Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Electroencapsulation (Electrospraying & Electrospinning) of Active Compounds for Food Applications

Author(s): Merve D. Köse, Yücel Başpınar and Oguz Bayraktar*

Volume 25, Issue 16, 2019

Page: [1881 - 1888] Pages: 8

DOI: 10.2174/1381612825666190717125538

Price: $65

Abstract

With new consumption trends and mindset of a healthier way of life, there is an increasing demand for functional foods. To provide stable and functional products to consumers, the stability of the active compounds must be preserved during the processing of food. For this purpose, encapsulation techniques have been used in various industries in order to overcome problems such as stability, low solubility, and degradation under process conditions for food applications. Electrospinning and electrospraying are two highly versatile and scalable electrohydrodynamic methods, which have gained increasing attention in the various encapsulation applications. This review will give readers an overview of the latest electroencapsulation (electrospraying and electrospinning) of natural bioactive compounds for functional foods applications.

Keywords: Electrohydrodynamic, electrospraying, electrospinning, encapsulation, bioactive compounds, food applications, nanoparticles, nanofibers.

[1]
Ghorani B, Tucker N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll 2015; 51: 227-40.
[http://dx.doi.org/10.1016/j.foodhyd.2015.05.024]
[2]
Donini LM, Savina C, Cannella C. Nutrition in the elderly: Role of fiber. Arch Gerontol Geriatr 2009; 49(Suppl. 1): 61-9.
[http://dx.doi.org/10.1016/j.archger.2009.09.013] [PMID: 19836617]
[3]
Heaney RP. Bone health. Am J Clin Nutr 2007; 85(1): 300S-3S.
[http://dx.doi.org/10.1093/ajcn/85.1.300S] [PMID: 17209214]
[4]
Aditya NP, Espinosa YG, Norton IT. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol Adv 2017; 35(4): 450-7.
[http://dx.doi.org/10.1016/j.biotechadv.2017.03.012] [PMID: 28377276]
[5]
Alexander L, de Beer D, Muller M, van der Rijst M, Joubert E. Bitter profiling of phenolic fractions of green cyclopia genistoides herbal tea. Food Chem 2019; 276: 626-35.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.030] [PMID: 30409641]
[6]
Onwulata CI. Encapsulation of new active ingredients. Annu Rev Food Sci Technol 2012; 3(1): 183-202.
[http://dx.doi.org/10.1146/annurev-food-022811-101140] [PMID: 22149076]
[7]
López-Rubio A, Lagaron JM. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innov Food Sci Emerg Technol 2012; 13: 200-6.
[http://dx.doi.org/10.1016/j.ifset.2011.10.012]
[8]
Gorty AV, Barringer SA. Electrohydrodynamic spraying of chocolate. J Food Process Preserv 2011; 35(4): 542-9.
[http://dx.doi.org/10.1111/j.1745-4549.2010.00500.x]
[9]
Luo CJ, Loh S, Stride E, Edirisinghe M. Electrospraying and electrospinning of chocolate suspensions. Food Bioprocess Technol 2012; 5(6): 2285-300.
[http://dx.doi.org/10.1007/s11947-011-0534-6]
[10]
Vakilian S, Mashayekhan S, Shabani I, Khorashadizadeh M, Fallah A, Soleimani M. Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite. Int J Biol Macromol 2015; 75: 248-57.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.051] [PMID: 25660653]
[11]
Ardila N, Ajji Z, Heuzey M-C, Ajji A. Chitosan electrospraying: Mapping of process stability and micro and nanoparticle formation. J Aerosol Sci 2018; 126: 85-98.
[http://dx.doi.org/10.1016/j.jaerosci.2018.08.010]
[12]
Zhang C, Feng F, Zhang H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends Food Sci Technol 2018; 80: 175-86.
[http://dx.doi.org/10.1016/j.tifs.2018.08.005]
[13]
Celebioglu A, Yildiz ZI, Uyar T. Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int 2018; 106: 280-90.
[http://dx.doi.org/10.1016/j.foodres.2017.12.062] [PMID: 29579928]
[14]
Gómez-Mascaraque LG, Perez-Masiá R, González-Barrio R, Periago MJ, López-Rubio A. Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of β-carotene. Food Hydrocoll 2017; 73: 1-12.
[http://dx.doi.org/10.1016/j.foodhyd.2017.06.019]
[15]
Jain AK, Sood V, Bora M, Vasita R, Katti DS. Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydr Polym 2014; 112: 225-34.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.087] [PMID: 25129739]
[16]
Gupta S, Khan S, Muzafar M, Kushwaha M, Yadav AK, Gupta AP. Encapsulation: Entrapping essential oil/flavors/aromas in food 2016; 229-68.
[http://dx.doi.org/10.1016/B978-0-12-804307-3.00006-5]
[17]
Dias DR, Botrel DA, Fernandes RVDB, Borges SV. Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci 2017; 13: 31-7.
[http://dx.doi.org/10.1016/j.cofs.2017.02.001]
[18]
Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol 2013; 6(3): 628-47.
[http://dx.doi.org/10.1007/s11947-012-0944-0]
[19]
Alehosseini A, Ghorani B, Sarabi-Jamab M, Tucker N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 58(14): 1-18.
[PMID: 28609112]
[20]
Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: An overview. J Electrost 2008; 66(3-4): 197-219.
[http://dx.doi.org/10.1016/j.elstat.2007.10.001]
[21]
Lim LT. Encapsulation of bioactive compounds using electrospinning and electrospraying technologies. Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients 2015; 297-317.
[http://dx.doi.org/10.1002/9781118462157.ch18]
[22]
Boda SK, Li X, Xie J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. J Aerosol Sci 2018; 125: 164-81.
[http://dx.doi.org/10.1016/j.jaerosci.2018.04.002] [PMID: 30662086]
[23]
Rezaei A, Fathi M, Jafari SM. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll 2019; 88: 146-62.
[http://dx.doi.org/10.1016/j.foodhyd.2018.10.003]
[24]
Ephrem E, Najjar A, Charcosset C, Greige-Gerges H. Encapsulation of natural active compounds, enzymes, and probiotics for fruit juice fortification, preservation, and processing: An overview. J Funct Foods 2018; 48: 65-84.
[http://dx.doi.org/10.1016/j.jff.2018.06.021]
[25]
Xie J, Jiang J, Davoodi P, Srinivasan MP, Wang CH. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci 2015; 125: 32-57.
[http://dx.doi.org/10.1016/j.ces.2014.08.061] [PMID: 25684778]
[26]
Anu Bhushani J, Anandharamakrishnan C. Electrospinning and electrospraying techniques: Potential food-based applications. Trends Food Sci Technol 2014; 38(1): 21-33.
[http://dx.doi.org/10.1016/j.tifs.2014.03.004]
[27]
Jacobsen C, García-Moreno PJ, Mendes AC, Mateiu RV, Chronakis IS. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annu Rev Food Sci Technol 2018; 9(1): 525-49.
[http://dx.doi.org/10.1146/annurev-food-030117-012348] [PMID: 29400995]
[28]
Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol 2017; 70: 56-68.
[http://dx.doi.org/10.1016/j.tifs.2017.10.009]
[29]
Mendes AC, Stephansen K, Chronakis IS. Electrospinning of food proteins and polysaccharides. Food Hydrocoll 2017; 68: 53-68.
[http://dx.doi.org/10.1016/j.foodhyd.2016.10.022]
[30]
Park BK, Um IC. Effect of molecular weight on electro-spinning performance of regenerated silk. Int J Biol Macromol 2018; 106: 1166-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.115] [PMID: 28847607]
[31]
Gómez-Mascaraque LG, Tordera F, Fabra MJ, Martínez-Sanz M, Lopez-Rubio A. Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients. Innov Food Sci Emerg Technol 2018; 51: 2-11.
[32]
Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B, et al. Micro- and nanoparticles by electrospray: Advances and applications in foods. J Agric Food Chem 2015; 63(19): 4699-707.
[http://dx.doi.org/10.1021/acs.jafc.5b01403] [PMID: 25938374]
[33]
Tapia-Hernández JA, Rodríguez-Félix F, Katouzian I. Nanocapsule formation by electrospraying. Nanoencapsul Technol Food Nutrac Indust 2017; pp. 320-45.
[http://dx.doi.org/10.1016/B978-0-12-809436-5.00009-4]
[34]
Nikolaou M, Krasia-Christoforou T. Electrohydrodynamic methods for the development of pulmonary drug delivery systems. Eur J Pharm Sci 2018; 113: 29-40.
[http://dx.doi.org/10.1016/j.ejps.2017.08.032] [PMID: 28865687]
[35]
Jin Y, Zhao D, Huang Y. Fabrication of double-layered alginate capsules using coaxial nozzle. J Micro Nano-Manufacturing 2017; 5(4)041007
[http://dx.doi.org/10.1115/1.4037646]
[36]
Baspinar Y, Üstündas M, Bayraktar O, Sezgin C. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharm J 2018; 26(3): 323-34.
[http://dx.doi.org/10.1016/j.jsps.2018.01.010] [PMID: 29556123]
[37]
Norouzi SK, Shamloo A. Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater Sci Eng C 2019; 94: 1067-76.
[http://dx.doi.org/10.1016/j.msec.2018.10.016] [PMID: 30423687]
[38]
Doğan G, Başal G, Bayraktar O, Özyildiz F, Uzel A, Erdoğan İ. Bioactive Sheath/Core nanofibers containing olive leaf extract. Microsc Res Tech 2016; 79(1): 38-49.
[http://dx.doi.org/10.1002/jemt.22603] [PMID: 26626545]
[39]
Basal G, Altıok D, Bayraktar O. Antibacterial properties of silk fibroin/chitosan blend films loaded with plant extract. Fibers Polym 2010; 11(1): 21-7.
[http://dx.doi.org/10.1007/s12221-010-0021-0]
[40]
Basal G, Tetik GD, Kurkcu G, Bayraktar O, Gurhan ID, Atabey A. Olive leaf extract loaded silk fibroin/hyaluronic acid nanofiber webs for wound dressing applications. Dig J Nanomater Biostruct 2016; 11(4): 1113-23.
[41]
Gómez-Mascaraque LG, López-Rubio A. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. J Colloid Interface Sci 2016; 465: 259-70.
[http://dx.doi.org/10.1016/j.jcis.2015.11.061] [PMID: 26674243]
[42]
Moreno JAS, Mendes AC, Stephansen K, et al. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr Polym 2018; 190: 240-7.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.062] [PMID: 29628244]
[43]
Khoshakhlagh K, Mohebbi M, Koocheki A, Allafchian A. Encapsulation of D-limonene in Alyssum homolocarpum seed gum nanocapsules by emulsion electrospraying: Morphology characterization and stability assessment. Bioact Carbohydrates Diet Fibre 2018; 16: 43-52.
[http://dx.doi.org/10.1016/j.bcdf.2018.03.001]
[44]
Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. Procedia Food Sci 2011; 1: 1806-15.
[http://dx.doi.org/10.1016/j.profoo.2011.09.265]
[45]
Sharif N, Golmakani M-T, Niakousari M, Ghorani B, Lopez-Rubio A. Food-grade gliadin microstructures obtained by electrohydrodynamic processing. Food Res Int 2019; 116: 1366-73.
[http://dx.doi.org/10.1016/j.foodres.2018.10.027] [PMID: 30716927]
[46]
Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. Int J Pharm 2017; 522(1-2): 172-97.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.067] [PMID: 28188876]
[47]
Gomez-Mascaraque LG, Morfin RC, Pérez-Masiá R, Sanchez G, Lopez-Rubio A. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. Lebensm Wiss Technol 2016; 69: 438-46.
[http://dx.doi.org/10.1016/j.lwt.2016.01.071]
[48]
Bodnár E, Grifoll J, Rosell-Llompart J. Polymer solution electrospraying: A tool for engineering particles and films with controlled morphology. J Aerosol Sci 2018; 125: 93-118.
[http://dx.doi.org/10.1016/j.jaerosci.2018.04.012]
[49]
Nguyen DN, Clasen C, Van den Mooter G. Encapsulating darunavir nanocrystals within Eudragit L100 using coaxial electrospraying. Eur J Pharm Biopharm 2017; 113: 50-9.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.002] [PMID: 27993734]
[50]
Human C, De Beer D, Van Der Rijst M, Aucamp M, Joubert E. Electrospraying as a suitable method for nanoencapsulation of the hydrophilic bioactive dihydrochalcone, aspalathin. Food Chem 2019; 276: 467-74.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.016] [PMID: 30409621]
[51]
Gómez-Mascaraque LG, Casagrande Sipoli C, de La Torre LG, López-Rubio A. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin. Food Chem 2017; 233: 343-50.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.133] [PMID: 28530583]
[52]
Gómez-Estaca J, Gavara R, Hernández-Muñoz P. Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov Food Sci Emerg Technol 2015; 29: 302-7.
[http://dx.doi.org/10.1016/j.ifset.2015.03.004]
[53]
Aytac Z, Uyar T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. Int J Pharm 2017; 518(1-2): 177-84.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.061] [PMID: 28057465]
[54]
García-Moreno PJ, Pelayo A, Yu S, et al. Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: Combined use of whey protein and carbohydrates as wall materials. J Food Eng 2018; 231: 42-53.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.03.005]
[55]
Busolo MA, Torres-Giner S, Prieto C, Lagaron JM. Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine. Innov Food Sci Emerg Technol 2019; 51: 12-9.
[http://dx.doi.org/10.1016/j.ifset.2018.04.007]
[56]
Atay E, Fabra MJ, Martínez-Sanz M, Gomez-Mascaraque LG, Altan A, Lopez-Rubio A. Development and characterization of chitosan/gelatin electrosprayed microparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocoll 2018; 77: 699-710.
[http://dx.doi.org/10.1016/j.foodhyd.2017.11.011]
[57]
Köse MD, Bayraktar O. Encapsulation of lycopene using electrospraying method. Biointerface Res Appl Chem 2016; 6(1): 1019-25.
[58]
Upadhyay RK. Essential Oils: Anti - Microbial, Antihelminthic, Antiviral, Anticancer and Anti - Insect Properties. J Appl Biosci 2010; 36(1): 1-22.
[59]
Granata G, Stracquadanio S, Leonardi M, et al. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem 2018; 269: 286-92.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.140] [PMID: 30100436]
[60]
Bouzenna H, Hfaiedh N, Giroux-Metges M-A, Elfeki A, Talarmin H. Protective effects of essential oil of Citrus limon against aspirin-induced toxicity in IEC-6 cells. Appl Physiol Nutr Metab 2017; 42(5): 479-86.
[http://dx.doi.org/10.1139/apnm-2016-0515] [PMID: 28177735]
[61]
Rieger KA, Schiffman JD. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 2014; 113: 561-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.075] [PMID: 25256519]
[62]
Bouzenna H, Hfaiedh N, Bouaziz M, Giroux-Metges M-A, Elfeki A, Talarmin H. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells. Arch Physiol Biochem 2017; 123(5): 364-70.
[http://dx.doi.org/10.1080/13813455.2017.1347689] [PMID: 28719240]
[63]
Hashemi SMB, Brewer MS, Safari J, Nowroozi M, Abadi Sherahi MH, Sadeghi B, et al. Antioxidant activity, reaction mechanisms, and kinetics of Matricaria recutita extract in commercial blended oil oxidation. Int J Food Prop 2016; 19(2): 257-71.
[http://dx.doi.org/10.1080/10942912.2015.1020438]
[64]
Burt S. Essential oils: Their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol 2004; 94(3): 223-53.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[65]
Zanetti M, Carniel TK, Dalcanton F, et al. Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends Food Sci Technol 2018; 81: 51-60.
[http://dx.doi.org/10.1016/j.tifs.2018.09.003]
[66]
Echegoyen Y, Fabra MJ, Castro-Mayorga JL, Cherpinski A, Lagaron JM. High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint. Trends Food Sci Technol 2017; 60: 71-9.
[http://dx.doi.org/10.1016/j.tifs.2016.10.019]
[67]
Jafari SM, Jafari SM. An Introduction to Nanoencapsulation Techniques for the Food Bioactive Ingredients. Elsevier 1st ed.. 2017; pp. 1-62.
[http://dx.doi.org/10.1016/B978-0-12-809740-3.00001-5]
[68]
Cui H, Bai M, Lin L. Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr Polym 2018; 179: 360-9.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.011] [PMID: 29111062]
[69]
Lin L, Dai Y, Cui H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr Polym 2017; 178: 131-40.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.043] [PMID: 29050578]
[70]
Cui H, Bai M, Rashed MMA, Lin L. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int J Food Microbiol 2018; 266: 69-78.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.11.019] [PMID: 29179098]
[71]
Mishra D, Khare P, Singh DK, et al. Retention of antibacterial and antioxidant properties of lemongrass oil loaded on cellulose nanofibre-poly ethylene glycol composite. Ind Crops Prod 2018; 114: 68-80.
[http://dx.doi.org/10.1016/j.indcrop.2018.01.077]
[72]
Lin L, Dai Y, Cui H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr Polym 2017; 178: 131-40.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.043] [PMID: 29050578]
[73]
Wen P, Zhu D-H, Feng K, et al. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 2016; 196: 996-1004.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.043] [PMID: 26593582]
[74]
Celebioglu A, Sen HS, Durgun E, Uyar T. Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 2016; 144: 736-44.
[http://dx.doi.org/10.1016/j.chemosphere.2015.09.029] [PMID: 26408981]
[75]
Khan MKI, Schutyser MAI, Schroën K, Boom R. The potential of electrospraying for hydrophobic film coating on foods. J Food Eng 2012; 108(3): 410-6.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.09.005]
[76]
Debeaufort F, Voilley A. Lipid-Based Edible Films and Coatings 2009; 81-4.
[77]
Marthina K, Barringer SA. Confectionery coating with an electrohydrodynamic (EHD) system. J Food Sci 2012; 77(1): E26-31.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02501.x] [PMID: 22181825]
[78]
Khan MKI, Maan AA, Schutyser M, Schroën K, Boom R. Electrospraying of water in oil emulsions for thin film coating. J Food Eng 2013; 119(4): 776-80.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.05.027]
[79]
Celebioglu A, Uyar T. Antioxidant vitamin E/cyclodextrin inclusion complex electrospun nanofibers: Enhanced water solubility, prolonged shelf life, and photostability of vitamin E. J Agric Food Chem 2017; 65(26): 5404-12.
[http://dx.doi.org/10.1021/acs.jafc.7b01562] [PMID: 28608684]
[80]
Fathi M, Nasrabadi MN, Varshosaz J. Characteristics of vitamin E-loaded nanofibres from dextran. Int J Food Prop 2017; 20(11): 2665-74.
[http://dx.doi.org/10.1080/10942912.2016.1247365]
[81]
Fahami A, Fathi M. Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery. Food Hydrocoll 2018; 81: 31-8.
[http://dx.doi.org/10.1016/j.foodhyd.2018.02.008]
[82]
Stoleru E, Munteanu SB, Dumitriu RP, Coroaba A, Drobotă M, Zemljic LF, et al. Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications. Iran Polym J 2016; 25(4): 295-307.
[http://dx.doi.org/10.1007/s13726-016-0421-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy