Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

The Effect of CoFe2O4 Weight Fraction on the Properties of Magnetic CoFe2O4/Unsaturated Polyester Nanocomposites Synthesized by Hand Lay-up Method

Author(s): Rihab Jabbar*, Awham M. Hameed and Sabah H. Sabeeh

Volume 10, Issue 6, 2020

Page: [778 - 789] Pages: 12

DOI: 10.2174/2210681209666190717165106

Price: $65

Abstract

Objective: In this study, Cobalt ferrite (CoFe2O4) nanopowders were prepared by the sol-gel precipitation method.

Methods: The prepared ferrite powders were sintered at 1000°C for 2 hours. CoFe2O4/unsaturated polyester nanocomposites were prepared with different weight fraction of CoFe2O4. The X-ray diffraction results showed that the crystallite size (D) of CoFe2O4 was found to be 20.68 nm. Fouriertransform infrared spectroscopy (FTIR) spectra confirmed the spinal structure of CoFe2O4.

Results: The saturation magnetization (Ms) and coercivity (Hc) of all the composites were found to increase with increasing ferrite content.

Conclusion: Dielectric constant values were found to increase with increasing the concentration of ferrite.

Keywords: Nanocomposite, magnetic properties, cobalt ferrite, Sol-gel method, unsaturated polyester resin, organic polymers.

Graphical Abstract

[1]
Ventra, M.D.; Evoy, S. Heflin‚ J.R. Introduction to Nanoscale Science and Technology; Kluwer Academic Publishers: Netherlands, 2004.
[http://dx.doi.org/10.1007/b119185]
[2]
Aoshima, S.; Costa, F.R.; Fetters, L.J.; Heinrich, G.; Kanaoka, S.; Radulescu, A.; Richter, D.; Saphiannikova, M.; Wagenknecht, U. Wax crystal control-nanocomposites stimuli responsive polymers. In:Advances in Polymer Science; Springer-Verlag: Berlin, Heidelberg, 2008.
[3]
Ariga, K.; Vinu, A.; Yamauchi, Y.; Ji, Q.; Hill, J.P. Nanochitectonics for mesoporous materials. Bull. Chem. Soc. Jpn., 2012, 85, 1.
[http://dx.doi.org/10.1246/bcsj.20110162]
[4]
Guo, Z.; Wei, S.; Shedd, B.; Scaffaro, R.; Pereira, T.; Hahn, H.T. Particle surface engineering effect on the mechanical, optical and photoluminescent properties of ZnO/vinyl-ester resin nanocomposites. J. Mater. Chem., 2007, 17, 806-813.
[http://dx.doi.org/10.1039/B613286C]
[5]
Wang, J.; Cheng, Q.; Tang, Z. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev., 2012, 41(3), 1111-1129.
[http://dx.doi.org/10.1039/C1CS15106A] [PMID: 21959863]
[6]
Xu, Q.; Wei, Y.; Liu, Y.; Ji, X.; Yang, L.; Gu, M. Preparation of Mg/Fe spinel ferrite nanoparticles from Mg/Fe-LDH microcrystallites under mild conditions. Solid State Sci., 2009, 11, 472-478.
[http://dx.doi.org/10.1016/j.solidstatesciences.2008.07.004]
[7]
Tian, M.B. Magnetic Material Beijing; Tsinghua University Press: Beijing, China, 2001.
[8]
Yue, Z.; Zhi, Y.; Di, Y.; Yong, L.; Chun, L.F. Composition and magnetic properties of cobalt ferrite nanoparticles prepared by the co-precipitation method. J. Magn. Magn. Mater., 2010, 322, 3470-3475.
[http://dx.doi.org/10.1016/j.jmmm.2010.06.047]
[9]
Zhenfa, Z.; Yuping, S.; Xuebin, Z.; Wenhai, S. Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater., 2009, 321, 1251-1255.
[http://dx.doi.org/10.1016/j.jmmm.2008.11.004]
[10]
Rana, S.; Philip, J.; Raj, B. Micelles based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mater. Chem. Phys., 2010, 124, 264-269.
[http://dx.doi.org/10.1016/j.matchemphys.2010.06.029]
[11]
Zhang, X.; Simon, L.C. In situ polymerization of hybrid polyethylene-alumina nanocomposites. Macr. Mate. Eng., 2005, 290, 573-583.
[http://dx.doi.org/10.1002/mame.200500075]
[12]
Thomas, H.; Dorothée, V.S. Polymer-nanoparticle composites: From synthesis to modern applications. Materials (Basel), 2010, 3, 3468-3517.
[http://dx.doi.org/10.3390/ma3063468]
[13]
Mitsuru, T. Development of fabrication methods of filler/polymer nanocomposites: With focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials (Basel), 2010, 3, 1593-1619.
[http://dx.doi.org/10.3390/ma3031593]
[14]
Jing, J.L.; Liangchao, L.; Mingli, Z. Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization. React. Funct. Polym., 2008, 68, 57-62.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2007.10.010]
[15]
Guo, H.; Zhu, H.; Lin, H.; Zhang, J. Polyaniline/Fe3O4 nanocomposites synthesized under the direction of cationic surfactant. Mater. Lett., 2008, 62, 2196-2199.
[http://dx.doi.org/10.1016/j.matlet.2007.11.047]
[16]
Elsayed, A.H. MohyEldin, M. S.; Elsyed, A.M.; Abo Elazm, A. H.; Younes E.M.; Motaweh, H. A. Synthesis, and properties of polyaniline/ferrites nanocomposites. Int. J. Electrochem. Sci., 2011, 6, 206-221.
[17]
Cullity, B. Element of X-ray Diffraction. MA Google Scholar: Addison-Wesley Reading, 1978.
[18]
Praveena, K.; Srinath, S. Synthesis and characterization of CoFe2O4/polyaniline nanocomposites for electromagnetic interference applications. J. Nanosci. Nanotechnol., 2014, 14(6), 4371-4376.
[http://dx.doi.org/10.1166/jnn.2014.8286] [PMID: 24738398]
[19]
Ramgir, N.S.; Hwang, Y.K.; Mulla, I.S.; Chang, J.S. Effect of particle size and strain in nanocrystalline SnO2 according to doping concentration of ruthenium. Solid State Sci., 2006, 8, 359-362.
[http://dx.doi.org/10.1016/j.solidstatesciences.2006.02.008]
[20]
Erum, P.; Gul, I. Enhancement of electrical properties due to Cr+3 substitution in Co-ferrite nanoparticles synthesized by two chemical techniques. J. Magn. Magn. Mater., 2012, 324, 3695-3703.
[21]
Amarendra, K.S.; Goel, T.C. Mendiratta. G. Dielectric properties of Mn substituted Ni-Zn ferrites. J. Appl. Phys., 2002, 91, 6626-6629.
[http://dx.doi.org/10.1063/1.1470256]
[22]
Koops, C.G. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev., 1951, 83, 121-124.
[http://dx.doi.org/10.1103/PhysRev.83.121]
[23]
Hench, L.L.; West, J.K. Principles of Electronic Ceramics; John Wiley and Sons: New York, 1990, p. 346.
[24]
Hemaunt, K.; Srivastava, C.P.; Negi, P.; Agrawal, H.M.; Asokan, K. Dielectric behavior of cobalt ferrite nanoparticles. IJEEE, 2013, 2, 59-66.
[25]
Vasundhara, K.; Achary, S.N.; Deshpande, S.K.; Babu, P.D.; Meena, S.S.; Tyag, A.K. Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys., 2013, 113, 194101-194110.
[http://dx.doi.org/10.1063/1.4804946]
[26]
Kelley, E.J.; Coombs, C.F. Introduction to base materials; McGraw-Hill: New York, 1997.
[27]
Verma, A.; Saxena, A.K.; Dube, D.C. Microwave permittivity and permeability of ferrite–polymer thick films. J. Magn. Magn. Mater., 2003, 263, 228-234.
[http://dx.doi.org/10.1016/S0304-8853(02)01569-X]
[28]
Tareev, B. Physics of dielectric materials; Mir publishers: Moscow, 1975, pp. 175-178.
[29]
Kambale, R.C.; Shaikh, P.A.; Kamble, S.S.; Kolekar, Y.D. Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd., 2009, 478, 599-603.
[http://dx.doi.org/10.1016/j.jallcom.2008.11.101]
[30]
Sauzedde, F.; Esmissari, A.; Pichot, C. Hydrophilic magnetic polymer latexes.1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes. Colloid Polym. Sci., 1999, 277, 846.
[31]
Li, L.; Qiu, H.; Qian, H.; Hao, B.; Liang, X. Controlled synthesis of the poly(N methylaniline)/Zn0.6 Mn0.2Ni0.2Fe2O4 composites and its electrical-magnetic property. J. Phys. Chem. C, 2010, 114, 6712-6717.
[http://dx.doi.org/10.1021/jp101116z]
[32]
Sarac, A.S.; Ates, M.; Kilic, B. Electrochemical impedance spectroscopic study of polyaniline on platinum, glassy carbon and carbon fiber microelectrodes. Int. J. Electrochem. Sci., 2008, 3, 777-786.
[33]
Alam, J.; Riaz, U.; Ahmad, S. Effect of ferrofluid concentration on electrical and magnetic properties of the Fe3O4/PANI Nanocomposites. J. Magn. Magn. Mater., 2007, 314, 93-99.
[http://dx.doi.org/10.1016/j.jmmm.2007.02.195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy