland, G.; Lamb, J.J.; Chang, J.L.; Hsi, A.; Bland, J.S.; Tripp, M.L. Subjects with elevated LDL cholesterol and metabolic syndrome benefit from supplementation with soy protein, phytosterols, hops rho iso-alpha acids, and Acacia nilotica proanthocyanidins. J. Clin. Lipidol., 2010, 4(1), 59-68.
[http://dx.doi.org/10.1016/j.jacl.2009.11.002] [PMID: 21122628]
[71]
Schulz, C.; Chiheb, C.; Pischetsrieder, M. Quantification of co-, n-, and ad-lupulone in hop-based dietary supplements and phytopharmaceuticals and modulation of their contents by the extraction method. J. Pharm. Biomed. Anal., 2019, 168, 124-132.
[http://dx.doi.org/10.1016/j.jpba.2019.02.022] [PMID: 30807916]
[72]
Schulz, C.; Fritz, N.; Sommer, T.; Krofta, K.; Friedland, K.; Pischetsrieder, M. Activation of membrane-located Ca2+ channels by hop beta acids and their tricyclic transformation products. Food Chem., 2018, 252, 215-227.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.073] [PMID: 29478534]
[73]
Leuner, K.; Kazanski, V.; Müller, M.; Essin, K.; Henke, B.; Gollasch, M.; Harteneck, C.; Müller, W.E. Hyperforin--a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J., 2007, 21(14), 4101-4111.
[http://dx.doi.org/10.1096/fj.07-8110com] [PMID: 17666455]
[74]
Zanoli, P.; Zavatti, M.; Rivasi, M.; Brusiani, F.; Losi, G.; Puia, G.; Avallone, R.; Baraldi, M. Evidence that the β-acids fraction of hops reduces central GABAergic neurotransmission. J. Ethnopharmacol., 2007, 109(1), 87-92.
[http://dx.doi.org/10.1016/j.jep.2006.07.008] [PMID: 16920300]
[75]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[76]
Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health. Phytochemistry, 2004, 65(10), 1317-1330.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.025] [PMID: 15231405]
[77]
Albini, A.; Dell’Eva, R.; Vené, R.; Ferrari, N.; Buhler, D.R.; Noonan, D.M.; Fassina, G. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappab and Akt as targets. FASEB J., 2006, 20(3), 527-529.
[http://dx.doi.org/10.1096/fj.05-5128fje] [PMID: 16403733]
[78]
Jiang, W.; Zhao, S.; Xu, L.; Lu, Y.; Lu, Z.; Chen, C.; Ni, J.; Wan, R.; Yang, L. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed. Pharmacother., 2015, 73, 40-47.
[http://dx.doi.org/10.1016/j.biopha.2015.05.020] [PMID: 26211581]
[79]
Gonzalez, F.J.; Gelboin, H.V. Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab. Rev., 1994, 26(1-2), 165-183.
[http://dx.doi.org/10.3109/03602539409029789] [PMID: 8082563]
[80]
Nebert, D.W. Genetic differences in drug metabolism: Proposed relationship to human birth defects. Teratogenesis and Reproductive Toxicology; Jonhson, E.M.; Kochhar, D.M., Eds.; Springer: Berlin Heidelberg. 1983, pp. 49-62.
[http://dx.doi.org/10.1007/978-3-642-81919-3_4]
[81]
Miranda, C.L.; Aponso, G.L.M.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett., 2000, 149(1-2), 21-29.
[http://dx.doi.org/10.1016/S0304-3835(99)00328-6] [PMID: 10737704]
[82]
Henderson, M.C.; Miranda, C.L.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica, 2000, 30(3), 235-251.
[http://dx.doi.org/10.1080/004982500237631] [PMID: 10752639]
[83]
Monteiro, R.; Calhau, C.; Silva, A.O.E.; Pinheiro-Silva, S.; Guerreiro, S.; Gärtner, F.; Azevedo, I.; Soares, R. Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J. Cell. Biochem., 2008, 104(5), 1699-1707.
[http://dx.doi.org/10.1002/jcb.21738] [PMID: 18348194]
[84]
Lust, S.; Vanhoecke, B.; Janssens, A.; Philippe, J.; Bracke, M.; Offner, F. Xanthohumol kills B-chronic lymphocytic leukemia cells by an apoptotic mechanism. Mol. Nutr. Food Res., 2005, 49(9), 844-850.
[http://dx.doi.org/10.1002/mnfr.200500045] [PMID: 16144030]
[85]
Drenzek, J.G.; Seiler, N.L.; Jaskula-Sztul, R.; Rausch, M.M.; Rose, S.L. Xanthohumol decreases Notch1 expression and cell growth by cell cycle arrest and induction of apoptosis in epithelial ovarian cancer cell lines. Gynecol. Oncol., 2011, 122(2), 396-401.
[http://dx.doi.org/10.1016/j.ygyno.2011.04.027] [PMID: 21616523]
[86]
Delmulle, L.; Bellahcène, A.; Dhooge, W.; Comhaire, F.; Roelens, F.; Huvaere, K.; Heyerick, A.; Castronovo, V.; De Keukeleire, D. Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) In human prostate cancer cell lines. Phytomedicine, 2006, 13(9-10), 732-734.
[http://dx.doi.org/10.1016/j.phymed.2006.01.001] [PMID: 16678392]
[87]
Pan, L.; Becker, H.; Gerhäuser, C. Xanthohumol induces apoptosis in cultured 40-16 human colon cancer cells by activation of the death receptor- and mitochondrial pathway. Mol. Nutr. Food Res., 2005, 49(9), 837-843.
[http://dx.doi.org/10.1002/mnfr.200500065] [PMID: 15995977]
[88]
Colgate, E.C.; Miranda, C.L.; Stevens, J.F.; Bray, T.M.; Ho, E. Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappab activation in prostate epithelial cells. Cancer Lett., 2007, 246(1-2), 201-209.
[http://dx.doi.org/10.1016/j.canlet.2006.02.015] [PMID: 16563612]
[89]
Min, F.; Zhang, L.; Chen, Y.; Zhai, L.; Zhou, W.; Gao, X.; Lin, C. Xanthohumol inhibits proliferation in lymphoma cells by generation of reactive oxygen species and G0/G1-phase cell cycle arrest. Int. J. Clin. Exp. Med., 2017, 10, 10091-10102.
[90]
Dorn, C.; Weiss, T.S.; Heilmann, J.; Hellerbrand, C. Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. Int. J. Oncol., 2010, 36(2), 435-441.
[PMID: 20043079]
[91]
Hartkorn, A.; Hoffmann, F.; Ajamieh, H.; Vogel, S.; Heilmann, J.; Gerbes, A.L.; Vollmar, A.M.; Zahler, S. Antioxidant effects of xanthohumol and functional impact on hepatic ischemia-reperfusion injury. J. Nat. Prod., 2009, 72(10), 1741-1747.
[http://dx.doi.org/10.1021/np900230p] [PMID: 19757857]
[92]
Plazar, J.; Filipič, M.; Groothuis, G.M.M. Antigenotoxic effect of Xanthohumol in rat liver slices. Toxicol. In Vitro, 2008, 22(2), 318-327.
[http://dx.doi.org/10.1016/j.tiv.2007.09.009] [PMID: 17981005]
[93]
Dorn, C.; Heilmann, J.; Hellerbrand, C. Protective effect of xanthohumol on toxin-induced liver inflammation and fibrosis. Int. J. Clin. Exp. Pathol., 2012, 5(1), 29-36.
[http://dx.doi.org/10.1055/s-0031-1295738] [PMID: 22295144]
[94]
Yang, M.; Li, N.; Li, F.; Zhu, Q.; Liu, X.; Han, Q.; Wang, Y.; Chen, Y.; Zeng, X.; Lv, Y.; Zhang, P.; Yang, C.; Liu, Z. Xanthohumol, a main prenylated chalcone from hops, reduces liver damage and modulates oxidative reaction and apoptosis in hepatitis C virus infected Tupaia belangeri. Int. Immunopharmacol., 2013, 16(4), 466-474.
[http://dx.doi.org/10.1016/j.intimp.2013.04.029] [PMID: 23669332]
[95]
Legette, L.L.; Luna, A.Y.; Reed, R.L.; Miranda, C.L.; Bobe, G.; Proteau, R.R.; Stevens, J.F. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry, 2013, 91, 236-241.
[http://dx.doi.org/10.1016/j.phytochem.2012.04.018] [PMID: 22640929]
[96]
Miranda, C.L.; Elias, V.D.; Hay, J.J.; Choi, J.; Reed, R.L.; Stevens, J.F. Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice. Arch. Biochem. Biophys., 2016, 599, 22-30.
[http://dx.doi.org/10.1016/j.abb.2016.03.008] [PMID: 26976708]
[97]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[98]
Possemiers, S.; Heyerick, A.; Robbens, V.; De Keukeleire, D.; Verstraete, W. Activation of proestrogens from hops (Humulus lupulus L.) By intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J. Agric. Food Chem., 2005, 53(16), 6281-6288.
[http://dx.doi.org/10.1021/jf0509714] [PMID: 16076107]
[99]
Fujii, W.; Toda, K.; Kawaguchi, K.; Kawahara, S.I.; Katoh, M.; Hattori, Y.; Fujii, H.; Makabe, H. Syntheses of prodelphinidin B3 and C2, and their antitumor activities through cell cycle arrest and caspase-3 activation. Tetrahedron, 2013, 69, 3543-3550.
[http://dx.doi.org/10.1016/j.tet.2013.02.087]
[100]
Jang, Y.J.; Kim, J.; Shim, J.; Kim, J.; Byun, S.; Oak, M-H.; Lee, K.W.; Lee, H.J. Kaempferol attenuates 4-hydroxynonenal-induced apoptosis in PC12 cells by directly inhibiting NADPH oxidase. J. Pharmacol. Exp. Ther., 2011, 337(3), 747-754.
[http://dx.doi.org/10.1124/jpet.110.176925] [PMID: 21398514]
[101]
Pratheeshkumar, P.; Budhraja, A.; Son, Y.O.; Wang, X.; Zhang, Z.; Ding, S.; Wang, L.; Hitron, A.; Lee, J.C.; Xu, M.; Chen, G.; Luo, J.; Shi, X. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mtor/P70S6K signaling pathways. PLoS One, 2012, 7(10) e47516
[http://dx.doi.org/10.1371/journal.pone.0047516] [PMID: 23094058]
[102]
D’Archivio, M.; Scazzocchio, B.; Giovannini, C.; Masella, R. Role of protocatechuic acid in obesity-related pathologies. In: Polyphenols in Human Health and Disease. Watson, R.; Preedy, V.; Zibadi, S.; Ed. Academic Press: Cambridge. 2014, Vol. 1, pp. 177-189.
[103]
Serafim, T.L.; Carvalho, F.S.; Marques, M.P.M.; Calheiros, R.; Silva, T.; Garrido, J.; Milhazes, N.; Borges, F.; Roleira, F.; Silva, E.T.; Holy, J.; Oliveira, P.J. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem. Res. Toxicol., 2011, 24(5), 763-774.
[http://dx.doi.org/10.1021/tx200126r] [PMID: 21504213]
[104]
Teixeira, N.; Mateus, N.; de Freitas, V. Updating the research on prodelphinidins from dietary sources. Food Res. Int., 2016, 85, 170-181.
[http://dx.doi.org/10.1016/j.foodres.2016.04.026] [PMID: 29544832]
[105]
Li, H-J.; Deinzer, M.L. Proanthocyanidins in Hops. Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Elsevier Inc.: Corvallis. 2009, pp. 333-348.
[http://dx.doi.org/10.1016/B978-0-12-373891-2.00032-8]
[106]
Nandakumar, V.; Singh, T.; Katiyar, S.K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett., 2008, 269(2), 378-387.
[http://dx.doi.org/10.1016/j.canlet.2008.03.049] [PMID: 18457915]
[107]
Vayalil, P.K.; Mittal, A.; Katiyar, S.K. Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Carcinogenesis, 2004, 25(6), 987-995.
[http://dx.doi.org/10.1093/carcin/bgh095] [PMID: 14742313]
[108]
Singh, T.; Sharma, S.D.; Katiyar, S.K. Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo. PLoS One, 2011, 6(11) e27444
[http://dx.doi.org/10.1371/journal.pone.0027444] [PMID: 22087318]
[109]
Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and tannin-like compounds - nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric, 2000, 80, 1094-1117.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1094:: AID-JSFA569>3.0.CO;2-1]
[110]
Plumb, G.W.; de Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C.; Williamson, G. Antioxidant properties of gallocatechin and prodelphinidins from pomegranate peel. Redox Rep., 2002, 7(1), 41-46.
[http://dx.doi.org/10.1179/135100002125000172] [PMID: 11981454]
[111]
Zachary, I. Determination of Cell Number. In: Cell Proliferation and Apoptosis. Hughes, D.; Mehmet, H., Eds., BIOS Scientific Publishers: Oxford, UK. 2003, pp. 23.
[112]
Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113, 287-299.
[http://dx.doi.org/10.1007/PL00013940]
[113]
Khan, M.K. Zill-E-Huma, D.O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal., 2014, 33, 85-104.
[http://dx.doi.org/10.1016/j.jfca.2013.11.004]
[114]
Venturelli, S.; Burkard, M.; Biendl, M.; Lauer, U.M.; Frank, J.; Busch, C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition, 2016, 32(11-12), 1171-1178.
[115]
Rong, H.; Zhao, Y.; Lazou, K.; De Keukeleire, D.; Milligan, S.R.; Sandra, P. Quantitation of 8-Prenylnaringenin, a novel phytoestrogen in hops (Humulus lupulus L.), hop products, and beers, by benchtop HPLC-MS using electrospray ionization. Chromatographia, 2000, 51, 545-552.
[http://dx.doi.org/10.1007/BF02490811]
[116]
Chadwick, L.R.; Pauli, G.F.; Farnsworth, N.R. The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine, 2006, 13(1-2), 119-131.
[http://dx.doi.org/10.1016/j.phymed.2004.07.006] [PMID: 16360942]
[117]
Diel, P.; Thomae, R.B.; Caldarelli, A.; Zierau, O.; Kolba, S.; Schmidt, S.; Schwab, P.; Metz, P.; Vollmer, G. Regulation of gene expression by 8-prenylnaringenin in uterus and liver of Wistar rats. Planta Med., 2004, 70(1), 39-44.
[http://dx.doi.org/10.1055/s-2004-815453] [PMID: 14765291]
[118]
Overk, C.R.; Guo, J.; Chadwick, L.R.; Lantvit, D.D.; Minassi, A.; Appendino, G.; Chen, S.N.; Lankin, D.C.; Farnsworth, N.R.; Pauli, G.F.; van Breemen, R.B.; Bolton, J.L. In vivo estrogenic comparisons of Trifolium pratense (red clover) Humulus lupulus (hops), and the pure compounds isoxanthohumol and 8-prenylnaringenin. Chem. Biol. Interact., 2008, 176(1), 30-39.
[http://dx.doi.org/10.1016/j.cbi.2008.06.005] [PMID: 18619951]
[119]
Zierau, O.; Kretzschmar, G.; Möller, F.; Weigt, C.; Vollmer, G. Time dependency of uterine effects of naringenin type phytoestrogens in vivo. Mol. Cell. Endocrinol., 2008, 294(1-2), 92-99.
[http://dx.doi.org/10.1016/j.mce.2008.08.008] [PMID: 18775763]
[120]
Milligan, S.R.; Kalita, J.C.; Heyerick, A.; Rong, H.; De Cooman, L.; De Keukeleire, D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J. Clin. Endocrinol. Metab., 1999, 84(6), 2249-2252.
[http://dx.doi.org/10.1210/jcem.84.6.5887] [PMID: 10372741]
[121]
Schaefer, O.; Hümpel, M.; Fritzemeier, K.H.; Bohlmann, R.; Schleuning, W.D. 8-Prenyl naringenin is a potent ER?? Selective phytoestrogen present in hops and beer. J. Steroid Biochem. Mol. Biol., 2003, 84, 359-360.
[http://dx.doi.org/10.1016/S0960-0760(03)00050-5] [PMID: 12711023]
[122]
Hümpel, M.; Isaksson, P.; Schaefer, O.; Kaufmann, U.; Ciana, P.; Maggi, A.; Schleuning, W.D. Tissue specificity of 8-prenylnaringenin: Protection from ovariectomy induced bone loss with minimal trophic effects on the uterus. J. Steroid Biochem. Mol. Biol., 2005, 97(3), 299-305.
[http://dx.doi.org/10.1016/j.jsbmb.2005.05.009] [PMID: 16153822]
[123]
Bovee, T.F.H.; Helsdingen, R.J.R.; Rietjens, I.M.C.M.; Keijer, J.; Hoogenboom, R.L. Rapid yeast estrogen bioassays stably expressing human estrogen receptors α and β, and green fluorescent protein: A comparison of different compounds with both receptor types. J. Steroid Biochem. Mol. Biol., 2004, 91(3), 99-109.
[http://dx.doi.org/10.1016/j.jsbmb.2004.03.118] [PMID: 15276617]
[124]
Kalu, D.N. The ovariectomized rat model of postmenopausal bone loss. Bone Miner., 1991, 15(3), 175-191.
[http://dx.doi.org/10.1016/0169-6009(91)90124-I] [PMID: 1773131]
[125]
Miyamoto, M.; Matsushita, Y.; Kiyokawa, A.; Fukuda, C.; Iijima, Y.; Sugano, M.; Akiyama, T. Prenylflavonoids: A new class of non-steroidal phytoestrogen (Part 2). Estrogenic effects of 8-isopentenylnaringenin on bone metabolism. Planta Med., 1998, 64(6), 516-519.
[http://dx.doi.org/10.1055/s-2006-957505] [PMID: 9741296]
[126]
Milligan, S.; Kalita, J.; Pocock, V.; Heyerick, A.; De Cooman, L.; Rong, H.; De Keukeleire, D. Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction, 2002, 123(2), 235-242.
[http://dx.doi.org/10.1530/rep.0.1230235] [PMID: 11866690]
[127]
Bowe, J.; Li, X.F.; Kinsey-Jones, J.; Heyerick, A.; Brain, S.; Milligan, S.; O’Byrne, K. The hop phytoestrogen, 8-prenylnaringenin, reverses the ovariectomy-induced rise in skin temperature in an animal model of menopausal hot flushes. J. Endocrinol., 2006, 191(2), 399-405.
[http://dx.doi.org/10.1677/joe.1.06919] [PMID: 17088409]
[128]
Helle, J.; Kräker, K.; Bader, M.I.; Keiler, A.M.; Zierau, O.; Vollmer, G.; Welsh, J.; Kretzschmar, G. Molecular and cellular endocrinology assessment of the proliferative capacity of the flavanones naringenin in MCF-7 cells and the rat mammary gland. Mol. Cell. Endocrinol., 2014, 392, 125-135.
[http://dx.doi.org/10.1016/j.mce.2014.05.014] [PMID: 24859648]
[129]
Stevens, J.F.; Taylor, A.W.; Deinzer, M.L. Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 1999, 832(1-2), 97-107.
[http://dx.doi.org/10.1016/S0021-9673(98)01001-2] [PMID: 10070768]
[130]
Possemiers, S.; Bolca, S.; Eeckhaut, E.; Depypere, H.; Verstraete, W. Metabolism of isoflavones, lignans and prenylflavonoids by intestinal bacteria: Producer phenotyping and relation with intestinal community. FEMS Microbiol. Ecol., 2007, 61(2), 372-383.
[131]
Simons, A.L.; Renouf, M.; Hendrich, S.; Murphy, P.A. Human gut microbial degradation of flavonoids: Structure-function relationships. J. Agric. Food Chem., 2005, 53(10), 4258-4263.
[http://dx.doi.org/10.1021/jf0500177] [PMID: 15884869]
[132]
Delmulle, L.; Vanden Berghe, T.; Keukeleire, D.D.; Vandenabeele, P. Treatment of PC-3 and DU145 prostate cancer cells by prenylflavonoids from hop (Humulus lupulus L.) induces a caspase-independent form of cell death. Phytother. Res., 2008, 22(2), 197-203.
[http://dx.doi.org/10.1002/ptr.2286] [PMID: 17726738]
[133]
Miranda, C.L.; Stevens, J.F.; Helmrich, A.; Henderson, M.C. Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol., 1999, 37, 271-285.
[134]
Kim, J.D.; Liu, L.; Guo, W.; Meydani, M. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J. Nutr. Biochem., 2006, 17(3), 165-176.
[http://dx.doi.org/10.1016/j.jnutbio.2005.06.006] [PMID: 16169200]
[135]
Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition, 2002, 18(1), 75-81.
[http://dx.doi.org/10.1016/S0899-9007(01)00695-5] [PMID: 11827770]
[136]
Dar, R.A.; Brahman, P.K.; Khurana, N.; Wagay, J.A.; Lone, Z.A.; Ganaie, M.A.; Pitre, K.S. Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays. Arab. J. Chem., 2013, 10, S1119-S1128.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.004]
[137]
Ahn, M-R.; Kunimasa, K.; Kumazawa, S.; Nakayama, T.; Kaji, K.; Uto, Y.; Hori, H.; Nagasawa, H.; Ohta, T. Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol. Nutr. Food Res., 2009, 53(5), 643-651.
[http://dx.doi.org/10.1002/mnfr.200800021] [PMID: 19065585]
[138]
Wang, L.; Tu, Y.C.; Lian, T.W.; Hung, J.T.; Yen, J.H.; Wu, M.J. Distinctive antioxidant and antiinflammatory effects of flavonols. J. Agric. Food Chem., 2006, 54(26), 9798-9804.
[http://dx.doi.org/10.1021/jf0620719] [PMID: 17177504]
[139]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[140]
Lee, K.M.; Kang, B.S.; Lee, H.L.; Son, S.J.; Hwang, S.H.; Kim, D.S.; Park, J.S.; Cho, H.J. Spinal NF-kb activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur. J. Neurosci., 2004, 19(12), 3375-3381.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03441.x] [PMID: 15217394]
[141]
Beg, A.A.; Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science, 1996, 274, 782-784.
[142]
Kim, J.M.; Lee, E.K.; Kim, D.H.; Yu, B.P.; Chung, H.Y. Kaempferol modulates pro-inflammatory NF-kappab activation by suppressing advanced glycation endproducts-induced NADPH oxidase. Age (Dordr.), 2010, 32(2), 197-208.
[http://dx.doi.org/10.1007/s11357-009-9124-1] [PMID: 20431987]
[143]
Li, N.; Karin, M. Is NF-kappaB the sensor of oxidative stress? FASEB J., 1999, 13(10), 1137-1143.
[http://dx.doi.org/10.1096/fasebj.13.10.1137] [PMID: 10385605]
[144]
Rho, H.S.; Ghimeray, A.K.; Yoo, D.S.; Ahn, S.M.; Kwon, S.S.; Lee, K.H.; Cho, D.H.; Cho, J.Y. Kaempferol and kaempferol rhamnosides with depigmenting and anti-inflammatory properties. Molecules, 2011, 16(4), 3338-3344.
[http://dx.doi.org/10.3390/molecules16043338] [PMID: 21512441]
[145]
Comalada, M.; Camuesco, D.; Sierra, S.; Ballester, I.; Xaus, J.; Gálvez, J.; Zarzuelo, A. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur. J. Immunol., 2005, 35(2), 584-592.
[http://dx.doi.org/10.1002/eji.200425778] [PMID: 15668926]
[146]
Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κb activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κb activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm., 2007, 2007, 45673.
[147]
Perez-Vizcaino, F.; Duarte, J. Flavonols and cardiovascular disease. Mol. Aspects Med., 2010, 31(6), 478-494.
[http://dx.doi.org/10.1016/j.mam.2010.09.002] [PMID: 20837053]
[148]
Hou, L.; Zhou, B.; Yang, L.; Liu, Z-L. Inhibition of human low density lipoprotein oxidation by flavonols and their glycosides. Chem. Phys. Lipids, 2004, 129(2), 209-219.
[http://dx.doi.org/10.1016/j.chemphyslip.2004.02.001] [PMID: 15081861]
[149]
Hirano, R.; Sasamoto, W.; Matsumoto, A.; Itakura, H.; Igarashi, O.; Kondo, K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J. Nutr. Sci. Vitaminol. (Tokyo), 2001, 47(5), 357-362.
[http://dx.doi.org/10.3177/jnsv.47.357] [PMID: 11814152]
[150]
Xiao, H.B. Jun-Fang, Lu, X.Y.; Chen, X.J.; Chao-Tan, Sun, Z.L. Protective effects of kaempferol against endothelial damage by an improvement in nitric oxide production and a decrease in asymmetric dimethylarginine level. Eur. J. Pharmacol., 2009, 616(1-3), 213-222.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.022] [PMID: 19549512]
[151]
Sánchez, M.; Galisteo, M.; Vera, R.; Villar, I.C.; Zarzuelo, A.; Tamargo, J.; Pérez-Vizcaíno, F.; Duarte, J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens., 2006, 24(1), 75-84.
[http://dx.doi.org/10.1097/01.hjh.0000198029.22472.d9] [PMID: 16331104]
[152]
Duarte, J.; Pérez-Vizcaíno, F.; Zarzuelo, A.; Jiménez, J.; Tamargo, J. Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur. J. Pharmacol., 1993, 239(1-3), 1-7.
[http://dx.doi.org/10.1016/0014-2999(93)90968-N] [PMID: 8223884]
[153]
Balasuriya, B.W.N.; Rupasinghe, H.P.V. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct. Food Health Dis., 2011, 1, 172-188.
[154]
Oh, H.; Kang, D-G.; Kwon, J-W.; Kwon, T-O.; Lee, S-Y.; Lee, D-B.; Lee, H-S. Isolation of Angiotensin Converting Enzyme (ACE) inhibitory flavonoids from Sedum sarmentosum. Biol. Pharm. Bull., 2004, 27(12), 2035-2037.
[http://dx.doi.org/10.1248/bpb.27.2035] [PMID: 15577228]
[155]
Loizzo, M.R.; Said, A.; Tundis, R.; Rashed, K.; Statti, G.A.; Hufner, A.; Menichini, F. Inhibition of Angiotensin Converting Enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (RoxB) (Simaroubaceae). Phytother. Res., 2007, 21(1), 32-36.
[http://dx.doi.org/10.1002/ptr.2008] [PMID: 17072829]
[156]
Jimenez, R.; Lopez-Sepulveda, R.; Romero, M.; Toral, M.; Cogolludo, A.; Perez-Vizcaino, F.; Duarte, J. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct., 2015, 6(2), 409-414.
[http://dx.doi.org/10.1039/C4FO00818A] [PMID: 25562607]
[157]
Romero, M.; Jiménez, R.; Sánchez, M.; López-Sepúlveda, R.; Zarzuelo, M.J.; O’Valle, F.; Zarzuelo, A.; Pérez-Vizcaíno, F.; Duarte, J. Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis, 2009, 202(1), 58-67.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.03.007] [PMID: 18436224]
[158]
Pignatelli, P.; Pulcinelli, F.M.; Celestini, A.; Lenti, L.; Ghiselli, A.; Gazzaniga, P.P.; Violi, F. The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am. J. Clin. Nutr., 2000, 72(5), 1150-1155.
[http://dx.doi.org/10.1093/ajcn/72.5.1150] [PMID: 11063442]
[159]
Hubbard, G.P.; Stevens, J.M.; Cicmil, M.; Sage, T.; Jordan, P.A.; Williams, C.M.; Lovegrove, J.A.; Gibbins, J.M. Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway. J. Thromb. Haemost., 2003, 1(5), 1079-1088.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00212.x] [PMID: 12871380]
[160]
Wang, S.B.; Jang, J.Y.; Chae, Y.H.; Min, J.H.; Baek, J.Y.; Kim, M.; Park, Y.; Hwang, G.S.; Ryu, J.S.; Chang, T.S. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic. Biol. Med., 2015, 83, 41-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.018] [PMID: 25645952]
[161]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[162]
Sharma, V.; Joseph, C.; Ghosh, S.; Agarwal, A.; Mishra, M.K.; Sen, E. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol. Cancer Ther., 2007, 6(9), 2544-2553.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0788] [PMID: 17876051]
[163]
Nguyen, T.T.T.; Tran, E.; Ong, C.K.; Lee, S.K.; Do, P.T.; Huynh, T.T.; Nguyen, T.H.; Lee, J.J.; Tan, Y.; Ong, C.S.; Huynh, H. Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J. Cell. Physiol., 2003, 197(1), 110-121.
[http://dx.doi.org/10.1002/jcp.10340] [PMID: 12942547]
[164]
Nguyen, T.T.T.; Tran, E.; Nguyen, T.H.; Do, P.T.; Huynh, T.H.; Huynh, H. The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis, 2004, 25(5), 647-659.
[http://dx.doi.org/10.1093/carcin/bgh052] [PMID: 14688022]
[165]
Zhang, Y.; Chen, A.Y.; Li, M.; Chen, C.; Yao, Q. Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J. Surg. Res., 2008, 148(1), 17-23.
[http://dx.doi.org/10.1016/j.jss.2008.02.036] [PMID: 18570926]
[166]
Huang, W.W.; Chiu, Y.J.; Fan, M.J.; Lu, H.F.; Yeh, H.F.; Li, K.H.; Chen, P.Y.; Chung, J.G.; Yang, J.S. Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Mol. Nutr. Food Res., 2010, 54(11), 1585-1595.
[http://dx.doi.org/10.1002/mnfr.201000005] [PMID: 20564475]
[167]
Suh, D.K.; Lee, E.J.; Kim, H.C.; Kim, J.H. Induction of G(1)/S phase arrest and apoptosis by quercetin in human osteosarcoma cells. Arch. Pharm. Res., 2010, 33(5), 781-785.
[http://dx.doi.org/10.1007/s12272-010-0519-4] [PMID: 20512478]
[168]
Yoshida, T.; Konishi, M.; Horinaka, M.; Yasuda, T.; Goda, A.E.; Taniguchi, H.; Yano, K.; Wakada, M.; Sakai, T. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochem. Biophys. Res. Commun., 2008, 375(1), 129-133.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.131] [PMID: 18680719]
[169]
Li, W.; Du, B.; Wang, T.; Wang, S.; Zhang, J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 upregulated modulator of apoptosis. Chem. Biol. Interact., 2009, 177(2), 121-127.
[http://dx.doi.org/10.1016/j.cbi.2008.10.048] [PMID: 19028473]
[170]
Psahoulia, F.H.; Drosopoulos, K.G.; Doubravska, L.; Andera, L.; Pintzas, A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther., 2007, 6(9), 2591-2599.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0001] [PMID: 17876056]
[171]
Kim, B.W.; Lee, E.R.; Min, H.M.; Jeong, H.S.; Ahn, J.Y.; Kim, J.H.; Choi, H.Y.; Choi, H.; Kim, E.Y.; Park, S.P.; Cho, S.G. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biol. Ther., 2008, 7(7), 1080-1089.
[http://dx.doi.org/10.4161/cbt.7.7.6164] [PMID: 18443432]
[172]
Chou, C-C.; Yang, J-S.; Lu, H-F.; Ip, S-W.; Lo, C.; Wu, C-C.; Lin, J-P.; Tang, N-Y.; Chung, J-G.; Chou, M-J.; Teng, Y-H.; Chen, D-R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 2010, 33(8), 1181-1191.
[http://dx.doi.org/10.1007/s12272-010-0808-y] [PMID: 20803121]
[173]
Chien, S-Y.; Wu, Y-C.; Chung, J-G.; Yang, J-S.; Lu, H-F.; Tsou, M-F.; Wood, W.G.; Kuo, S-J.; Chen, D-R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum. Exp. Toxicol., 2009, 28(8), 493-503.
[http://dx.doi.org/10.1177/0960327109107002] [PMID: 19755441]
[174]
Luo, H.; Rankin, G.O.; Liu, L.; Daddysman, M.K.; Jiang, B-H.; Chen, Y.C. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr. Cancer, 2009, 61(4), 554-563.
[http://dx.doi.org/10.1080/01635580802666281] [PMID: 19838928]
[175]
Luo, H.; Rankin, G.O.; Juliano, N.; Jiang, B-H.; Chen, Y.C. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFκB-cMyc-p21 pathway. Food Chem., 2012, 130(2), 321-328.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.045] [PMID: 21927533]
[176]
Xiao, X.; Shi, D.; Liu, L.; Wang, J.; Xie, X.; Kang, T.; Deng, W. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. PLoS One, 2011, 6(8) e22934
[http://dx.doi.org/10.1371/journal.pone.0022934] [PMID: 21857970]
[177]
Deryugina, E.I.; Quigley, J.P. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev., 2006, 25(1), 9-34.
[http://dx.doi.org/10.1007/s10555-006-7886-9] [PMID: 16680569]
[178]
Lin, C.W.; Shen, S.C.; Chien, C.C.; Yang, L.Y.; Shia, L.T.; Chen, Y.C. 12-O-tetradecanoylphorbol-13-acetate-induced invasion/mi-gration of glioblastoma cells through activating PKCalpha/ERK/NF-kappaB-dependent MMP-9 expression. J. Cell. Physiol., 2010, 225(2), 472-481.
[http://dx.doi.org/10.1002/jcp.22226] [PMID: 20458747]
[179]
Shen, S.C.; Lin, C.W.; Lee, H.M.; Chien, L.L.; Chen, Y.C. Lipopolysaccharide plus 12-O-tetradecanoylphorbol 13-acetate induction of migration and invasion of glioma cells in vitro and in vivo: Differential inhibitory effects of flavonoids. Neuroscience, 2006, 140(2), 477-489.
[http://dx.doi.org/10.1016/j.neuroscience.2006.02.028] [PMID: 16580779]
[180]
Michaud-Levesque, J.; Bousquet-Gagnon, N.; Béliveau, R. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp. Cell Res., 2012, 318(8), 925-935.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.017] [PMID: 22394507]
[181]
Chen, T.J.; Shen, S.C.; Lin, H.Y.; Chien, L.L.; Chen, Y.C. Lipopolysaccharide enhancement of 12-O-tetradecanoylphorbol 13-acetate-mediated transformation in rat glioma C6, accompanied by induction of inducible nitric oxide synthase. Toxicol. Lett., 2004, 147(1), 1-13.
[http://dx.doi.org/10.1016/j.toxlet.2003.10.012] [PMID: 14700523]
[182]
Phromnoi, K.; Yodkeeree, S.; Anuchapreeda, S.; Limtrakul, P. Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol. Sin., 2009, 30(8), 1169-1176.
[http://dx.doi.org/10.1038/aps.2009.107] [PMID: 19617894]
[183]
Huang, Y.T.; Hwang, J.J.; Lee, P.P.; Ke, F.C.; Huang, J.H.; Huang, C.J.; Kandaswami, C.; Middleton, E., Jr; Lee, M.T. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br. J. Pharmacol., 1999, 128(5), 999-1010.
[http://dx.doi.org/10.1038/sj.bjp.0702879] [PMID: 10556937]
[184]
Vijayababu, M.R.; Arunkumar, A.; Kanagaraj, P.; Venkataraman, P.; Krishnamoorthy, G.; Arunakaran, J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in Prostate Cancer cells (PC-3). Mol. Cell. Biochem., 2006, 287(1-2), 109-116.
[http://dx.doi.org/10.1007/s11010-005-9085-3] [PMID: 16645725]
[185]
Cunha, W.R.; Arantes, G.M.; Ferreira, D.S.; Lucarini, R.; Silva, M.L.; Furtado, N.A.; da Silva Filho, A.A.; Crotti, A.E.; Araújo, A.R. Hypoglicemic effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia, 2008, 79(5), 356-360.
[http://dx.doi.org/10.1016/j.fitote.2008.04.002] [PMID: 18538949]
[186]
Jadhav, R.; Puchchakayala, G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, ellagic acid, quercetin, rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Int. J. Pharm. Pharm. Sci., 2012, 4, 251-256.
[187]
Kim, J-H.; Kang, M-J.; Choi, H-N.; Jeong, S-M.; Lee, Y-M.; Kim, J-I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr. Res. Pract., 2011, 5(2), 107-111.
[http://dx.doi.org/10.4162/nrp.2011.5.2.107] [PMID: 21556223]
[188]
Jeong, S.M.; Kang, M.J.; Choi, H.N.; Kim, J.H.; Kim, J.I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract., 2012, 6(3), 201-207.
[http://dx.doi.org/10.4162/nrp.2012.6.3.201] [PMID: 22808343]
[189]
Sunarwidhi, A.L.; Sudarsono, S.; Nugroho, A.E. Hypoglycemic effect of combination of Azadirachta indica A. Juss. and Gynura procumbens (Lour.) Merr. ethanolic extracts standardized by rutin and quercetin in alloxan-induced hyperglycemic rats. Adv. Pharm. Bull., 2014, 4(Suppl. 2), 613-618.
[PMID: 25671197]
[190]
Al-Numair, K.S.; Chandramohan, G.; Veeramani, C.; Alsaif, M.A. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep., 2015, 20(5), 198-209.
[http://dx.doi.org/10.1179/1351000214Y.0000000117] [PMID: 25494817]
[191]
Fang, X.K.; Gao, J.; Zhu, D.N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci., 2008, 82(11-12), 615-622.
[http://dx.doi.org/10.1016/j.lfs.2007.12.021] [PMID: 18262572]
[192]
Chen, Q.C.; Zhang, W.Y.; Jin, W.; Lee, I.S.; Min, B.S.; Jung, H.J.; Na, M.; Lee, S.; Bae, K. Flavonoids and isoflavonoids from Sophorae flos improve glucose uptake in vitro. Planta Med., 2010, 76(1), 79-81.
[http://dx.doi.org/10.1055/s-0029-1185944] [PMID: 19637114]
[193]
Zhang, Y.; Liu, D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur. J. Pharmacol., 2011, 670(1), 325-332.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.011] [PMID: 21914439]
[194]
el-Gammal, A.A.; Mansour, R.M. Antimicrobial activities of some flavonoid compounds. Zentralbl. Mikrobiol., 1986, 141(7), 561-565.
[http://dx.doi.org/10.1016/S0232-4393(86)80010-5] [PMID: 3811648]
[195]
Xu, H-X.; Lee, S.F. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother. Res., 2001, 15(1), 39-43.
[http://dx.doi.org/10.1002/1099-1573(200102)15:1<39:AID-PTR684>3.0.CO;2-R] [PMID: 11180521]
[196]
Habbu, P.V.; Mahadevan, K.M.; Shastry, R.A.; Manjunatha, H. Antimicrobial activity of flavanoid sulphates and other fractions of Argyreia speciosa (Burm.f) Boj. Indian J. Exp. Biol., 2009, 47(2), 121-128.
[PMID: 19374167]
[197]
Hashimoto, T.; Aga, H.; Chaen, H. Isolation and Identification of Anti-Helicobacter pylori compounds from Polygonum tinctorium Lour. Nat. Med., 1998, pp. 27-31.
[198]
Kataoka, M.; Hirata, K.; Kunikata, T.; Ushio, S.; Iwaki, K.; Ohashi, K.; Ikeda, M.; Kurimoto, M. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J. Gastroenterol., 2001, 36(1), 5-9.
[http://dx.doi.org/10.1007/s005350170147] [PMID: 11211212]
[199]
Shin, J.E.; Kim, J.M.; Bae, E.A.; Hyun, Y.J.; Kim, D.H. In vitro inhibitory effect of flavonoids on growth, infection and vacuolation of Helicobacter pylori. Planta Med., 2005, 71(3), 197-201.
[http://dx.doi.org/10.1055/s-2005-837816] [PMID: 15770537]
[200]
González-Segovia, R.; Quintanar, J.L.; Salinas, E.; Ceballos-Salazar, R.; Aviles-Jiménez, F.; Torres-López, J. Effect of the flavonoid quercetin on inflammation and lipid peroxidation induced by Helicobacter pylori in gastric mucosa of guinea pig. J. Gastroenterol., 2008, 43(6), 441-447.
[http://dx.doi.org/10.1007/s00535-008-2184-7] [PMID: 18600388]
[201]
Liu, A.L.; Wang, H.D.; Lee, S.M.; Wang, Y.T.; Du, G.H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem., 2008, 16(15), 7141-7147.
[http://dx.doi.org/10.1016/j.bmc.2008.06.049] [PMID: 18640042]
[202]
Mahmood, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.I.; Hay, A.J.; Centre, M.R.C.C.; Lane, B.; Hill, M.; Nw, L.; Kingdom, U. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochem. Biophys. Res. Commun., 1996, 229(1), 73-79.
[http://dx.doi.org/10.1006/bbrc.1996.1759] [PMID: 8954085]
[203]
Tsai, F.J.; Lin, C.W.; Lai, C.C.; Lan, Y.C.; Lai, C.H.; Hung, C.H.; Hsueh, K.C.; Lin, T.H.; Chang, H.C.; Wan, L.; Sheu, J.J.C.; Lin, Y.J. Kaempferol inhibits enterovirus 71 replication and Internal Ribosome Entry Site (IRES) activity through FUBP and HNRP proteins. Food Chem., 2011, 128(2), 312-322.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.022] [PMID: 25212137]
[204]
Amoros, M.; Simões, C.M.; Girre, L.; Sauvager, F.; Cormier, M. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. J. Nat. Prod., 1992, 55(12), 1732-1740.
[http://dx.doi.org/10.1021/np50090a003] [PMID: 1338212]
[205]
Saito, S.; Kawabata, J. DPPH (= 2, 2-Diphenyl-1-picrylhydrazyl) radical-scavenging reaction of protocatechuic acid (=3,4‐Dihydroxybenzoic acid): Difference in reactivity between acids and their esters. Helv. Chim. Acta, 2006, 89, 1395-1407.
[206]
Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol., 2014, 2014 952943
[207]
Malami, I. Prenylated benzoic acid derivatives from piper species as source of anti-infective agents. IJPSR, 2012, 3, 1554-1559.
[208]
Khan, S.A.; Chatterjee, S.S.; Kumar, V. Low dose aspirin like analgesic and anti-inflammatory activities of mono-hydroxyben-zoic acids in stressed rodents. Life Sci., 2016, 148, 53-62.
[http://dx.doi.org/10.1016/j.lfs.2016.02.032] [PMID: 26874033]
[209]
Natella, F.; Nardini, M.; Di Felice, M.; Scaccini, C. Benzoic and cinnamic acid derivatives as antioxidants: Structure-activity relation. J. Agric. Food Chem., 1999, 47(4), 1453-1459.
[http://dx.doi.org/10.1021/jf980737w] [PMID: 10563998]
[210]
Cisowski, W. Hydrogen peroxide scavenging, antioxidant and antiradical activity of some phenolic acids. Food Chem. Toxicol., 2003, 41(16), 753-758.
[http://dx.doi.org/10.1016/S0278-6915(02)00329-0] [PMID: 12738180]
[211]
Li, X. Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct. Food Health Dis., 2011, 7, 232-244.
[212]
Tanaka, T.; Tanaka, T.; Tanaka, M. Potential cancer chemopreventive activity of protocatechuic acid. J. Exp. Clin. Med., 2011, 3, 27-33.
[http://dx.doi.org/10.1016/j.jecm.2010.12.005]
[213]
Lin, H.H.; Chen, J.H.; Huang, C.C.; Wang, C.J. Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. Int. J. Cancer, 2007, 120(11), 2306-2316.
[http://dx.doi.org/10.1002/ijc.22571] [PMID: 17304508]
[214]
Suzuki, R.; Kohno, H.; Sugie, S.; Tanaka, T. Dietary protocatechuic acid during the progression phase exerts chemopreventive effects on chemically induced rat tongue carcinogenesis. Asian Pac. J. Cancer Prev., 2003, 4(4), 319-326.
[PMID: 14728590]
[215]
Tseng, T.H.; Kao, T.W.; Chu, C.Y.; Chou, F.P.; Lin, W.L.; Wang, C.J. Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem. Pharmacol., 2000, 60(3), 307-315.
[http://dx.doi.org/10.1016/S0006-2952(00)00322-1] [PMID: 10856425]
[216]
Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.J.; Gescher, A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev., 2000, 9, 1163-1170.
[217]
Kampa, M.; Alexaki, V-I.; Notas, G.; Nifli, A-P.; Nistikaki, A.; Hatzoglou, A.; Bakogeorgou, E.; Kouimtzoglou, E.; Blekas, G.; Boskou, D.; Gravanis, A.; Castanas, E. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res., 2004, 6(2), R63-R74.
[http://dx.doi.org/10.1186/bcr752] [PMID: 14979919]
[218]
Lee, I.R.; Yang, M.Y. Phenolic compounds from Duchesnea chrysantha and their cytotoxic activities in human cancer cell. Arch. Pharm. Res., 1994, 17, 476-479.
[219]
Baer-Dubowska, W.; Szaefer, H.; Krajka-Kuzniak, V. Inhibition of murine hepatic cytochrome P450 activities by natural and synthetic phenolic compounds. Xenobiotica, 1998, 28(8), 735-743.
[http://dx.doi.org/10.1080/004982598239155] [PMID: 9741952]
[220]
Szaefer, H.; Jodynis-Liebert, J.; Cichocki, M.; Matuszewska, A.; Baer-Dubowska, W. Effect of naturally occurring plant phenolics on the induction of drug metabolizing enzymes by o-toluidine. Toxicology, 2003, 186(1-2), 67-77.
[http://dx.doi.org/10.1016/S0300-483X(02)00615-7] [PMID: 12604171]
[221]
Krajka-Kuźniak, V.; Szaefer, H.; Baer-Dubowska, W. Modulation of 3-methylcholanthrene-induced rat hepatic and renal cytochrome P450 and phase II enzymes by plant phenols: Protocatechuic and tannic acids. Toxicol. Lett., 2004, 152(2), 117-126.
[PMID: 15302093]
[222]
Stalmach, A.; Williamson, G.; Clifford, M.N. Dietary hydroxycinnamates and their bioablility. In: Flavonoids and Related Compounds: Bioavailability and Function. Crozier, A., Ed.; CRC Press: Florida,. 2012, pp. 124-149.
[http://dx.doi.org/10.1201/b11872-7]
[223]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[224]
Razzaghi-Asl, N.; Garrido, J.; Khazraei, H.; Borges, F.; Firuzi, O. Antioxidant properties of hydroxycinnamic acids: A review of structure- activity relationships. Curr. Med. Chem., 2013, 20(36), 4436-4450.
[http://dx.doi.org/10.2174/09298673113209990141] [PMID: 23834166]
[225]
Shahidi, F.; Chandrasekara, A. Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem. Rev., 2010, 9, 147-170.
[http://dx.doi.org/10.1007/s11101-009-9142-8]
[226]
Lempereur, I. Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum duruml.). Grain and its milling fractions. J. Cereal Sci., 1997, 25, 103-110.
[http://dx.doi.org/10.1006/jcrs.1996.0090]
[227]
Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem., 2005, 53(19), 7592-7599.
[http://dx.doi.org/10.1021/jf050579q] [PMID: 16159191]
[228]
Counet, C.; Callemien, D.; Collin, S. Chocolate and cocoa: New sources of trans-resveratrol and trans-piceid. Food Chem., 2006, 98, 649-657.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.030]
[229]
Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. (Amst.), 2014, 4, 86-93.
[http://dx.doi.org/10.1016/j.btre.2014.09.002] [PMID: 28626667]
[230]
Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem., 2002, 50(7), 2161-2168.
[http://dx.doi.org/10.1021/jf011348w] [PMID: 11902973]
[231]
Chen, J.H.; Ho, C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem., 1997, 45, 2374-2378.
[http://dx.doi.org/10.1021/jf970055t]
[232]
Cuvelier, M-E.; Richard, H.; Berset, C. Comparison of the antioxidative activity of some acid-phenols: Structure-activity relationship. Biosci. Biotechnol. Biochem., 1992, 56, 324-325.
[http://dx.doi.org/10.1271/bbb.56.324]
[233]
Sri Balasubashini, M.; Rukkumani, R.; Menon, V.P. Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetol., 2003, 40(3), 118-122.
[http://dx.doi.org/10.1007/s00592-003-0099-6] [PMID: 14605967]
[234]
Balasubashini, M.S.; Rukkumani, R.; Viswanathan, P.; Menon, V.P. Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother. Res., 2004, 18(4), 310-314.
[http://dx.doi.org/10.1002/ptr.1440] [PMID: 15162367]
[235]
Ohnishi, M.; Matuo, T.; Tsuno, T.; Hosoda, A.; Nomura, E.; Taniguchi, H.; Sasaki, H.; Morishita, H. Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. Biofactors, 2004, 21(1-4), 315-319.
[http://dx.doi.org/10.1002/biof.552210161] [PMID: 15630218]
[236]
Mandal, S.; Barik, B.; Mallick, C.; De, D.; Ghosh, D. Therapeutic effect of ferulic acid, an ethereal fraction of ethanolic extract of seed of Syzygium cumini against streptozotocin-induced diabetes in male rat. Methods Find. Exp. Clin. Pharmacol., 2008, 30(2), 121-128.
[http://dx.doi.org/10.1358/mf.2008.30.2.1143090] [PMID: 18560627]
[237]
Choi, R.; Kim, B.H.; Naowaboot, J.; Lee, M.Y.; Hyun, M.R.; Cho, E.J.; Lee, E.S.; Lee, E.Y.; Yang, Y.C.; Chung, C.H. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Exp. Mol. Med., 2011, 43(12), 676-683.
[http://dx.doi.org/10.3858/emm.2011.43.12.078] [PMID: 21975281]
[238]
Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Chemopreventive herbal anti-oxidants: Current status and future perspectives. J. Clin. Biochem. Nutr., 2007, 40, 92-100.
[239]
Klahr, S. The role of nitric oxide in hypertension and renal disease progression. Nephrol. Dial. Transplant., 2001, 16(Suppl. 1), 60-62.
[http://dx.doi.org/10.1093/ndt/16.suppl_1.60] [PMID: 11369823]
[240]
Tschudi, M.R.; Mesaros, S.; Lüscher, T.F.; Malinski, T. Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Increased decomposition by superoxide in hypertension. Hypertension, 1996, 27(1), 32-35.
[http://dx.doi.org/10.1161/01.HYP.27.1.32] [PMID: 8591884]
[241]
Suzuki, A.; Kagawa, D.; Fujii, A.; Ochiai, R.; Tokimitsu, I.; Saito, I. Short- and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats. Am. J. Hypertens., 2002, 15(4 Pt 1), 351-357.
[http://dx.doi.org/10.1016/S0895-7061(01)02337-8] [PMID: 11991222]
[242]
Toda, S.; Kumura, M.; Ohnishi, M. Effects of phenolcarboxylic acids on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med., 1991, 57(1), 8-10.
[http://dx.doi.org/10.1055/s-2006-960005] [PMID: 1648246]
[243]
Sudheer, A.R.; Chandran, K.; Marimuthu, S.; Menon, V.P. Ferulic Acid modulates altered lipid profiles and prooxidant/antioxidant status in circulation during nicotine-induced toxicity: A dose-dependent study. Toxicol. Mech. Methods, 2005, 15(6), 375-381.
[http://dx.doi.org/10.1080/15376520500194783] [PMID: 20021059]
[244]
Lopategui Cabezas, I.; Herrera Batista, A.; Pentón Rol, G. The role of glial cells in Alzheimer disease: Potential therapeutic implications. Neurologia, 2014, 29(5), 305-309.
[http://dx.doi.org/10.1016/j.nrl.2012.10.006] [PMID: 23246214]
[245]
Kim, H-S.; Cho, J-Y.; Kim, D-H.; Yan, J-J.; Lee, H-K.; Suh, H-W.; Song, D-K. Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice. Biol. Pharm. Bull., 2004, 27(1), 120-121.
[http://dx.doi.org/10.1248/bpb.27.120] [PMID: 14709913]
[246]
Yan, J-J.; Cho, J-Y.; Kim, H-S.; Kim, K-L.; Jung, J-S.; Huh, S-O.; Suh, H-W.; Kim, Y-H.; Song, D-K. Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br. J. Pharmacol., 2001, 133(1), 89-96.
[http://dx.doi.org/10.1038/sj.bjp.0704047] [PMID: 11325798]
[247]
Sultana, R.; Ravagna, A.; Mohmmad-Abdul, H.; Calabrese, V.; Butterfield, D.A. Ferulic acid ethyl ester protects neurons against amyloid beta-peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J. Neurochem., 2005, 92(4), 749-758.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02899.x] [PMID: 15686476]
[248]
Joshi, G.; Perluigi, M.; Sultana, R.; Agrippino, R.; Calabrese, V.; Butterfield, D.A. In vivo protection of synaptosomes by Ferulic Acid Ethyl Ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe2+/H2O2: Insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders. Neurochem. Int., 2006, 48(4), 318-327.
[http://dx.doi.org/10.1016/j.neuint.2005.11.006] [PMID: 16386335]
[249]
Anselmi, C.; Centini, M.; Andreassi, M.; Buonocore, A.; La Rosa, C.; Facino, R.M.; Sega, A.; Tsuno, F. Conformational analysis: A tool for the elucidation of the antioxidant properties of ferulic acid derivatives in membrane models. J. Pharm. Biomed. Anal., 2004, 35(5), 1241-1249.
[http://dx.doi.org/10.1016/j.jpba.2004.04.008] [PMID: 15336368]
[250]
Saija, A.; Tomaino, A.; Trombetta, D.; De Pasquale, A.; Uccella, N.; Barbuzzi, T.; Paolino, D.; Bonina, F. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int. J. Pharm., 2000, 199(1), 39-47.
[http://dx.doi.org/10.1016/S0378-5173(00)00358-6] [PMID: 10794925]
[251]
Saija, A.; Tomaino, A.; Lo Cascio, R.; Trombetta, D.; Proteggente, A.; De Pasquale, A.; Uccella, N.; Bonina, F. Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. J. Sci. Food Agric., 1999, 79, 476-480.
[http://dx.doi.org/10.1002/(SICI)1097-0010(19990301)79:3<476:AID-JSFA270>3.0.CO;2-L]
[252]
Lin, F.H.; Lin, J.Y.; Gupta, R.D.; Tournas, J.A.; Burch, J.A.; Selim, M.A.; Monteiro-Riviere, N.A.; Grichnik, J.M.; Zielinski, J.; Pinnell, S.R. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J. Invest. Dermatol., 2005, 125(4), 826-832.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23768.x] [PMID: 16185284]
[253]
van der Logt, E.M.J.; Roelofs, H.M.J.; Nagengast, F.M.; Peters, W.H.M. Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis, 2003, 24(10), 1651-1656.
[http://dx.doi.org/10.1093/carcin/bgg117] [PMID: 12869420]
[254]
Goerres, M.; Roelofs, H.M.J.; Jansen, J.B.M.J.; Peters, W.H.M. Deficient UDP-glucuronosyltransferase detoxification enzyme activity in the small intestinal mucosa of patients with coeliac disease. Aliment. Pharmacol. Ther., 2006, 23(2), 243-246.
[http://dx.doi.org/10.1111/j.1365-2036.2006.02754.x] [PMID: 16393303]
[255]
Janicke, B.; Hegardt, C.; Krogh, M.; Onning, G.; Akesson, B.; Cirenajwis, H.M.; Oredsson, S.M.; Åkesson, B.; Cirenajwis, H.M.; Oredsson, S.M. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr. Cancer, 2011, 63(4), 611-622.
[http://dx.doi.org/10.1080/01635581.2011.538486] [PMID: 21500097]
[256]
Janicke, B.; Önning, G.; Oredsson, S.M. Differential effects of ferulic acid and p-coumaric acid on S phase distribution and length of S phase in the human colonic cell line Caco-2. J. Agric. Food Chem., 2005, 53(17), 6658-6665.
[http://dx.doi.org/10.1021/jf050489l] [PMID: 16104781]
[257]
Hou, Y.; Yang, J.; Zhao, G.; Yuan, Y. Ferulic acid inhibits endothelial cell proliferation through NO down-regulating ERK1/2 pathway. J. Cell. Biochem., 2004, 93(6), 1203-1209.
[http://dx.doi.org/10.1002/jcb.20281] [PMID: 15486966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy