Review Article

溶解性-通透性相互作用对溶出性口服制剂的影响

卷 20, 期 14, 2019

页: [1434 - 1446] 页: 13

弟呕挨: 10.2174/1389450120666190717114521

价格: $65

摘要

生物药物分类系统(BCS)根据药物的固有溶解度和肠道通透性对其进行分类。具有良好溶解性和肠通透性的药物具有良好的生物利用度。溶解性差和渗透性差的药物分别具有溶解度依赖性和渗透性依赖性生物利用度。在当前的药物领域中,大多数药物具有差的溶解度。为了解决溶解度差的问题,已经成功地使用了各种溶解度增强方法。这些增加溶解度的方法对药物的肠通透性的影响是一个令人关注的问题,一定不能忽视。当前的评论文章集中于各种溶解度增强方法的效果。环糊精,表面活性剂,助溶剂,水溶助长剂和无定形固体分散体,对药物的肠通透性有关。本文将有助于设计具有最佳溶解度平衡而又不影响药物渗透性的优化配方。

关键词: 溶解度,肠道通透性,溶解性-渗透性相互作用,生物制药,环糊精,水合物。

图形摘要

[1]
Bergström CA, Holm R, Jørgensen SA, et al. Early pharmaceutical profiling to predict oral drug absorption: current status and unmet needs. Eur J Pharm Sci 2014; 57: 173-99.
[http://dx.doi.org/10.1016/j.ejps.2013.10.015] [PMID: 24215735]
[2]
Lennernäs H. Human intestinal permeability. J Pharm Sci 1998; 87(4): 403-10.
[http://dx.doi.org/10.1021/js970332a] [PMID: 9548891]
[3]
Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev 1996; 19(3): 359-76.
[http://dx.doi.org/10.1016/0169-409X(96)00009-9] [PMID: 11540095]
[4]
Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm 2000; 50(1): 3-12.
[http://dx.doi.org/10.1016/S0939-6411(00)00091-6] [PMID: 10840189]
[5]
Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J Clin Pharmacol 2002; 42(6): 620-43.
[http://dx.doi.org/10.1177/00970002042006005] [PMID: 12043951]
[6]
Dahan A, Lennernäs H, Amidon GL. The fraction dose absorbed, in humans, and high jejunal human permeability relationship. Mol Pharm 2012; 9(6): 1847-51.
[http://dx.doi.org/10.1021/mp300140h] [PMID: 22524707]
[7]
Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995; 12(3): 413-20.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[8]
Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate release dosage forms based on a biopharmaceutical classification system. (Center for Drug Evaluation and Research): 2000;
[9]
Yu LX, Amidon GL, Polli JE, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res 2002; 19(7): 921-5.
[http://dx.doi.org/10.1023/A:1016473601633] [PMID: 12180542]
[10]
Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65(1): 315-499.
[http://dx.doi.org/10.1124/pr.112.005660] [PMID: 23383426]
[11]
Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin Drug Deliv 2015; 12(7): 1121-33.
[http://dx.doi.org/10.1517/17425247.2015.999038] [PMID: 25556987]
[12]
Miller JM, Dahan A, Gupta D, Varghese S, Amidon GL. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs. J Control Release 2009; 137(1): 31-7.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.018] [PMID: 19264104]
[13]
Jain P, Yalkowsky SH. Solubilization of poorly soluble compounds using 2-pyrrolidone. Int J Pharm 2007; 342(1-2): 1-5.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.056] [PMID: 17570624]
[14]
Thakuria R, Delori A, Jones W, et al. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm 2013; 453(1): 101-25.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.043] [PMID: 23207015]
[15]
Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011; 16(7-8): 354-60.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[16]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59(7): 645-66.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[17]
Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci 2012; 101(4): 1355-77.
[http://dx.doi.org/10.1002/jps.23031] [PMID: 22213468]
[18]
Singh A, Worku ZA, Van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv 2011; 8(10): 1361-78.
[http://dx.doi.org/10.1517/17425247.2011.606808] [PMID: 21810062]
[19]
B Shekhawat P, B Pokharkar V. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 2017; 7(3): 260-80.
[http://dx.doi.org/10.1016/j.apsb.2016.09.005] [PMID: 28540164]
[20]
Lennernäs H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 2007; 37(10-11): 1015-51.
[http://dx.doi.org/10.1080/00498250701704819] [PMID: 17968735]
[21]
Lennernäs H. Human in vivo regional intestinal permeability: importance for pharmaceutical drug development. Mol Pharm 2014; 11(1): 12-23.
[http://dx.doi.org/10.1021/mp4003392] [PMID: 24206063]
[22]
Lennernäs H. Regional intestinal drug permeation: biopharmaceutics and drug development. Eur J Pharm Sci 2014; 57: 333-41.
[http://dx.doi.org/10.1016/j.ejps.2013.08.025] [PMID: 23988845]
[23]
Kukes VG, Ramenskaya GV, Vasilenko GF, Vasilenko KS, Krasnykh LM, Savchenko AY, et al. Methodological recommendations for drug manufacturers on in vitro equivalence test for generic drug products according to biowaiver procedure. Federal Serviceon Surveillance in Healthcare and Social Development 2010.
[24]
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[25]
Loftsson T, Másson M, Brewster ME. Self-association of cyclodextrins and cyclodextrin complexes. J Pharm Sci 2004; 93(5): 1091-9.
[http://dx.doi.org/10.1002/jps.20047] [PMID: 15067686]
[26]
Bonini M, Rossi S, Karlsson G, Almgren M, Lo Nostro P, Baglioni P. Self-assembly of β-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir 2006; 22(4): 1478-84.
[http://dx.doi.org/10.1021/la052878f] [PMID: 16460065]
[27]
Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 2007; 59(7): 645-66.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[28]
Loftsson T, Brewster ME, Másson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv 2004; 2: 261-75.
[http://dx.doi.org/10.2165/00137696-200402040-00006]
[29]
Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2005; 2(2): 335-51.
[http://dx.doi.org/10.1517/17425247.2.1.335] [PMID: 16296758]
[30]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[31]
Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 2004; 3(12): 1023-35.
[http://dx.doi.org/10.1038/nrd1576] [PMID: 15573101]
[32]
Uekama K, Arimori K, Sakai A, Masaki K, Irie T, Otagiri M. Improvement in percutaneous absorption of prednisolone by β- and γ-cyclodextrin complexations. Chem Pharm Bull (Tokyo) 1987; 35(7): 2910-3.
[http://dx.doi.org/10.1248/cpb.35.2910] [PMID: 3677241]
[33]
Gerlóczy A, Antal S, Szejtli J. Percutaneous absorption of heptakis-(2,6-di-O-14C-methyl)-β cyclodextrin in rats In: Huber O, Szejtli J, Eds. Proceedings of the Fourth International Symposium on Cyclodextrins. 415-20.
[http://dx.doi.org/10.1007/978-94-009-2637-0_60]
[34]
Tanaka M, Iwata Y, Kouzuki Y, et al. Effect of 2-hydroxypropyl-beta-cyclodextrin on percutaneous absorption of methyl paraben. J Pharm Pharmacol 1995; 47(11): 897-900.
[http://dx.doi.org/10.1111/j.2042-7158.1995.tb03267.x] [PMID: 8708982]
[35]
Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 1997; 86(2): 147-62.
[http://dx.doi.org/10.1021/js960213f] [PMID: 9040088]
[36]
Matsuda H, Arima H. Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev 1999; 36(1): 81-99.
[http://dx.doi.org/10.1016/S0169-409X(98)00056-8] [PMID: 10837710]
[37]
Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev 1998; 98(5): 2045-76.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959]
[38]
Loftsson T, Konrádsdóttir F, Másson M. Influence of aqueous diffusion layer on passive drug diffusion from aqueous cyclodextrin solutions through biological membranes. Pharmazie 2006; 61(2): 83-9.
[PMID: 16526552]
[39]
Stella VJ, Rao VM, Zannou EA, Zia V. Mechanisms of drug release from cyclodextrin complexes. Adv Drug Deliv Rev 1999; 36(1): 3-16.
[http://dx.doi.org/10.1016/S0169-409X(98)00052-0] [PMID: 10837705]
[40]
Rao VM, Stella VJ. When can cyclodextrins be considered for solubilization purposes? J Pharm Sci 2003; 92(5): 927-32.
[http://dx.doi.org/10.1002/jps.10341] [PMID: 12712411]
[41]
Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 2007; 123(2): 78-99.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.018] [PMID: 17888540]
[42]
loftsson T, Byskov Vogensen S, Brewster ME, T, Byskov Vogensen Brewster ME, S, Brewster ME, et al. Effects of cyclodextrins on drug delivery through biological membranes Pharm Sci 96(2007): 2532-46.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.018] [PMID: 17888540]
[43]
Loftsson T, Konrádsdóttir F, Másson M. Development and evaluation of an artificial membrane for determination of drug availability. Int J Pharm 2006; 326(1-2): 60-8.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.009] [PMID: 16920289]
[44]
Brewster ME, Noppe M, Peeters J, Loftsson T. Effect of the unstirred water layer on permeability enhancement by hydrophilic cyclodextrins. Int J Pharm 2007; 342(1-2): 250-3.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.029] [PMID: 17560057]
[45]
Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci 2010; 99(6): 2739-49.
[http://dx.doi.org/10.1002/jps.22033] [PMID: 20039391]
[46]
Beig A, Miller JM, Dahan A. The interaction of nifedipine with selected cyclodextrins and the subsequent solubility-permeability trade-off. Eur J Pharm Biopharm 2013; 85(3 Pt B): 1293-9.
[http://dx.doi.org/10.1016/j.ejpb.2013.05.018] [PMID: 23770429]
[47]
Beig A, Agbaria R, Dahan A. Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. PLoS One 2013; 8(7)e68237
[http://dx.doi.org/10.1371/journal.pone.0068237] [PMID: 23874557]
[48]
Beig A, Agbaria R, Dahan A. The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: Comparison to HPβCD and the solubility-permeability interplay. Eur J Pharm Sci 2015; 77: 73-8.
[http://dx.doi.org/10.1016/j.ejps.2015.05.024] [PMID: 26006306]
[49]
Beig A, Miller JM, Lindley D, et al. Head-to-head comparison of different solubility-enabling formulations of etoposide and their consequent solubility–permeability interplay. J Pharm Sci 2015; 104(9): 2941-7.
[http://dx.doi.org/10.1002/jps.24496] [PMID: 25989509]
[50]
Fine-Shamir N, Beig A, Zur M, et al. Toward successful cyclodextrin based solubility-enabling formulations for oral delivery of lipophilic drugs: solubility-permeability trade-off, biorelevant dissolution, and the unstirred water layer. Mol Pharm 2017; 14(6): 2138-46.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00275] [PMID: 28505451]
[51]
Holm R, Olesen NE, Hartvig RA, et al. Effect of cyclodextrin concentration on the oral bioavailability of danazol and cinnarizine in rats. Eur J Pharm Biopharm 2016; 101: 9-14.
[http://dx.doi.org/10.1016/j.ejpb.2016.01.007] [PMID: 26776271]
[52]
Zur M, Cohen N, Agbaria R, Dahan A. The biopharmaceutics of successful controlled release drug product: Segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract. Int J Pharm 2015; 489(1-2): 304-10.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.002] [PMID: 25957705]
[53]
Bermejo MV, Pérez-Varona AT, Segura-Bono MJ, et al. Compared effects of synthetic and natural bile acid surfactants on xenobiotic absorption I. Studies with polysorbate and taurocholate in rat colon. Int J Pharm 1991; 69: 221-31.
[http://dx.doi.org/10.1016/0378-5173(91)90364-T]
[54]
Frank KJ, Westedt U, Rosenblatt KM, et al. Impact of FaSSIF on the solubility and dissolution-/permeation rate of a poorly water-soluble compound. Eur J Pharm Sci 2012; 47(1): 16-20.
[http://dx.doi.org/10.1016/j.ejps.2012.04.015] [PMID: 22579958]
[55]
Garrigues TM, Segura-Bono MJ, Bermejo MV, et al. Compared effects of synthetic and natural bile acid surfactant on xenobiotic absorption. II. Studies with sodium glycocholate to confirm a hypothesis. Int J Pharm 1994; 101: 209-17.
[http://dx.doi.org/10.1016/0378-5173(94)90216-X]
[56]
Holmstock N, De Bruyn T, Bevernage J, et al. Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine. Eur J Pharm Sci 2013; 49(1): 27-32.
[http://dx.doi.org/10.1016/j.ejps.2013.01.012] [PMID: 23402972]
[57]
Katneni K, Charman SA, Porter CJH. Permeability assessment of poorly water-soluble compounds under solubilizing conditions: the reciprocal permeability approach. J Pharm Sci 2006; 95(10): 2170-85.
[http://dx.doi.org/10.1002/jps.20687] [PMID: 16883557]
[58]
Katneni K, Charman SA, Porter CJH. Impact of cremophor-EL and polysorbate-80 on digoxin permeability across rat jejunum: delineation of thermodynamic and transporter related events using the reciprocal permeability approach. J Pharm Sci 2007; 96(2): 280-93.
[http://dx.doi.org/10.1002/jps.20779] [PMID: 17051595]
[59]
Katneni K, Charman SA, Porter CJH. Use of plasma proteins as solubilizing agents in in vitro permeability experiments: correction for unbound drug concentration using the reciprocal permeability approach. J Pharm Sci 2008; 97(1): 209-24.
[http://dx.doi.org/10.1002/jps.20877] [PMID: 17585392]
[60]
Mudra DR, Borchardt RT. Absorption barriers in the rat intestinal mucosa. 3: Effects of polyethoxylated solubilizing agents on drug permeation and metabolism. J Pharm Sci 2010; 99(2): 1016-27.
[http://dx.doi.org/10.1002/jps.21836] [PMID: 19650119]
[61]
Mudra DR, Borchardt RT. Absorption barriers in the rat intestinal mucosa: 1. Application of an in situ perfusion model to simultaneously assess drug permeation and metabolism. J Pharm Sci 2010; 99(2): 982-98.
[http://dx.doi.org/10.1002/jps.21912] [PMID: 19746412]
[62]
Mudra DR, Jin JY, Borchardt RT. Absorption barriers in the rat intestinal mucosa: 2. Application of physiologically based mathematical models to quantify mechanisms of drug permeation and metabolism. J Pharm Sci 2010; 99(2): 999-1015.
[http://dx.doi.org/10.1002/jps.21965] [PMID: 19798765]
[63]
Dahan A, Miller JM. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J 2012; 14(2): 244-51.
[http://dx.doi.org/10.1208/s12248-012-9337-6] [PMID: 22391790]
[64]
Amidon GE, Higuchi WI, Ho NFH. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci 1982; 71(1): 77-84.
[http://dx.doi.org/10.1002/jps.2600710120] [PMID: 7057387]
[65]
Miller JM, Beig A, Krieg BJ, et al. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Mol Pharm 2011; 8(5): 1848-56.
[http://dx.doi.org/10.1021/mp200181v] [PMID: 21800883]
[66]
Nerurkar MM, Ho NFH, Burton PS, Vidmar TJ, Borchardt RT. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J Pharm Sci 1997; 86(7): 813-21.
[http://dx.doi.org/10.1021/js960483y] [PMID: 9232522]
[67]
Hens B, Brouwers J, Corsetti M, Augustijns P. Gastrointestinal behavior of nano- and microsized fenofibrate: In vivo evaluation in man and in vitro simulation by assessment of the permeation potential. Eur J Pharm Sci 2015; 77: 40-7.
[http://dx.doi.org/10.1016/j.ejps.2015.05.023] [PMID: 26004010]
[68]
Beig A, Miller JM, Dahan A. Accounting for the solubility-permeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption. Eur J Pharm Biopharm 2012; 81(2): 386-91.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.012] [PMID: 22387337]
[69]
Riad LE, Sawchuk RJ. Effect of polyethylene glycol 400 on the intestinal permeability of carbamazepine in the rabbit. Pharm Res 1991; 8(4): 491-7.
[http://dx.doi.org/10.1023/A:1015803312233] [PMID: 1871045]
[70]
Miller JM, Beig A, Carr RA, Webster GK, Dahan A. The solubility-permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations. Mol Pharm 2012; 9(3): 581-90.
[http://dx.doi.org/10.1021/mp200460u] [PMID: 22280478]
[71]
Neuberg H. Biochem Z 1961; 76: 107-9.
[72]
Shimizu S, Booth JJ, Abbott S. Hydrotropy: binding models vs. statistical thermodynamics. Phys Chem Chem Phys 2013; 15(47): 20625-32.
[http://dx.doi.org/10.1039/c3cp53791a] [PMID: 24189644]
[73]
El-Houssieny BM, El-Dein EZ, El-Messiry HM. Enhancement of solubility of dexibuprofen applying mixed hydrotropic solubilization technique. Drug Discov Ther 2014; 8(4): 178-84.
[http://dx.doi.org/10.5582/ddt.2014.01019] [PMID: 25262596]
[74]
Agrawal S, Pancholi SS, Jain NK, Agrawal GP. Hydrotropic solubilization of nimesulide for parenteral administration. Int J Pharm 2004; 274(1-2): 149-55.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.012] [PMID: 15072791]
[75]
Kim JY, Kim S, Papp M, Park K, Pinal R. Hydrotropic solubilization of poorly water-soluble drugs. J Pharm Sci 2010; 99(9): 3953-65.
[http://dx.doi.org/10.1002/jps.22241] [PMID: 20607808]
[76]
Kim JY, Kim S, Pinal R, Park K. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs. J Control Release 2011; 152(1): 13-20.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.014] [PMID: 21352878]
[77]
Horváth-Szabó G, Yin Q, Friberg SE. The hydrotrope action of sodium xylene sulfonate on the solubility of lecithin. J Colloid Interface Sci 2001; 236(1): 52-9.
[http://dx.doi.org/10.1006/jcis.2000.7391] [PMID: 11254328]
[78]
Hodgdon TK, Kaler EW. Hydrotropic solutions. Curr Opin Colloid Interface Sci 2007; 12: 121-8.
[http://dx.doi.org/10.1016/j.cocis.2007.06.004]
[79]
Herbig ME, Evers DH. Correlation of hydrotropic solubilization by urea with logD of drug molecules and utilization of this effect for topical formulations. Eur J Pharm Biopharm 2013; 85(1): 158-60.
[http://dx.doi.org/10.1016/j.ejpb.2013.06.022] [PMID: 23958327]
[80]
Coffman RE, Kildsig DO. Effect of nicotinamide and urea on the solubility of riboflavin in various solvents. J Pharm Sci 1996 a; 85(9): 951-4.
[http://dx.doi.org/10.1021/js960012b] [PMID: 8877885]
[81]
Coffman RE, Kildsig DO. Hydrotropic solubilization--mechanistic studies. Pharm Res 1996; 13(10): 1460-3.
[http://dx.doi.org/10.1023/A:1016011125302] [PMID: 8899835]
[82]
daSilva RC, Spitzer M, da Silva LSHM, Loh W. Investigations on the mechanism of aqueous solubility increase caused by some hydrotropes. Thermochim Acta 1999; 328: 161-7.
[http://dx.doi.org/10.1016/S0040-6031(98)00637-6]
[83]
Beig A, Lindley D, Miller JM, Agbaria R, Dahan A. Hydrotropic solubilization of lipophilic drugs for oral delivery: the effects of urea and nicotinamide on carbamazepine solubility-permeability interplay. Front Pharmacol 2016; 7: 379.
[http://dx.doi.org/10.3389/fphar.2016.00379] [PMID: 27826241]
[84]
Van den Mooter Guy. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate, drug discovery today: technologies 2012; 9(2): e79-85.
[85]
Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev 2012; 64(5): 396-421.
[http://dx.doi.org/10.1016/j.addr.2011.07.009] [PMID: 21843564]
[86]
Gardner CR, Walsh CT, Almarsson O. Drugs as materials: valuing physical form in drug discovery. Nat Rev Drug Discov 2004; 3(11): 926-34.
[http://dx.doi.org/10.1038/nrd1550] [PMID: 15520815]
[87]
Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 2000; 17(4): 397-404.
[http://dx.doi.org/10.1023/A:1007516718048] [PMID: 10870982]
[88]
Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 1997; 86(1): 1-12.
[http://dx.doi.org/10.1021/js9601896] [PMID: 9002452]
[89]
Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol 2009; 61(12): 1571-86.
[http://dx.doi.org/10.1211/jpp.61.12.0001] [PMID: 19958579]
[90]
Mishra DK, Dhote V, Bhargava A, Jain DK, Mishra PK. Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications. Drug Deliv Transl Res 2015; 5(6): 552-65.
[http://dx.doi.org/10.1007/s13346-015-0256-9] [PMID: 26306524]
[91]
Li J, Patel D, Wang G. Use of spray-dried dispersions in early pharmaceutical development: Theoretical and practical challenges. AAPS J 2017; 19(2): 321-33.
[http://dx.doi.org/10.1208/s12248-016-0017-9] [PMID: 27896684]
[92]
Wyttenbach N, Kuentz M. Glass-forming ability of compounds in marketed amorphous drug products. Eur J Pharm Biopharm 2017; 112: 204-8.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.031] [PMID: 27903457]
[93]
Ilevbare GA, Taylor LS. Liquid–liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des 2013; 13: 1497-509.
[http://dx.doi.org/10.1021/cg301679h]
[94]
Dahan A, Beig A, Ioffe-Dahan V, Agbaria R, Miller JM. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane. AAPS J 2013; 15(2): 347-53.
[http://dx.doi.org/10.1208/s12248-012-9445-3] [PMID: 23242514]
[95]
Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm 2012; 9(7): 2009-16.
[http://dx.doi.org/10.1021/mp300104s] [PMID: 22632106]
[96]
Beig A, Fine-Shamir N, Lindley D, Miller JM, Dahan A. Advantageous solubility-permeability interplay when using amorphous solid dispersion (asd) formulation for the bcs class iv p-gp substrate rifaximin: Simultaneous increase of both the solubility and the permeability. AAPS J 2017; 19(3): 806-13.
[http://dx.doi.org/10.1208/s12248-017-0052-1] [PMID: 28204967]
[97]
Yeap YY, Trevaskis NL, Porter CJH. The potential for drug supersaturation during intestinal processing of lipid-based formulations may be enhanced for basic drugs. Mol Pharm 2013; 10(7): 2601-15.
[http://dx.doi.org/10.1021/mp400035z] [PMID: 23697606]
[98]
Yeap YY, Trevaskis NL, Quach T, et al. Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation. Mol Pharm 2013; 10(5): 1874-89.
[http://dx.doi.org/10.1021/mp3006566] [PMID: 23480483]
[99]
Kossena GA, Boyd BJ, Porter CJH, Charman WN. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. J Pharm Sci 2003; 92(3): 634-48.
[http://dx.doi.org/10.1002/jps.10329] [PMID: 12587125]
[100]
Kossena GA, Charman WN, Boyd BJ, Dunstan DE, Porter CJH. Probing drug solubilization patterns in the gastrointestinal tract after administration of lipid-based delivery systems: a phase diagram approach. J Pharm Sci 2004; 93(2): 332-48.
[http://dx.doi.org/10.1002/jps.10554] [PMID: 14705191]
[101]
Porter CJH, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res 2004; 21(8): 1405-12.
[http://dx.doi.org/10.1023/B:PHAM.0000036914.22132.cc] [PMID: 15359575]
[102]
Kaukonen AM, Boyd BJ, Porter CJ, Charman WN. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res 2004; 21(2): 245-53.
[http://dx.doi.org/10.1023/B:PHAM.0000016282.77887.1f] [PMID: 15032305]
[103]
Anby MU, Williams HD, McIntosh M, et al. Lipid digestion as a trigger for supersaturation: evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm 2012; 9(7): 2063-79.
[http://dx.doi.org/10.1021/mp300164u] [PMID: 22656917]
[104]
Cuiné JF, Charman WN, Pouton CW, Edwards GA, Porter CJ. Increasing the proportional content of surfactant (Cremophor EL) relative to lipid in self-emulsifying lipid-based formulations of danazol reduces oral bioavailability in beagle dogs. Pharm Res 2007; 24(4): 748-57.
[http://dx.doi.org/10.1007/s11095-006-9194-z] [PMID: 17372700]
[105]
Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev 2008; 60(6): 625-37.
[http://dx.doi.org/10.1016/j.addr.2007.10.010] [PMID: 18068260]
[106]
Dahan A, Beig A, Lindley D, Miller JM. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Adv Drug Deliv Rev 2016; 101: 99-107.
[http://dx.doi.org/10.1016/j.addr.2016.04.018] [PMID: 27129443]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy