Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Voltammetry Determination of Cefotaxime on Zinc Oxide Nanorod Modified Electrode

Author(s): Vanitha Vasantharaghavan and Ravichandran Cingaram*

Volume 17, Issue 1, 2021

Published on: 16 July, 2019

Page: [40 - 46] Pages: 7

DOI: 10.2174/1573412915666190716140230

Price: $65

Abstract

Background: The Glassy Carbon Electrode (GCE) was modified with zinc oxide nanoparticles to enhance the electrocatalytic activity of the redox behavior of cefotaxime ion. ATOMIC Force Microscopy (AFM) photographic studies showed the nanorod like structure of the zinc oxide, which was coated uniformly on the electrode surface.

Methods: The zinc oxide nanorod modified electrode was used as novel voltammetric determination of cefotaxime. The results of voltammetric behavior are satisfactory in the electro oxidation of cefotaxime, and exhibit considerable improvement compared to glassy carbon electrode.

Results: Under the optimized experimental conditions, the ZnO nanorod modified electrode exhibit better linear dynamic range from 300 ppb to 700 ppb with lower limit of detection 200 ppb for the stripping voltammetric determination of cefotaxime.

Conclusion: The pharmaceutical and clinical formulation of cefotaxime was successfully applied for accurate determination of trace amounts on ZnO nanomateials modified electrode.

Keywords: Cefotaxime, zinc oxide nanoparticles, voltammetry, stripping, electrode, GCE.

Graphical Abstract

[1]
Arbianto, A.D. Maya Damayanti Rahayu.; Susi Kusumaningrum. The development and validation of RP-HPLC assay for cefotaxime sodium. Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 22-29.
[2]
Dürckheimer, W. Jürgen Blumbach.; Rudolf Lattrell.; Karl Heinz Scheunemann. Recent developments in the field of β-lactam antibiotics, angewandte chem. Inter Edition in English, 1985, 24(3), 180-202.
[http://dx.doi.org/10.1002/anie.198501801]
[3]
Juan C Rodriguez Dominguez.;Ricardo Hernández Valdés.; Maritza González.; Miguel Lopez.; Adamo Fini. A rapid procedure to prepare cefotaxime. IlFarmaco, 2000, 55(5), 393-396.
[4]
Todd, W.M. Cefpodoxime proxetil: a comprehensive review. Int. J. Antimicrob. Agents, 1994, 4(1), 37-62.
[http://dx.doi.org/10.1016/0924-8579(94)90062-0] [PMID: 18611588]
[5]
Stirbet, D. Simona-Carmen Litescu; Gabriel-Lucian Radu. Chromatographic analysis of immobilized cefotaxime. J. Serb. Chem. Soc., 2014, 79, 579-586.
[http://dx.doi.org/10.2298/JSC130821008S]
[6]
Amin, A.S.; Ragab, G.H. Spectrophotometric determination of certain cephalosporins in pure form and in pharmaceutical formulations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2004, 60(12), 2831-2835.
[http://dx.doi.org/10.1016/j.saa.2003.12.049] [PMID: 15350919]
[7]
Vijay, V.K.; Sawanta, S.M.; Rahul, M.M.; Dandge, P.B. Sipra Choudhury; Chang, K.H.; Pramod, S. P. Photoelectrocatalysis of Cefotaxime Using Nanostructured TiO2 photoanode: identification of the degradation products and determination of the Toxicity Level. Ind. Eng. Chem. Res., 2014, 53, 18152-18162.
[http://dx.doi.org/10.1021/ie501821a]
[8]
Bernacca, G.; Nucci, L.; Pergola, F. Polarographic behavior of the β‐lactam antibiotic cefuroxime and study of the reduction mechanism in acidic media. Electro. Anal., 1994, 6, 327-332.
[http://dx.doi.org/10.1002/elan.1140060410]
[9]
Xu, Q.; Yuan, A.J.; Zhang, R.; Bian, X.; Chen, D.; Hu, X. Application of electrochemical methods for pharmaceutical and drug analysis. Curr. Pharm. Anal., 2009, 5, 144-155.
[http://dx.doi.org/10.2174/157341209788172889]
[10]
Özkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33, 155-181.
[http://dx.doi.org/10.1080/713609162]
[11]
Nikolić, K. Mara, M.A.; Vera Kapetanović; Danica Agbaba. Voltammetric and theoretical studies of the electrochemical behavior of cephalosporins at a mercury electrode. J. Serb. Chem. Soc., 2015, 80, 1035-1049.
[http://dx.doi.org/10.2298/JSC150129019N]
[12]
Dogan, B.; Golcu, A.; Dolaz, M. Sibel, A.O. anodic oxidation of antibacterial drug cefotaxime sodium and its square wave and differential pulse voltammetric determination in pharmaceuticals and human serum. Curr. Pharm. Anal., 2009, 5, 197-207.
[http://dx.doi.org/10.2174/157341209788172861]
[13]
Shahrokhian, S.; Rastgar, S. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst (Lond.), 2012, 137(11), 2706-2715.
[http://dx.doi.org/10.1039/c2an35182j] [PMID: 22543355]
[14]
Yang, G.; Zhao, F.; Zeng, B. Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor. Biosens. Bioelectron., 2014, 53, 447-452.
[http://dx.doi.org/10.1016/j.bios.2013.10.029] [PMID: 24211456]
[15]
Dehdashtian, S.; Behbahani, M.; Noghrehabadi, A. Fabrication of a novel, sensitive and selective electrochemical sensor for antibiotic cefotaxime based on sodium montmorillonite nanoclay/electroreduced graphene oxide composite modified carbon paste electrode. J. Electroanal. Chem. (Lausanne Switz.), 2017, 801, 450-458.
[http://dx.doi.org/10.1016/j.jelechem.2017.08.033]
[16]
Mara, M. Aleksic.; Vera Kapetanovic.; Jasmina Atanackovic.; Biljana Jocic.; Mira Zecevi. Simultaneous determination of cefotaxime and desacetyl cefotaxime in real urine sample using voltammetric and high-performance liquid chromatographic methods. Talanta, 2008, 77, 131-137.
[http://dx.doi.org/10.1016/j.talanta.2008.05.047] [PMID: 18804610]

© 2024 Bentham Science Publishers | Privacy Policy