Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations

Author(s): Yun Yuan*, Chunyun Wu and Eng-Ang Ling*

Volume 25, Issue 21, 2019

Page: [2375 - 2393] Pages: 19

DOI: 10.2174/1381612825666190722114248

Price: $65

Abstract

Background: Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies.

Methods: Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed.

Results: Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds.

Conclusion: Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.

Keywords: Microglia phenotypes, normal developing and mature brain, neurodegenerative diseases, diverse immunochemical coding, microglia functions, phenotype modulation.

[1]
Ling EA. Some aspects of amoeboid microglia in the corpus callosum and neighbouring regions of neonatal rats. J Anat 1976; 121(Pt 1): 29-45.
[PMID: 1254530]
[2]
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76(9): 736-53.
[http://dx.doi.org/10.1093/jnen/nlx056] [PMID: 28859332]
[3]
Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990; 39(1): 151-70.
[http://dx.doi.org/10.1016/0306-4522(90)90229-W] [PMID: 2089275]
[4]
Ling EA, Leblond CP. Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum. J Comp Neurol 1973; 149(1): 73-81.
[http://dx.doi.org/10.1002/cne.901490105] [PMID: 4121706]
[5]
Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 2014; 15(5): 300-12.
[http://dx.doi.org/10.1038/nrn3722] [PMID: 24713688]
[6]
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308(5726): 1314-8.
[http://dx.doi.org/10.1126/science.1110647] [PMID: 15831717]
[7]
Sierra A, Encinas JM, Deudero JJ, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010; 7(4): 483-95.
[http://dx.doi.org/10.1016/j.stem.2010.08.014] [PMID: 20887954]
[8]
Squarzoni P, Oller G, Hoeffel G, et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep 2014; 8(5): 1271-9.
[http://dx.doi.org/10.1016/j.celrep.2014.07.042] [PMID: 25159150]
[9]
Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74(4): 691-705.
[http://dx.doi.org/10.1016/j.neuron.2012.03.026] [PMID: 22632727]
[10]
Neher JJ, Emmrich JV, Fricker M, Mander PK, Théry C, Brown GC. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl Acad Sci USA 2013; 110(43): E4098-107.
[http://dx.doi.org/10.1073/pnas.1308679110] [PMID: 24101459]
[11]
Ling EA, Wong WC. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 1993; 7(1): 9-18.
[http://dx.doi.org/10.1002/glia.440070105] [PMID: 8423067]
[12]
Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases. Curr Med Chem 2007; 14(11): 1189-97.
[http://dx.doi.org/10.2174/092986707780597961] [PMID: 17504139]
[13]
Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci 2011; 33(3-4): 199-209.
[http://dx.doi.org/10.1159/000328989] [PMID: 21757877]
[14]
Thored P, Heldmann U, Gomes-Leal W, et al. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 2009; 57(8): 835-49.
[http://dx.doi.org/10.1002/glia.20810] [PMID: 19053043]
[15]
Lu YZ, Lin CH, Cheng FC, Hsueh CM. Molecular mechanisms responsible for microglia-derived protection of Sprague-Dawley rat brain cells during in vitro ischemia. Neurosci Lett 2005; 373(2): 159-64.
[http://dx.doi.org/10.1016/j.neulet.2004.10.004] [PMID: 15567573]
[16]
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19(8): 312-8.
[http://dx.doi.org/10.1016/0166-2236(96)10049-7] [PMID: 8843599]
[17]
Aloisi F. Immune function of microglia. Glia 2001; 36(2): 165-79.
[http://dx.doi.org/10.1002/glia.1106] [PMID: 11596125]
[18]
Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010; 87(5): 779-89.
[http://dx.doi.org/10.1189/jlb.1109766] [PMID: 20130219]
[19]
Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009; 132(Pt 2): 288-95.
[http://dx.doi.org/10.1093/brain/awn109] [PMID: 18567623]
[20]
Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009; 4: 47.
[http://dx.doi.org/10.1186/1750-1326-4-47] [PMID: 19917131]
[21]
Guillot-Sestier MV, Town T. Innate immunity in Alzheimer’s disease: a complex affair. CNS Neurol Disord Drug Targets 2013; 12(5): 593-607.
[http://dx.doi.org/10.2174/1871527311312050008] [PMID: 23574177]
[22]
Qian L, Flood PM, Hong JS. Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm (Vienna) 2010; 117(8): 971-9.
[http://dx.doi.org/10.1007/s00702-010-0428-1] [PMID: 20571837]
[23]
Patel AR, Ritzel R, McCullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 2013; 5(2): 73-90.
[PMID: 23750306]
[24]
Wu CH, Wen CY, Shieh JY, Ling EA. A quantitative and morphometric study of the transformation of amoeboid microglia into ramified microglia in the developing corpus callosum in rats. J Anat 1992; 181(Pt 3): 423-30.
[PMID: 1304580]
[25]
Wu CH, Yeh ST, Ling EA. Studies of lectin receptors of rat microglia in culture: receptor distribution and internalization. Exp Brain Res 1999; 124(1): 89-99.
[http://dx.doi.org/10.1007/s002210050603] [PMID: 9928793]
[26]
Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 2016; 19(8): 987-91.
[http://dx.doi.org/10.1038/nn.4338] [PMID: 27459405]
[27]
Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330(6005): 841-5.
[http://dx.doi.org/10.1126/science.1194637] [PMID: 20966214]
[28]
Kaur C, Ling EA. Study of the transformation of amoeboid microglial cells into microglia labelled with the isolectin Griffonia simplicifolia in postnatal rats. Acta Anat (Basel) 1991; 142(2): 118-25.
[http://dx.doi.org/10.1159/000147175] [PMID: 1781250]
[29]
Andjelkovic AV, Nikolic B, Pachter JS, Zecevic N. Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Res 1998; 814(1-2): 13-25.
[http://dx.doi.org/10.1016/S0006-8993(98)00830-0] [PMID: 9838024]
[30]
Rezaie P, Male D. Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 1999; 45(6): 359-82.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19990615)45:6<359:AID-JEMT4>3.0.CO;2-D] [PMID: 10402264]
[31]
Monier A, Evrard P, Gressens P, Verney C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 2006; 499(4): 565-82.
[http://dx.doi.org/10.1002/cne.21123] [PMID: 17029271]
[32]
Hutchins KD, Dickson DW, Rashbaum WK, Lyman WD. Localization of morphologically distinct microglial populations in the developing human fetal brain: implications for ontogeny. Brain Res Dev Brain Res 1990; 55(1): 95-102.
[http://dx.doi.org/10.1016/0165-3806(90)90109-C] [PMID: 2208643]
[33]
Thomas WE. Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev 1992; 17(1): 61-74.
[http://dx.doi.org/10.1016/0165-0173(92)90007-9] [PMID: 1638276]
[34]
Hirasawa T, Ohsawa K, Imai Y, et al. Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 2005; 81(3): 357-62.
[http://dx.doi.org/10.1002/jnr.20480] [PMID: 15948177]
[35]
Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 1998; 57(1): 1-9.
[http://dx.doi.org/10.1016/S0169-328X(98)00040-0] [PMID: 9630473]
[36]
Ling EA, Kaur LC, Yick TY, Wong WC. Immunocytochemical localization of CR3 complement receptors with OX-42 in amoeboid microglia in postnatal rats. Anat Embryol (Berl) 1990; 182(5): 481-6.
[http://dx.doi.org/10.1007/BF00178913] [PMID: 2291492]
[37]
Sedgwick JD, Schwender S, Imrich H, Dörries R, Butcher GW, ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 1991; 88(16): 7438-42.
[http://dx.doi.org/10.1073/pnas.88.16.7438] [PMID: 1651506]
[38]
Devarajan G, Chen M, Muckersie E. Culture and characterization of microglia from the adult murine retina 2014.
[http://dx.doi.org/10.1155/2014/894368]
[39]
McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG. Microglia in degenerative neurological disease. Glia 1993; 7(1): 84-92.
[http://dx.doi.org/10.1002/glia.440070114] [PMID: 8423066]
[40]
Ueba Y, Aratake T, Onodera KI, et al. Attenuation of zinc-enhanced inflammatory M1 phenotype of microglia by peridinin protects against short-term spatial-memory impairment following cerebral ischemia in mice. Biochem Biophys Res Commun 2018; 507(1-4): 476-83.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.067] [PMID: 30466781]
[41]
Ladeby R, Wirenfeldt M, Dalmau I, et al. Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury. Glia 2005; 50(2): 121-31.
[http://dx.doi.org/10.1002/glia.20159] [PMID: 15657941]
[42]
Hashemi-Monfared A, Firouzi M, Bahrami Z, Zahednasab H, Harirchian MH. Minocycline decreases CD36 and increases CD44 in LPS-induced microglia. J Neuroimmunol 2018; 317: 95-9.
[http://dx.doi.org/10.1016/j.jneuroim.2018.01.010] [PMID: 29395319]
[43]
Zhao X, Sun G, Ting SM, et al. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J Neurochem 2015; 133(1): 144-52.
[http://dx.doi.org/10.1111/jnc.12974] [PMID: 25328080]
[44]
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011; 91(2): 461-553.
[http://dx.doi.org/10.1152/physrev.00011.2010] [PMID: 21527731]
[45]
Chen L, Yang P, Kijlstra A. Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 2002; 10(1): 27-39.
[http://dx.doi.org/10.1076/ocii.10.1.27.10328] [PMID: 12461701]
[46]
Yu K, Youshani AS, Wilkinson FL, et al. A nonmyeloablative chimeric mouse model accurately defines microglia and macrophage contribution in glioma. Neuropathol Appl Neurobiol 2019; 45(2): 119-40.
[47]
Rezaie P, Patel K, Male DK. Microglia in the human fetal spinal cord--patterns of distribution, morphology and phenotype. Brain Res Dev Brain Res 1999; 115(1): 71-81.
[http://dx.doi.org/10.1016/S0165-3806(99)00043-7] [PMID: 10366704]
[48]
Lee YB, Nagai A, Kim SU. Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 2002; 69(1): 94-103.
[http://dx.doi.org/10.1002/jnr.10253] [PMID: 12111820]
[49]
Peng H, Geil Nickell CR, Chen KY, McClain JA, Nixon K. Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol 2017; 62: 29-40.
[http://dx.doi.org/10.1016/j.alcohol.2017.02.175] [PMID: 28755749]
[50]
Louveau A, Nerrière-Daguin V, Vanhove B, et al. Targeting the CD80/CD86 costimulatory pathway with CTLA4-Ig directs microglia toward a repair phenotype and promotes axonal outgrowth. Glia 2015; 63(12): 2298-312.
[http://dx.doi.org/10.1002/glia.22894] [PMID: 26212105]
[51]
Wolf Y, Shemer A, Levy-Efrati L, et al. Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Eur J Immunol 2018; 48(8): 1308-18.
[http://dx.doi.org/10.1002/eji.201847540]
[52]
Kaur C, Sivakumar V, Foulds WS. Early response of neurons and glial cells to hypoxia in the retina. Invest Ophthalmol Vis Sci 2006; 47(3): 1126-41.
[http://dx.doi.org/10.1167/iovs.05-0518] [PMID: 16505051]
[53]
Ashwell K. The distribution of microglia and cell death in the fetal rat forebrain. Brain Res Dev Brain Res 1991; 58(1): 1-12.
[http://dx.doi.org/10.1016/0165-3806(91)90231-7] [PMID: 2015649]
[54]
Lee S, Shi XQ, Fan A, West B, Zhang J. Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Mol Pain 2018; 141744806918764979
[http://dx.doi.org/10.1177/1744806918764979] [PMID: 29546785]
[55]
Rosin JM, Vora SR, Kurrasch DM. Depletion of embryonic microglia using the CSF1R inhibitor PLX5622 has adverse sex-specific effects on mice, including accelerated weight gain, hyperactivity and anxiolytic-like behaviour. Brain Behav Immun 2018; 73: 682-97.
[http://dx.doi.org/10.1016/j.bbi.2018.07.023] [PMID: 30056204]
[56]
Auffray C, Fogg DK, Narni-Mancinelli E, et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 2009; 206(3): 595-606.
[http://dx.doi.org/10.1084/jem.20081385] [PMID: 19273628]
[57]
Siew JJ, Chern Y. Microglial Lectins in Health and Neurological Diseases. Front Mol Neurosci 2018; 11: 158.
[http://dx.doi.org/10.3389/fnmol.2018.00158] [PMID: 29867350]
[58]
Boya J, Calvo JL, Carbonell AL, Borregon A. A lectin histochemistry study on the development of rat microglial cells. J Anat 1991; 175: 229-36.
[PMID: 2050568]
[59]
Kaur C, Singh J, Ling EA. Immunohistochemical and lectin-labelling studies of the distribution and development of microglia in the spinal cord of postnatal rats. Arch Histol Cytol 1993; 56(5): 475-84.
[http://dx.doi.org/10.1679/aohc.56.475] [PMID: 8129981]
[60]
Rajan WD, Wojtas B, Gielniewski B, Gieryng A, Zawadzka M, Kaminska B. Dissecting functional phenotypes of microglia and macrophages in the rat brain after transient cerebral ischemia. Glia 2018.
[PMID: 30485549]
[61]
Bedi SS, Smith P, Hetz RA, Xue H, Cox CS. Immunomagnetic enrichment and flow cytometric characterization of mouse microglia. J Neurosci Methods 2013; 219(1): 176-82.
[http://dx.doi.org/10.1016/j.jneumeth.2013.07.017] [PMID: 23928152]
[62]
Parakalan R, Jiang B, Nimmi B, et al. Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC Neurosci 2012; 13: 64.
[http://dx.doi.org/10.1186/1471-2202-13-64] [PMID: 22697290]
[63]
Baby N, Li Y, Ling EA, Lu J, Dheen ST. Runx1t1 (Runt-related transcription factor 1; translocated to, 1) epigenetically regulates the proliferation and nitric oxide production of microglia. PLoS One 2014; 9(2)e89326
[http://dx.doi.org/10.1371/journal.pone.0089326] [PMID: 24586690]
[64]
Manivannan J, Tay SS, Ling EA, Dheen ST. Dihydropyrimidinase-like 3 regulates the inflammatory response of activated microglia. Neuroscience 2013; 253: 40-54.
[http://dx.doi.org/10.1016/j.neuroscience.2013.08.023] [PMID: 23988434]
[65]
Tseng CY, Ling EA, Wong WC. A scanning and transmission electron microscopic study of amoeboid microglial cells in the prenatal rat brain following a maternal injection of 6-aminonicotinamide. J Anat 1984; 138(Pt 4): 733-43.
[PMID: 6235203]
[66]
Kaur C, Sivakumar V, Ang LS, Sundaresan A. Hypoxic damage to the periventricular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicity. J Neurochem 2006; 98(4): 1200-16.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03964.x] [PMID: 16787408]
[67]
Imamoto K, Leblond CP. Presence of labeled monocytes, macrophages and microglia in a stab wound of the brain following an injection of bone marrow cells labeled with 3H-uridine into rats. J Comp Neurol 1977; 174(2): 255-79.
[http://dx.doi.org/10.1002/cne.901740205] [PMID: 325029]
[68]
Kaur C, Ling EA, Wong WC. Origin and fate of neural macrophages in a stab wound of the brain of the young rat. J Anat 1987; 154: 215-27.
[PMID: 3446660]
[69]
Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009; 4(4): 399-418.
[http://dx.doi.org/10.1007/s11481-009-9164-4] [PMID: 19655259]
[70]
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5(12): 953-64.
[http://dx.doi.org/10.1038/nri1733] [PMID: 16322748]
[71]
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446): 445-55.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[72]
Varnum MM, Ikezu T. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 2012; 60(4): 251-66.
[http://dx.doi.org/10.1007/s00005-012-0181-2] [PMID: 22710659]
[73]
Yenari MA, Kauppinen TM, Swanson RA. Microglial activation in stroke: therapeutic targets. Neurotherapeutics 2010; 7(4): 378-91.
[http://dx.doi.org/10.1016/j.nurt.2010.07.005] [PMID: 20880502]
[74]
Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009; 158(3): 1021-9.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.052] [PMID: 18662748]
[75]
Krady JK, Lin HW, Liberto CM, Basu A, Kremlev SG, Levison SW. Ciliary neurotrophic factor and interleukin-6 differentially activate microglia. J Neurosci Res 2008; 86(7): 1538-47.
[http://dx.doi.org/10.1002/jnr.21620] [PMID: 18214991]
[76]
Schwartz M, Butovsky O, Brück W, Hanisch UK. Microglial phenotype: is the commitment reversible? Trends Neurosci 2006; 29(2): 68-74.
[http://dx.doi.org/10.1016/j.tins.2005.12.005] [PMID: 16406093]
[77]
Ziemka-Nalecz M, Jaworska J, Zalewska T. Insights Into the Neuroinflammatory Responses After Neonatal Hypoxia-Ischemia. J Neuropathol Exp Neurol 2017; 76(8): 644-54.
[http://dx.doi.org/10.1093/jnen/nlx046] [PMID: 28789477]
[78]
Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 2013; 61(1): 91-103.
[http://dx.doi.org/10.1002/glia.22363] [PMID: 22653784]
[79]
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13.
[http://dx.doi.org/10.12703/P6-13] [PMID: 24669294]
[80]
Bell-Temin H, Culver-Cochran AE, Chaput D, et al. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics. Mol Cell Proteomics 2015; 14(12): 3173-84.
[http://dx.doi.org/10.1074/mcp.M115.053926] [PMID: 26424600]
[81]
Mosser DM. The many faces of macrophage activation. J Leukoc Biol 2003; 73(2): 209-12.
[http://dx.doi.org/10.1189/jlb.0602325] [PMID: 12554797]
[82]
Xu H, Wang Z, Li J, et al. The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. Neural Plast 2017; 20175405104
[http://dx.doi.org/10.1155/2017/5405104] [PMID: 28255460]
[83]
Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015; 131: 65-86.
[http://dx.doi.org/10.1016/j.pneurobio.2015.05.003] [PMID: 26067058]
[84]
Zhou T, Huang Z, Sun X, et al. Microglia Polarization with M1/M2 Phenotype Changes in rd1 Mouse Model of Retinal Degeneration. Front Neuroanat 2017; 11: 77.
[http://dx.doi.org/10.3389/fnana.2017.00077] [PMID: 28928639]
[85]
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009; 29(43): 13435-44.
[http://dx.doi.org/10.1523/JNEUROSCI.3257-09.2009] [PMID: 19864556]
[86]
Wan S, Cheng Y, Jin H, et al. Microglia Activation and Polarization After Intracerebral Hemorrhage in Mice: the Role of Protease-Activated Receptor-1. Transl Stroke Res 2016; 7(6): 478-87.
[http://dx.doi.org/10.1007/s12975-016-0472-8] [PMID: 27206851]
[87]
Aryanpour R, Pasbakhsh P, Zibara K, et al. Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int Immunopharmacol 2017; 51: 131-9.
[http://dx.doi.org/10.1016/j.intimp.2017.08.007] [PMID: 28830026]
[88]
Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 2011; 11(11): 775-87.
[http://dx.doi.org/10.1038/nri3086] [PMID: 22025055]
[89]
Nakagawa Y, Chiba K. Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 2014; 7(12): 1028-48.
[http://dx.doi.org/10.3390/ph7121028] [PMID: 25429645]
[90]
Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front Mol Neurosci 2017; 10: 191.
[http://dx.doi.org/10.3389/fnmol.2017.00191] [PMID: 28674485]
[91]
Grabert K, Michoel T, Karavolos MH, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 2016; 19(3): 504-16.
[http://dx.doi.org/10.1038/nn.4222] [PMID: 26780511]
[92]
Ling EA. Electron-microscopic identification of amoeboid microglia in the spinal cord of newborn rats. Acta Anat (Basel) 1976; 96(4): 600-9.
[http://dx.doi.org/10.1159/000144707] [PMID: 1012947]
[93]
Ling EA. Ultrastructure and peroxidase cytochemistry of macrophages present in the retina of postnatal rats. Arch Histol Jpn 1981; 44(2): 167-76.
[http://dx.doi.org/10.1679/aohc1950.44.167] [PMID: 7316694]
[94]
Ling EA. A light microscopic demonstration of amoeboid microglia and microglial cells in the retina of rats of various ages. Arch Histol Jpn 1982; 45(1): 37-44.
[http://dx.doi.org/10.1679/aohc.45.37] [PMID: 6179497]
[95]
Wang CC, Wu CH, Shieh JY, Wen CY, Ling EA. Immunohistochemical study of amoeboid microglial cells in fetal rat brain. J Anat 1996; 189(Pt 3): 567-74.
[PMID: 8982832]
[96]
Perry VH, Hume DA, Gordon S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 1985; 15(2): 313-26.
[http://dx.doi.org/10.1016/0306-4522(85)90215-5] [PMID: 3895031]
[97]
Milligan CE, Cunningham TJ, Levitt P. Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J Comp Neurol 1991; 314(1): 125-35.
[http://dx.doi.org/10.1002/cne.903140112] [PMID: 1797868]
[98]
Ashwell K. Microglia and cell death in the developing mouse cerebellum. Brain Res Dev Brain Res 1990; 55(2): 219-30.
[http://dx.doi.org/10.1016/0165-3806(90)90203-B] [PMID: 2253324]
[99]
Rezaie P, Dean A, Male D, Ulfig N. Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex 2005; 15(7): 938-49.
[http://dx.doi.org/10.1093/cercor/bhh194] [PMID: 15483047]
[100]
Møller M, Baeres FM. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res 2002; 309(1): 139-50.
[http://dx.doi.org/10.1007/s00441-002-0580-5] [PMID: 12111544]
[101]
Ibañez Rodriguez MP, Noctor SC, Muñoz EM. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator. PLoS One 2016; 11(11)e0167063
[http://dx.doi.org/10.1371/journal.pone.0167063] [PMID: 27861587]
[102]
Mitchell TN, Free SL, Williamson KA, et al. Polymicrogyria and absence of pineal gland due to PAX6 mutation. Ann Neurol 2003; 53(5): 658-63.
[http://dx.doi.org/10.1002/ana.10576] [PMID: 12731001]
[103]
Abouzeid H, Youssef MA, ElShakankiri N, Hauser P, Munier FL, Schorderet DF. PAX6 aniridia and interhemispheric brain anomalies. Mol Vis 2009; 15: 2074-83.
[PMID: 19862335]
[104]
Cunningham CL, Martínez-Cerdeño V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 2013; 33(10): 4216-33.
[http://dx.doi.org/10.1523/JNEUROSCI.3441-12.2013] [PMID: 23467340]
[105]
Jiang-Shieh YF, Wu CH, Chang ML, Shieh JY, Wen CY. Regional heterogeneity in immunoreactive macrophages/microglia in the rat pineal gland. J Pineal Res 2003; 35(1): 45-53.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00054.x] [PMID: 12823613]
[106]
Vazquez-Lopez E. The existence of microglia in the neurohypophysis. J Anat 1942; 76: 178-186 5.
[107]
Moffett CW, Paden CM. Microglia in the rat neurohypophysis increase expression of class I major histocompatibility antigens following central nervous system injury. J Neuroimmunol 1994; 50(2): 139-51.
[http://dx.doi.org/10.1016/0165-5728(94)90040-X] [PMID: 8120135]
[108]
Daulatzai MA. Dysfunctional nucleus tractus solitarius: its crucial role in promoting neuropathogenetic cascade of Alzheimer’s dementia--a novel hypothesis. Neurochem Res 2012; 37(4): 846-68.
[http://dx.doi.org/10.1007/s11064-011-0680-2] [PMID: 22219130]
[109]
Riquier AJ, Sollars SI. Microglia density decreases in the rat rostral nucleus of the solitary tract across development and increases in an age-dependent manner following denervation. Neuroscience 2017; 355: 36-48.
[http://dx.doi.org/10.1016/j.neuroscience.2017.04.037] [PMID: 28478126]
[110]
Kaur C, Ling EA. Transitory cystic cavities in the developing mammalian brain - normal or anomalous? J Anat 2017; 230(2): 197-202.
[http://dx.doi.org/10.1111/joa.12556] [PMID: 27761896]
[111]
Folkerth RD. Periventricular leukomalacia: overview and recent findings. Pediatr Dev Pathol 2006; 9(1): 3-13.
[http://dx.doi.org/10.2350/06-01-0024.1] [PMID: 16808630]
[112]
Kaur C, Ling EA. Periventricular white matter damage in the hypoxic neonatal brain: role of microglial cells. Prog Neurobiol 2009; 87(4): 264-80.
[http://dx.doi.org/10.1016/j.pneurobio.2009.01.003] [PMID: 19428957]
[113]
Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol 2013; 8(1): 66-78.
[http://dx.doi.org/10.1007/s11481-012-9347-2] [PMID: 22367679]
[114]
Hellström Erkenstam N, Smith PL, Fleiss B, et al. Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury. Front Cell Neurosci 2016; 10: 286.
[http://dx.doi.org/10.3389/fncel.2016.00286] [PMID: 28018179]
[115]
Zhang F, Zhong R, Li S, et al. Acute Hypoxia Induced an Imbalanced M1/M2 Activation of Microglia through NF-κB Signaling in Alzheimer’s Disease Mice and Wild-Type Littermates. Front Aging Neurosci 2017; 9: 282.
[http://dx.doi.org/10.3389/fnagi.2017.00282] [PMID: 28890695]
[116]
Elliott MB, Tuma RF, Amenta PS, Barbe MF, Jallo JI. Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a model of traumatic brain injury. J Neurotrauma 2011; 28(6): 973-81.
[http://dx.doi.org/10.1089/neu.2010.1672] [PMID: 21332427]
[117]
Jin X, Ishii H, Bai Z, Itokazu T, Yamashita T. Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS One 2012; 7(7)e41892
[http://dx.doi.org/10.1371/journal.pone.0041892] [PMID: 22911864]
[118]
Wang G, Zhang J, Hu X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab 2013; 33(12): 1864-74.
[http://dx.doi.org/10.1038/jcbfm.2013.146] [PMID: 23942366]
[119]
Kumar A, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. Microglial/Macrophage Polarization Dynamics following Traumatic Brain Injury. J Neurotrauma 2016; 33(19): 1732-50.
[http://dx.doi.org/10.1089/neu.2015.4268] [PMID: 26486881]
[120]
Chen S, Zhang H, Pu H, et al. n-3 PUFA supplementation benefits microglial responses to myelin pathology. Sci Rep 2014; 4: 7458.
[http://dx.doi.org/10.1038/srep07458] [PMID: 25500548]
[121]
Morrison HW, Filosa JA. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 2013; 10: 4.
[http://dx.doi.org/10.1186/1742-2094-10-4] [PMID: 23311642]
[122]
Yuan Y, Rangarajan P, Kan EM, Wu Y, Wu C, Ling EA. Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation 2015; 12: 11.
[http://dx.doi.org/10.1186/s12974-014-0226-z] [PMID: 25600517]
[123]
Yuan Y, Zha H, Rangarajan P, Ling EA, Wu C. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci 2014; 15: 125.
[http://dx.doi.org/10.1186/s12868-014-0125-3] [PMID: 25416145]
[124]
Kato H, Kogure K, Liu XH, Araki T, Itoyama Y. Progressive expression of immunomolecules on activated microglia and invading leukocytes following focal cerebral ischemia in the rat. Brain Res 1996; 734(1-2): 203-12.
[http://dx.doi.org/10.1016/0006-8993(96)00636-1] [PMID: 8896826]
[125]
Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012; 43(11): 3063-70.
[http://dx.doi.org/10.1161/STROKEAHA.112.659656] [PMID: 22933588]
[126]
Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 2011; 8: 174.
[http://dx.doi.org/10.1186/1742-2094-8-174] [PMID: 22152337]
[127]
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10(11): 1387-94.
[http://dx.doi.org/10.1038/nn1997] [PMID: 17965659]
[128]
Liu LQ, Liu XR, Zhao JY, et al. Brain-selective mild hypothermia promotes long-term white matter integrity after ischemic stroke in mice. CNS Neurosci Ther 2018; 24(12): 1275-85.
[http://dx.doi.org/10.1111/cns.13061] [PMID: 30295998]
[129]
McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988; 38(8): 1285-91.
[http://dx.doi.org/10.1212/WNL.38.8.1285] [PMID: 3399080]
[130]
Raine CS. Multiple sclerosis: immune system molecule expression in the central nervous system. J Neuropathol Exp Neurol 1994; 53(4): 328-37.
[http://dx.doi.org/10.1097/00005072-199407000-00002] [PMID: 8021705]
[131]
Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001; 60(2): 161-72.
[http://dx.doi.org/10.1093/jnen/60.2.161] [PMID: 11273004]
[132]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[133]
Selkoe DJ, Schenk D. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 2003; 43: 545-84.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140248] [PMID: 12415125]
[134]
Leung E, Guo L, Bu J, Maloof M, El Khoury J, Geula C. Microglia activation mediates fibrillar amyloid-β toxicity in the aged primate cortex. Neurobiol Aging 2011; 32(3): 387-97.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.02.025] [PMID: 19349094]
[135]
Venneti S, Lopresti BJ, Wang G, et al. PK11195 labels activated microglia in Alzheimer’s disease and in vivo in a mouse model using PET. Neurobiol Aging 2009; 30(8): 1217-26.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.005] [PMID: 18178291]
[136]
Davies DS, Ma J, Jegathees T, Goldsbury C. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol 2017; 27(6): 795-808.
[http://dx.doi.org/10.1111/bpa.12456] [PMID: 27862631]
[137]
Bachstetter AD, Van Eldik LJ, Schmitt FA, et al. Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol Commun 2015; 3: 32.
[http://dx.doi.org/10.1186/s40478-015-0209-z] [PMID: 26001591]
[138]
Wilcock DM, Rojiani A, Rosenthal A, et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 2004; 24(27): 6144-51.
[http://dx.doi.org/10.1523/JNEUROSCI.1090-04.2004] [PMID: 15240806]
[139]
Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE. Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 2009; 29(13): 4252-62.
[http://dx.doi.org/10.1523/JNEUROSCI.5572-08.2009] [PMID: 19339619]
[140]
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008; 28(33): 8354-60.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[141]
Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 2005; 26(3): 349-54.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.05.010] [PMID: 15639313]
[142]
Craft JM, Watterson DM, Frautschy SA, Van Eldik LJ. Aminopyridazines inhibit beta-amyloid-induced glial activation and neuronal damage in vivo. Neurobiol Aging 2004; 25(10): 1283-92.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.01.006] [PMID: 15465624]
[143]
Yan Q, Zhang J, Liu H, et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 2003; 23(20): 7504-9.
[http://dx.doi.org/10.1523/JNEUROSCI.23-20-07504.2003] [PMID: 12930788]
[144]
Zhang Y, He ML. Deferoxamine enhances alternative activation of microglia and inhibits amyloid beta deposits in APP/PS1 mice. Brain Res 2017; 1677: 86-92.
[http://dx.doi.org/10.1016/j.brainres.2017.09.019] [PMID: 28963052]
[145]
Weekman EM, Sudduth TL, Abner EL, et al. Transition from an M1 to a mixed neuroinflammatory phenotype increases amyloid deposition in APP/PS1 transgenic mice. J Neuroinflammation 2014; 11: 127.
[http://dx.doi.org/10.1186/1742-2094-11-127] [PMID: 25062954]
[146]
Latta CH, Sudduth TL, Weekman EM, et al. Determining the role of IL-4 induced neuroinflammation in microglial activity and amyloid-β using BV2 microglial cells and APP/PS1 transgenic mice. J Neuroinflammation 2015; 12: 41.
[http://dx.doi.org/10.1186/s12974-015-0243-6] [PMID: 25885682]
[147]
Zhang L, Zhou Z, Zhai W, et al. Safflower yellow attenuates learning and memory deficits in amyloid β-induced Alzheimer’s disease rats by inhibiting neuroglia cell activation and inflammatory signaling pathways. Metab Brain Dis 2019; 34(3): 927-39.
[http://dx.doi.org/10.1007/s11011-019-00398-0] [PMID: 30830599]
[148]
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 2014; 11: 98.
[http://dx.doi.org/10.1186/1742-2094-11-98] [PMID: 24889886]
[149]
Martinez B, Peplow PV. Amelioration of Alzheimer’s disease pathology and cognitive deficits by immunomodulatory agents in animal models of Alzheimer’s disease. Neural Regen Res 2019; 14(7): 1158-76.
[http://dx.doi.org/10.4103/1673-5374.251192] [PMID: 30804241]
[150]
Lee HJ, Lee JK, Lee H, et al. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer’s disease mouse model through modulation of neuroinflammation. Neurobiol Aging 2012; 33(3): 588-602.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.024] [PMID: 20471717]
[151]
Yang Z, Kuboyama T, Tohda C. Naringenin promotes microglial M2 polarization and Aβ degradation enzyme expression. Phytother Res 2019; 33(4): 1114-21.
[http://dx.doi.org/10.1002/ptr.6305] [PMID: 30768735]
[152]
Song GJ, Suk K. Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases. Front Aging Neurosci 2017; 9: 139.
[http://dx.doi.org/10.3389/fnagi.2017.00139] [PMID: 28555105]
[153]
De Lella Ezcurra AL, Chertoff M, Ferrari C, Graciarena M, Pitossi F. Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol Dis 2010; 37(3): 630-40.
[http://dx.doi.org/10.1016/j.nbd.2009.11.018] [PMID: 19969084]
[154]
Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis 2006; 24(1): 183-93.
[http://dx.doi.org/10.1016/j.nbd.2006.06.013] [PMID: 16901708]
[155]
Stone DK, Reynolds AD, Mosley RL, Gendelman HE. Innate and adaptive immunity for the pathobiology of Parkinson’s disease. Antioxid Redox Signal 2009; 11(9): 2151-66.
[http://dx.doi.org/10.1089/ars.2009.2460] [PMID: 19243239]
[156]
Zhang W, Wang T, Pei Z, et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 2005; 19(6): 533-42.
[http://dx.doi.org/10.1096/fj.04-2751com] [PMID: 15791003]
[157]
Pisanu A, Lecca D, Mulas G, et al. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol Dis 2014; 71: 280-91.
[http://dx.doi.org/10.1016/j.nbd.2014.08.011] [PMID: 25134730]
[158]
Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med (Berl) 1997; 75(3): 165-73.
[http://dx.doi.org/10.1007/s001090050101] [PMID: 9106073]
[159]
Heppner FL, Greter M, Marino D, et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005; 11(2): 146-52.
[http://dx.doi.org/10.1038/nm1177] [PMID: 15665833]
[160]
Sun D, Yu Z, Fang X, et al. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep 2017; 18(10): 1801-16.
[http://dx.doi.org/10.15252/embr.201643668] [PMID: 28808113]
[161]
Chu F, Shi M, Zheng C, et al. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 318: 1-7.
[http://dx.doi.org/10.1016/j.jneuroim.2018.02.015] [PMID: 29606295]
[162]
Yu Z, Sun D, Feng J, et al. MSX3 Switches Microglia Polarization and Protects from Inflammation-Induced Demyelination. J Neurosci 2015; 35(16): 6350-65.
[http://dx.doi.org/10.1523/JNEUROSCI.2468-14.2015] [PMID: 25904788]
[163]
Miron VE, Boyd A, Zhao JW, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013; 16(9): 1211-8.
[http://dx.doi.org/10.1038/nn.3469] [PMID: 23872599]
[164]
Messmer K, Reynolds GP. Increased peripheral benzodiazepine binding sites in the brain of patients with Huntington’s disease. Neurosci Lett 1998; 241(1): 53-6.
[http://dx.doi.org/10.1016/S0304-3940(97)00967-1] [PMID: 9502214]
[165]
Singhrao SK, Neal JW, Morgan BP, Gasque P. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp Neurol 1999; 159(2): 362-76.
[http://dx.doi.org/10.1006/exnr.1999.7170] [PMID: 10506508]
[166]
Chang KH, Wu YR, Chen YC, Chen CM. Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 2015; 44: 121-7.
[http://dx.doi.org/10.1016/j.bbi.2014.09.011] [PMID: 25266150]
[167]
Yang HM, Yang S, Huang SS, Tang BS, Guo JF. Microglial Activation in the Pathogenesis of Huntington’s Disease. Front Aging Neurosci 2017; 9: 193.
[http://dx.doi.org/10.3389/fnagi.2017.00193] [PMID: 28674491]
[168]
Chiu IM, Morimoto ET, Goodarzi H, et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 2013; 4(2): 385-401.
[http://dx.doi.org/10.1016/j.celrep.2013.06.018] [PMID: 23850290]
[169]
Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol 2016; 53(2): 1181-94.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[170]
van Berckel BN, Bossong MG, Boellaard R, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64(9): 820-2.
[http://dx.doi.org/10.1016/j.biopsych.2008.04.025] [PMID: 18534557]
[171]
Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50(11): 1801-7.
[http://dx.doi.org/10.2967/jnumed.109.066647] [PMID: 19837763]
[172]
Barak V, Barak Y, Levine J, Nisman B, Roisman I. Changes in interleukin-1 beta and soluble interleukin-2 receptor levels in CSF and serum of schizophrenic patients. J Basic Clin Physiol Pharmacol 1995; 6(1): 61-9.
[http://dx.doi.org/10.1515/JBCPP.1995.6.1.61] [PMID: 8562579]
[173]
Zhang XY, Zhou DF, Zhang PY, Wu GY, Cao LY, Shen YC. Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophr Res 2002; 57(2-3): 247-58.
[http://dx.doi.org/10.1016/S0920-9964(01)00296-1] [PMID: 12223256]
[174]
Chan RC, Di X, McAlonan GM, Gong QY. Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr Bull 2011; 37(1): 177-88.
[http://dx.doi.org/10.1093/schbul/sbp073] [PMID: 19633214]
[175]
Taylor DL, Jones F, Kubota ES, Pocock JM. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 2005; 25(11): 2952-64.
[http://dx.doi.org/10.1523/JNEUROSCI.4456-04.2005] [PMID: 15772355]
[176]
Maes M, Bocchio Chiavetto L, Bignotti S, et al. Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and the stimulatory effects of clozapine on serum leukemia inhibitory factor receptor. Schizophr Res 2002; 54(3): 281-91.
[http://dx.doi.org/10.1016/S0920-9964(00)00094-3] [PMID: 11950553]
[177]
Maxeiner HG, Marion Schneider E, Kurfiss ST, Brettschneider J, Tumani H, Bechter K. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine 2014; 69(1): 62-7.
[http://dx.doi.org/10.1016/j.cyto.2014.05.008] [PMID: 25022963]
[178]
Kaur C, Ling EA, Wong WC. Transformation of amoeboid microglial cells into microglia in the corpus callosum of the postnatal rat brain. An electron microscopical study. Arch Histol Jpn 1985; 48(1): 17-25.
[http://dx.doi.org/10.1679/aohc.48.17] [PMID: 4015333]
[179]
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011; 333(6048): 1456-8.
[http://dx.doi.org/10.1126/science.1202529] [PMID: 21778362]
[180]
Rotshenker S. Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. J Mol Neurosci 2003; 21(1): 65-72.
[http://dx.doi.org/10.1385/JMN:21:1:65] [PMID: 14500997]
[181]
Loane DJ, Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol 2016; 275(Pt 3): 316-27.
[http://dx.doi.org/10.1016/j.expneurol.2015.08.018] [PMID: 26342753]
[182]
Zhu K, Sun J, Kang Z, Zou Z, Wu G, Wang J. Electroacupuncture Promotes Remyelination after Cuprizone Treatment by Enhancing Myelin Debris Clearance. Front Neurosci 2017; 10: 613.
[http://dx.doi.org/10.3389/fnins.2016.00613] [PMID: 28119561]
[183]
Zhang Y, Feng S, Nie K, et al. TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem Biophys Res Commun 2018; 499(4): 797-802.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.226] [PMID: 29621548]
[184]
Rinaldi M, Thomas L, Mathieu P, et al. Galectin-1 circumvents lysolecithin-induced demyelination through the modulation of microglial polarization/phagocytosis and oligodendroglial differentiation. Neurobiol Dis 2016; 96: 127-43.
[http://dx.doi.org/10.1016/j.nbd.2016.09.003] [PMID: 27612409]
[185]
Gregersen R, Lambertsen K, Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000; 20(1): 53-65.
[http://dx.doi.org/10.1097/00004647-200001000-00009] [PMID: 10616793]
[186]
Lambertsen KL, Clausen BH, Babcock AA, et al. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 2009; 29(5): 1319-30.
[http://dx.doi.org/10.1523/JNEUROSCI.5505-08.2009] [PMID: 19193879]
[187]
Utagawa A, Truettner JS, Dietrich WD, Bramlett HM. Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Exp Neurol 2008; 211(1): 283-91.
[http://dx.doi.org/10.1016/j.expneurol.2008.02.001] [PMID: 18355811]
[188]
Rathnasamy G, Ling EA, Kaur C. Hypoxia inducible factor-1α mediates iron uptake which induces inflammatory response in amoeboid microglial cells in developing periventricular white matter through MAP kinase pathway. Neuropharmacology 2014; 77: 428-40.
[http://dx.doi.org/10.1016/j.neuropharm.2013.10.024] [PMID: 24184387]
[189]
Kaur C, Sivakumar V, Zou Z, Ling EA. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct 2014; 219(1): 151-70.
[http://dx.doi.org/10.1007/s00429-012-0491-5] [PMID: 23262920]
[190]
Sivakumar V, Ling EA, Lu J, Kaur C. Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 2010; 58(5): 507-23.
[http://dx.doi.org/10.1002/glia.20940] [PMID: 19795501]
[191]
Beilharz EJ, Russo VC, Butler G, et al. Co-ordinated and cellular specific induction of the components of the IGF/IGFBP axis in the rat brain following hypoxic-ischemic injury. Brain Res Mol Brain Res 1998; 59(2): 119-34.
[http://dx.doi.org/10.1016/S0169-328X(98)00122-3] [PMID: 9729323]
[192]
Chamak B, Dobbertin A, Mallat M. Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 1995; 69(1): 177-87.
[http://dx.doi.org/10.1016/0306-4522(95)00236-C] [PMID: 8637616]
[193]
Christopherson KS, Ullian EM, Stokes CC, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005; 120(3): 421-33.
[http://dx.doi.org/10.1016/j.cell.2004.12.020] [PMID: 15707899]
[194]
Lucas M, Daniel L, Tomasello E, et al. Massive inflammatory syndrome and lymphocytic immunodeficiency in KARAP/DAP12-transgenic mice. Eur J Immunol 2002; 32(9): 2653-63.
[http://dx.doi.org/10.1002/1521-4141(200209)32:9<2653:AID-IMMU2653>3.0.CO;2-V] [PMID: 12207350]
[195]
Roumier A, Béchade C, Poncer JC, et al. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 2004; 24(50): 11421-8.
[http://dx.doi.org/10.1523/JNEUROSCI.2251-04.2004] [PMID: 15601948]
[196]
Tremblay ME, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010; 8(11)e1000527
[http://dx.doi.org/10.1371/journal.pbio.1000527] [PMID: 21072242]
[197]
Zhan Y, Paolicelli RC, Sforazzini F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 2014; 17(3): 400-6.
[http://dx.doi.org/10.1038/nn.3641] [PMID: 24487234]
[198]
Kim HJ, Cho MH, Shim WH, et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 2017; 22(11): 1576-84.
[http://dx.doi.org/10.1038/mp.2016.103] [PMID: 27400854]
[199]
Yang L, Tucker D, Dong Y, et al. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp Neurol 2018; 299(Pt A): 86-96.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.013] [PMID: 29056360]
[200]
Alam MA, Subramanyam Rallabandi VP, Roy PK. Systems Biology of Immunomodulation for Post-Stroke Neuroplasticity: Multimodal Implications of Pharmacotherapy and Neurorehabilitation. Front Neurol 2016; 7: 94.
[http://dx.doi.org/10.3389/fneur.2016.00094] [PMID: 27445961]
[201]
Kobayashi K, Imagama S, Ohgomori T, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 2013; 4e525
[http://dx.doi.org/10.1038/cddis.2013.54] [PMID: 23470532]
[202]
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009; 29(13): 3974-80.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-08.2009] [PMID: 19339593]
[203]
Sogn CJ, Puchades M, Gundersen V. Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin--a postembedding immunogold study in the healthy rat brain. Eur J Neurosci 2013; 38(1): 2030-40.
[http://dx.doi.org/10.1111/ejn.12213] [PMID: 23590220]
[204]
Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8(6): 752-8.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[205]
Ghoochani A, Schwarz MA, Yakubov E, et al. MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis. Oncogene 2016; 35(48): 6246-61.
[http://dx.doi.org/10.1038/onc.2016.160] [PMID: 27157615]
[206]
Jin X, Liu MY, Zhang DF, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-kappaB signaling pathway. CNS Neurosci Ther 2019; 25(5): 575-90.
[207]
Yuan Y, Rangarajan P, Kan EM, Wu Y, Wu C, Ling EA. Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation 2015; 12: 11.
[http://dx.doi.org/10.1186/s12974-014-0226-z] [PMID: 25600517]
[208]
Lu Y, Gu Y, Ding X, Wang J, Chen J. Intracellular Ca2+ homeostasis and JAK1/STAT3 pathway are involved in the protective effect of propofol on BV2 microglia against hypoxia-induced inflammation and apoptosis. 2017; 17: e0178098.
[209]
Liu Q, Zhang Y, Liu S, et al. Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca2+-dependent PKC/p38MAPK/NF-κB pathway. J Neuroinflammation 2019; 16(1): 10.
[http://dx.doi.org/10.1186/s12974-019-1398-3] [PMID: 30651105]
[210]
Liu R, Liao XY, Pan MX, et al. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-kappaB p65/Hif-1alpha Signaling Pathway. J Immunol 2019; 202(6): 1704-14.
[211]
Yang Y, Ye Y, Kong C, et al. MiR-124 Enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochem Res 2019; 44(4): 811-28.
[http://dx.doi.org/10.1007/s11064-018-02714-z] [PMID: 30628018]
[212]
Henry RJ, Doran SJ, Barrett JP, et al. Inhibition of miR-155 Limits Neuroinflammation and Improves Functional Recovery After Experimental Traumatic Brain Injury in Mice. Neurotherapeutics 2019; 16(1): 216-30.
[http://dx.doi.org/10.1007/s13311-018-0665-9] [PMID: 30225790]
[213]
Kong H, Omran A, Ashhab MU, et al. Changes in microglial inflammation-related and brain-enriched MicroRNAs expressions in response to in vitro oxygen-glucose deprivation. Neurochem Res 2014; 39(2): 233-43.
[http://dx.doi.org/10.1007/s11064-013-1209-7] [PMID: 24338221]
[214]
Ning SL, Zhu H, Shao J, Liu YC, Lan J, Miao J. MiR-21 inhibitor improves locomotor function recovery by inhibiting IL-6R/JAK-STAT pathway-mediated inflammation after spinal cord injury in model of rat. Eur Rev Med Pharmacol Sci 2019; 23(2): 433-40.
[PMID: 30720148]
[215]
Ni J, Wang X, Chen S, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 2015; 49: 75-85.
[http://dx.doi.org/10.1016/j.bbi.2015.04.014] [PMID: 25934573]
[216]
Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One 2012; 7(2)e32662
[http://dx.doi.org/10.1371/journal.pone.0032662] [PMID: 22393433]
[217]
Ko CY, Chu YY, Narumiya S, et al. CCAAT/enhancer-binding protein delta/miR135a/thrombospondin 1 axis mediates PGE2-induced angiogenesis in Alzheimer’s disease. Neurobiol Aging 2015; 36(3): 1356-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.11.020] [PMID: 25554493]
[218]
Guedes JR, Custódia CM, Silva RJ, de Almeida LP, Pedroso de Lima MC, Cardoso AL. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum Mol Genet 2014; 23(23): 6286-301.
[http://dx.doi.org/10.1093/hmg/ddu348] [PMID: 24990149]
[219]
Sun XH, Song MF, Song HD, Wang YW, Luo MJ, Yin LM. miR155 mediates inflammatory injury of hippocampal neuronal cells via the activation of microglia. Mol Med Rep 2019; 19(4): 2627-35.
[http://dx.doi.org/10.3892/mmr.2019.9917] [PMID: 30720115]
[220]
Xu Y, Chen P, Wang X, Yao J, Zhuang S. miR-34a deficiency in APP/PS1 mice promotes cognitive function by increasing synaptic plasticity via AMPA and NMDA receptors. Neurosci Lett 2018; 670: 94-104.
[http://dx.doi.org/10.1016/j.neulet.2018.01.045] [PMID: 29378298]
[221]
Freilich RW, Woodbury ME, Ikezu T. Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 2013; 8(11)e79416
[http://dx.doi.org/10.1371/journal.pone.0079416] [PMID: 24244499]
[222]
O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol 2012; 30: 295-312.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075013] [PMID: 22224773]
[223]
Cunha C, Gomes C. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization. Mediators Inflamm 2016; 20166986175
[http://dx.doi.org/10.1155/2016/6986175]
[224]
Yu A, Zhang T, Duan H, et al. MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-α pathway in intracerebral hemorrhage. Immunol Lett 2017; 182: 1-11.
[http://dx.doi.org/10.1016/j.imlet.2016.12.003] [PMID: 28025043]
[225]
Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M. MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 2016; 91: 151-65.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.025] [PMID: 27031810]
[226]
Wen M, Ye J, Han Y, et al. Hypertonic saline regulates microglial M2 polarization via miR-200b/KLF4 in cerebral edema treatment. Biochem Biophys Res Commun 2018; 499(2): 345-53.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.161] [PMID: 29577903]
[227]
Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization. Cell Physiol Biochem 2018; 47(2): 864-78.
[http://dx.doi.org/10.1159/000490078] [PMID: 29807362]
[228]
Parisi C, Napoli G, Pelegrin P. M1 and M2 Functional Imprinting of Primary Microglia: Role of P2X7 Activation and miR-125b. 2016; 2016: 2989548.
[229]
Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6(8): 597-610.
[http://dx.doi.org/10.1038/nrg1655] [PMID: 16136652]
[230]
Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74: 481-514.
[http://dx.doi.org/10.1146/annurev.biochem.74.010904.153721] [PMID: 15952895]
[231]
Matt SM, Lawson MA, Johnson RW. Aging and peripheral lipopolysaccharide can modulate epigenetic regulators and decrease IL-1β promoter DNA methylation in microglia. Neurobiol Aging 2016; 47: 1-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.006] [PMID: 27500965]
[232]
Coppieters N, Dieriks BV, Lill C, Faull RL, Curtis MA, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging 2014; 35(6): 1334-44.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.031] [PMID: 24387984]
[233]
Periyasamy P, Thangaraj A. Epigenetic Promoter DNA Methylation of miR-124 Promotes HIV-1 Tat-Mediated Microglial Activation via MECP2-STAT3 Axis 2018.
[http://dx.doi.org/10.1523/JNEUROSCI.3474-17.2018]
[234]
Cheray M, Joseph B. Epigenetics Control Microglia Plasticity. Front Cell Neurosci 2018; 12: 243.
[http://dx.doi.org/10.3389/fncel.2018.00243] [PMID: 30123114]
[235]
Kannan V, Brouwer N, Hanisch UK, Regen T, Eggen BJ, Boddeke HW. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia. J Neurosci Res 2013; 91(9): 1133-42.
[http://dx.doi.org/10.1002/jnr.23221] [PMID: 23686642]
[236]
Chen S, Ye J, Chen X. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-kappaB pathway dependent of HDAC3. J Neuroinflammation 2018; 15(1): 150.
[237]
Wang G, Shi Y, Jiang X, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA 2015; 112(9): 2853-8.
[http://dx.doi.org/10.1073/pnas.1501441112] [PMID: 25691750]
[238]
Han Z, Zhao H, Tao Z, et al. TOPK Promotes Microglia/Macrophage Polarization towards M2 Phenotype via Inhibition of HDAC1 and HDAC2 Activity after Transient Cerebral Ischemia. Aging Dis 2018; 9(2): 235-48.
[http://dx.doi.org/10.14336/AD.2017.0328] [PMID: 29896413]
[239]
Tan Y, Delvaux E, Nolz J, Coleman PD, Chen S, Mastroeni D. Upregulation of histone deacetylase 2 in laser capture nigral microglia in Parkinson’s disease. Neurobiol Aging 2018; 68: 134-41.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.02.018] [PMID: 29803514]
[240]
Tang Y, Li T, Li J, et al. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ 2014; 21(3): 369-80.
[http://dx.doi.org/10.1038/cdd.2013.159] [PMID: 24212761]
[241]
Das A, Arifuzzaman S, Yoon T, Kim SH, Chai JC. RNA sequencing reveals resistance of TLR4 ligand-activated microglial cells to inflammation mediated by the selective jumonji H3K27 demethylase inhibitor. Sci Rep 2017; 7(1): 6554.
[http://dx.doi.org/10.1038/s41598-017-06914-5]
[242]
Liu H, Yang X, Tang R, Liu J, Xu H. Effect of scutellarin on nitric oxide production in early stages of neuron damage induced by hydrogen peroxide. Pharmacol Res 2005; 51(3): 205-10.
[http://dx.doi.org/10.1016/j.phrs.2004.09.001] [PMID: 15661569]
[243]
Ma JY, Jiang WW, Zhou ZT, Li JM, Wang HY. The promoting angiogenesis and anti-inflammation effect of scutellarin on polyglycolic acid scaffold of balb/c mice model. J Asian Nat Prod Res 2008; 10(11-12): 1147-53.
[http://dx.doi.org/10.1080/10286020802361255] [PMID: 19031261]
[244]
Luo P, Tan ZH, Zhang ZF, Zhang H, Liu XF, Mo ZJ. Scutellarin isolated from Erigeron multiradiatus inhibits high glucose-mediated vascular inflammation. Yakugaku Zasshi 2008; 128(9): 1293-9.
[http://dx.doi.org/10.1248/yakushi.128.1293] [PMID: 18758143]
[245]
Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 2012; 39(3): 283-99.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05648.x] [PMID: 22118895]
[246]
Liu Z, Ran Y, Huang S, et al. Curcumin Protects against Ischemic Stroke by Titrating Microglia/Macrophage Polarization. Front Aging Neurosci 2017; 9: 233.
[http://dx.doi.org/10.3389/fnagi.2017.00233] [PMID: 28785217]
[247]
Teter B, Morihara T, Lim GP, et al. Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol Dis 2019; 127: 432-48.
[http://dx.doi.org/10.1016/j.nbd.2019.02.015] [PMID: 30951849]
[248]
Qin XF, Lu XJ, Ge JB, Xu HZ, Qin HD, Xu F. Ginkgolide B prevents cathepsin-mediated cell death following cerebral ischemia/reperfusion injury. Neuroreport 2014; 25(4): 267-73.
[http://dx.doi.org/10.1097/WNR.0000000000000096] [PMID: 24264075]
[249]
Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH. Inhibition of NF-κB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci 2012; 47(4): 652-60.
[http://dx.doi.org/10.1016/j.ejps.2012.07.016] [PMID: 22850444]
[250]
Shu ZM, Shu XD, Li HQ, et al. Ginkgolide B Protects Against Ischemic Stroke Via Modulating Microglia Polarization in Mice. CNS Neurosci Ther 2016; 22(9): 729-39.
[http://dx.doi.org/10.1111/cns.12577] [PMID: 27306494]
[251]
Salminen A, Lehtonen M, Paimela T, Kaarniranta K. Celastrol: Molecular targets of Thunder God Vine. Biochem Biophys Res Commun 2010; 394(3): 439-42.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.050] [PMID: 20226165]
[252]
Venkatesha SH, Dudics S, Astry B, Moudgil KD. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog Dis 2016; 74(6): 74.
[http://dx.doi.org/10.1093/femspd/ftw059] [PMID: 27405485]
[253]
Han LP, Li CJ, Sun B, et al. Protective Effects of Celastrol on Diabetic Liver Injury via TLR4/MyD88/NF-κB Signaling Pathway in Type 2 Diabetic Rats. J Diabetes Res 2016; 20162641248
[http://dx.doi.org/10.1155/2016/2641248] [PMID: 27057550]
[254]
Li Y, He D, Zhang X, et al. Protective effect of celastrol in rat cerebral ischemia model: down-regulating p-JNK, p-c-Jun and NF-κB. Brain Res 2012; 1464: 8-13.
[http://dx.doi.org/10.1016/j.brainres.2012.04.054] [PMID: 22575561]
[255]
Jiang M, Liu X, Zhang D, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J Neuroinflammation 2018; 15(1): 78.
[http://dx.doi.org/10.1186/s12974-018-1124-6] [PMID: 29540209]
[256]
De Bock K, Eijnde BO, Ramaekers M, Hespel P. Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab 2004; 14(3): 298-307.
[http://dx.doi.org/10.1123/ijsnem.14.3.298] [PMID: 15256690]
[257]
Sun L, Isaak CK, Zhou Y, et al. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis. Life Sci 2012; 91(5-6): 151-8.
[http://dx.doi.org/10.1016/j.lfs.2012.06.026] [PMID: 22771701]
[258]
Song B, Huang G, Xiong Y, et al. Inhibitory effects of salidroside on nitric oxide and prostaglandin E2 production in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Med Food 2013; 16(11): 997-1003.
[http://dx.doi.org/10.1089/jmf.2012.2473] [PMID: 24180550]
[259]
Wang C, Wang Q, Lou Y, et al. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med 2018; 22(2): 1148-66.
[PMID: 29148269]
[260]
Malhotra A, Bath S, Elbarbry F. An Organ System Approach to Explore the Antioxidative, Anti-Inflammatory, and Cytoprotective Actions of Resveratrol. Oxid Med Cell Longev 2015; 2015803971
[http://dx.doi.org/10.1155/2015/803971] [PMID: 26180596]
[261]
Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 2013; 4(8): 1151-62.
[http://dx.doi.org/10.1021/cn400094w] [PMID: 23758534]
[262]
Sekiguchi K, Takehana S, Shibuya E, et al. Resveratrol attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats. Mol Pain 2016; 12: 12.
[http://dx.doi.org/10.1177/1744806916643082] [PMID: 27068286]
[263]
Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun 2017; 64: 162-72.
[http://dx.doi.org/10.1016/j.bbi.2017.03.003] [PMID: 28268115]
[264]
Lee WD, Liang YJ, Chen BH. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549. Nanotechnology 2016; 27(49)495101
[http://dx.doi.org/10.1088/0957-4484/27/49/495101] [PMID: 27834307]
[265]
Lee JC, Park JH, Park OK, et al. Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia. Anat Cell Biol 2013; 46(3): 183-90.
[http://dx.doi.org/10.5115/acb.2013.46.3.183] [PMID: 24179693]
[266]
Wang S, Jing H, Yang H, et al. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. J Ethnopharmacol 2015; 164: 247-55.
[http://dx.doi.org/10.1016/j.jep.2015.01.042] [PMID: 25666429]
[267]
Zhou Y, Ling EA, Dheen ST. Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J Neurochem 2007; 102(3): 667-78.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04535.x] [PMID: 17403137]
[268]
Huo Y, Rangarajan P, Ling EA, Dheen ST. Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci 2011; 12: 49.
[http://dx.doi.org/10.1186/1471-2202-12-49] [PMID: 21615929]
[269]
Kaur C, Sivakumar V, Ling EA. Melatonin protects periventricular white matter from damage due to hypoxia. J Pineal Res 2010; 48(3): 185-93.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00740.x] [PMID: 20136703]
[270]
Berkiks I, Benmhammed H, Mesfioui A, et al. Postnatal melatonin treatment protects against affective disorders induced by early-life immune stimulation by reducing the microglia cell activation and oxidative stress. Int J Neurosci 2018; 128(6): 495-504.
[http://dx.doi.org/10.1080/00207454.2017.1398156]
[271]
Liu GJ, Middleton RJ, Hatty CR, et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014; 24(6): 631-53.
[http://dx.doi.org/10.1111/bpa.12196] [PMID: 25345894]
[272]
Sandiego CM, Gallezot JD, Pittman B, et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci USA 2015; 112(40): 12468-73.
[http://dx.doi.org/10.1073/pnas.1511003112] [PMID: 26385967]
[273]
Bonsack F, Foss CA, Arbab AS, Alleyne CH Jr, Pomper MG, Sukumari-Ramesh S. [125 I]IodoDPA-713 Binding to 18 kDa Translocator Protein (TSPO) in a Mouse Model of Intracerebral Hemorrhage: Implications for Neuroimaging. Front Neurosci 2018; 12: 66.
[http://dx.doi.org/10.3389/fnins.2018.00066] [PMID: 29520214]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy