Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Therapeutic Approaches to Alzheimer’s Type of Dementia: A Focus on FGF21 Mediated Neuroprotection

Author(s): Rajeev Taliyan*, Sarathlal K. Chandran and Violina Kakoty

Volume 25, Issue 23, 2019

Page: [2555 - 2568] Pages: 14

DOI: 10.2174/1381612825666190716101411

Price: $65

Abstract

Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer’s Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.

Keywords: Metabolic syndrome, insulin resistance, neurodegeneration, Alzheimer's disease, fibroblast growth factor 21, diabetes mellitus.

[1]
Cho J, Hong H, Park S, Kim S, Kang H. Insulin resistance and its association with metabolic syndrome in korean children. BioMed Res Int 2017; 20178728017
[http://dx.doi.org/10.1155/2017/8728017]
[2]
Association A. others. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018; 14(3): 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[3]
Mathuranath PS, George A, Ranjith N, et al. Incidence of Alzheimer’s disease in India: a 10 years follow-up study. Neurol India 2012; 60(6): 625-30.
[http://dx.doi.org/10.4103/0028-3886.105198] [PMID: 23287326]
[4]
Gavurová B, Kováč V, Jarčušková D. Development of Regional Disparities in Alzheimer’s Disease Mortality in the Slovak Republic from 1996 to 2015. Int J Alzheimer’s Dis 2018; 2018.
[5]
Patterson C. World Alzheimer Report 2018-The state of the art of dementia research: New frontiers 2018.
[6]
Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2010; 7(8): 656-64.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[7]
Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs 2017; 26(6): 735-9.
[http://dx.doi.org/10.1080/13543784.2017.1323868] [PMID: 28460541]
[8]
Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 2017; 68: 413-30.
[http://dx.doi.org/10.1146/annurev-med-042915-103753] [PMID: 28099083]
[9]
Terry RD, Masliah E, Hansen LA. Structural basis of the cognitive alterations in Alzheimer disease 1994.
[10]
Masliah E, Mallory M, Alford M, DeTeresa R, Iwai A, Saitoh T. Molecular mechanisms of synaptic disconnection in Alzheimer’s disease. Connect Cogn Alzheimer’s Dis 1997; pp. 121-40.
[http://dx.doi.org/10.1007/978-3-642-60680-9_9]
[11]
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990; 27(5): 457-64.
[http://dx.doi.org/10.1002/ana.410270502] [PMID: 2360787]
[12]
Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 1981; 10(2): 184-92.
[http://dx.doi.org/10.1002/ana.410100209] [PMID: 7283403]
[13]
Lee HG, Moreira PI, Zhu X, Smith MA, Perry G. Staying connected: synapses in Alzheimer disease. Am J Pathol 2004; 165(5): 1461-4.
[http://dx.doi.org/10.1016/S0002-9440(10)63404-9] [PMID: 15509517]
[14]
Meyer-Luehmann M, Spires-Jones TL, Prada C, et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 2008; 451(7179): 720-4.
[http://dx.doi.org/10.1038/nature06616] [PMID: 18256671]
[15]
Spires-Jones T, Knafo S. Spines, plasticity, and cognition in Alzheimer’s model mice Neural Plast 2012; 2012.
[http://dx.doi.org/10.1155/2012/319836]
[16]
Funderburk SF, Marcellino BK, Yue Z. Cell “selfeating”( autophagy) mechanism in Alzheimer’s disease. Mt Sinai J Med A J Transl Pers Med A J Transl Pers Med 2010; 77(1): 59-68.
[17]
Goedert M, Klug A, Crowther RA. Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 2006; 9(3)(Suppl.): 195-207.
[http://dx.doi.org/10.3233/JAD-2006-9S323] [PMID: 16914859]
[18]
Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 2010; 9(5): 387-98.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]
[19]
Kuret J, Congdon EE, Li G, Yin H, Yu X, Zhong Q. Evaluating triggers and enhancers of tau fibrillization. Microsc Res Tech 2005; 67(3-4): 141-55.
[http://dx.doi.org/10.1002/jemt.20187] [PMID: 16103995]
[20]
Rafii MS, Aisen PS. Recent developments in Alzheimer’s disease therapeutics. BMC Med 2009; 7(1): 7.
[http://dx.doi.org/10.1186/1741-7015-7-7] [PMID: 19228370]
[21]
De Strooper B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 2010; 90(2): 465-94.
[http://dx.doi.org/10.1152/physrev.00023.2009] [PMID: 20393191]
[22]
Stoothoff WH, Johnson GVW. Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 2005; 1739(2-3): 280-97.
[http://dx.doi.org/10.1016/j.bbadis.2004.06.017] [PMID: 15615646]
[23]
Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine-searching for the connections. Br J Pharmacol 2012; 167(2): 324-52.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02057.x] [PMID: 22646481]
[24]
Braak H, Braak E, Yilmazer D, et al. Amygdala pathology in Parkinson’s disease. Acta Neuropathol 1994; 88(6): 493-500.
[http://dx.doi.org/10.1007/BF00296485] [PMID: 7879596]
[25]
Wenk GL, Parsons CG, Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 2006; 17(5-6): 411-24.
[http://dx.doi.org/10.1097/00008877-200609000-00007] [PMID: 16940762]
[26]
Parsons CG, Danysz W, Quack G. Glutamate in CNS disorders as a target for drug development: an update. Drug News Perspect 1998; 11(9): 523-69.
[http://dx.doi.org/10.1358/dnp.1998.11.9.863689] [PMID: 15616669]
[27]
Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int J Geriatr Psychiatry 2003; 18(S1)(Suppl. 1): S23-32.
[http://dx.doi.org/10.1002/gps.938] [PMID: 12973747]
[28]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[29]
Makhaeva GF, Lushchekina SV, Boltneva NP, et al. Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease. Sci Rep 2015; 5: 13164.
[http://dx.doi.org/10.1038/srep13164] [PMID: 26281952]
[30]
Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease Oxid Med Cell Longev 2013; 2013.
[http://dx.doi.org/10.1155/2013/316523]
[31]
Winblad B, Poritis N. Memantine in severe dementia: results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry 1999; 14(2): 135-46.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199902)14:2<135: AID-GPS906>3.0.CO;2-0] [PMID: 10885864]
[32]
Pereira AC, Lambert HK, Grossman YS, et al. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. Proc Natl Acad Sci USA 2014; 111(52): 18733-8.
[http://dx.doi.org/10.1073/pnas.1421285111] [PMID: 25512503]
[33]
Sharma S, Taliyan R. High fat diet feeding induced insulin resistance exacerbates 6-OHDA mediated neurotoxicity and behavioral abnormalities in rats. Behav Brain Res 2018; 351: 17-23.
[http://dx.doi.org/10.1016/j.bbr.2018.05.025] [PMID: 29842916]
[34]
Sharma S, Taliyan R, Ramagiri S. Histone deacetylase inhibitor, trichostatin A, improves learning and memory in high-fat diet-induced cognitive deficits in mice. J Mol Neurosci 2015; 56(1): 1-11.
[http://dx.doi.org/10.1007/s12031-014-0461-x] [PMID: 25391764]
[35]
Sivasinprasasn S, Sa-Nguanmoo P, Pratchayasakul W, Kumfu S, Chattipakorn SC, Chattipakorn N. Obese-insulin resistance accelerates and aggravates cardiometabolic disorders and cardiac mitochondrial dysfunction in estrogen-deprived female rats. Age (Dordr) 2015; 37(2): 28.
[http://dx.doi.org/10.1007/s11357-015-9766-0] [PMID: 25791519]
[36]
Atri A, Frölich L, Ballard C, et al. Effect of idalopirdine as adjunct to cholinesterase inhibitors on change in cognition in patients with Alzheimer disease: three randomized clinical trials. JAMA 2018; 319(2): 130-42.
[http://dx.doi.org/10.1001/jama.2017.20373] [PMID: 29318278]
[37]
Dharmadasa T, Kiernan MC. Riluzole, disease stage and survival in ALS. Lancet Neurol 2018; 17(5): 385-6.
[http://dx.doi.org/10.1016/S1474-4422(18)30091-7] [PMID: 29525493]
[38]
Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 2013; 369(4): 341-50.
[http://dx.doi.org/10.1056/NEJMoa1210951] [PMID: 23883379]
[39]
Coric V, van Dyck CH, Salloway S, et al. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol 2012; 69(11): 1430-40.
[http://dx.doi.org/10.1001/archneurol.2012.2194] [PMID: 22892585]
[40]
Wolfe MS. γ-Secretase in biology and medicine. Seminars in cell & developmental biology 2009; 219-4.
[41]
Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 2013; 126(3): 329-52.
[http://dx.doi.org/10.1007/s00401-013-1152-3] [PMID: 23820808]
[42]
Atwal JK, Chen Y, Chiu C, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci Transl Med 2011; 3(84): 84ra43-3.
[http://dx.doi.org/10.1126/scitranslmed.3002254]
[43]
Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 2010; 330(6012): 1774.
[http://dx.doi.org/10.1126/science.1197623]
[44]
Selkoe DJ. Clearing the brain’s amyloid cobwebs. Neuron 2001; 32(2): 177-80.
[http://dx.doi.org/10.1016/S0896-6273(01)00475-5] [PMID: 11683988]
[45]
Saito T, Iwata N, Tsubuki S, et al. Somatostatin regulates brain amyloid β peptide Abeta42 through modulation of proteolytic degradation. Nat Med 2005; 11(4): 434-9.
[http://dx.doi.org/10.1038/nm1206] [PMID: 15778722]
[46]
Jacobsen JS, Comery TA, Martone RL, et al. Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci USA 2008; 105(25): 8754-9.
[http://dx.doi.org/10.1073/pnas.0710823105] [PMID: 18559859]
[47]
Mueller-Steiner S, Zhou Y, Arai H, et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron 2006; 51(6): 703-14.
[http://dx.doi.org/10.1016/j.neuron.2006.07.027] [PMID: 16982417]
[48]
Sun B, Zhou Y, Halabisky B, et al. Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron 2008; 60(2): 247-57.
[http://dx.doi.org/10.1016/j.neuron.2008.10.001] [PMID: 18957217]
[49]
Holmes C, Boche D, Wilkinson D, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008; 372(9634): 216-23.
[http://dx.doi.org/10.1016/S0140-6736(08)61075-2] [PMID: 18640458]
[50]
Delnomdedieu M, Duvvuri S, Li DJ, et al. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease. Alzheimers Res Ther 2016; 8(1): 12.
[http://dx.doi.org/10.1186/s13195-016-0177-y] [PMID: 26925577]
[51]
Reger MA, Watson GS, Frey WH II, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging 2006; 27(3): 451-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.03.016] [PMID: 15964100]
[52]
Paris D, Bachmeier C, Patel N, et al. Selective antihypertensive dihydropyridines lower Aβ accumulation by targeting both the production and the clearance of Aβ across the blood-brain barrier. Mol Med 2011; 17(3-4): 149-62.
[http://dx.doi.org/10.2119/molmed.2010.00180] [PMID: 21170472]
[53]
Sharma S, Taliyan R. Epigenetic modifications by inhibiting histone deacetylases reverse memory impairment in insulin resistance induced cognitive deficit in mice. Neuropharmacology 2016; 105: 285-97.
[http://dx.doi.org/10.1016/j.neuropharm.2016.01.025] [PMID: 26805421]
[54]
Panza F, Solfrizzi V, Seripa D, et al. Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed Res Int 2016; 20163245935
[http://dx.doi.org/10.1155/2016/3245935]
[55]
Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 2015; 21(6): 394-402.
[http://dx.doi.org/10.1016/j.molmed.2015.03.003] [PMID: 25846560]
[56]
Burstein AH, Sabbagh M, Andrews R, Valcarce C, Dunn I, Altstiel L. Development of Azeliragon, an oral small molecule antagonist of the receptor for advanced glycation Endproducts, for the potential slowing of loss of cognition in mild Alzheimer’s Disease. J Prev Alzheimers Dis 2018; 5(2): 149-54.
[PMID: 29616709]
[57]
Kaveri SV. Intravenous immunoglobulin: exploiting the potential of natural antibodies. Autoimmun Rev 2012; 11(11): 792-4.
[http://dx.doi.org/10.1016/j.autrev.2012.02.006] [PMID: 22349620]
[58]
Dodel R, Hampel H, Depboylu C, et al. Human antibodies against amyloid β peptide: a potential treatment for Alzheimer’s disease. Ann Neurol 2002; 52(2): 253-6.
[http://dx.doi.org/10.1002/ana.10253] [PMID: 12210803]
[59]
Relkin NR, Thomas RG, Rissman RA, et al. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 2017; 88(18): 1768-75.
[http://dx.doi.org/10.1212/WNL.0000000000003904] [PMID: 28381506]
[60]
Bruce KD, Hanson MA. The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr 2010; 140(3): 648-52.
[http://dx.doi.org/10.3945/jn.109.111179] [PMID: 20107145]
[61]
Sesti G. Pathophysiology of insulin resistance. Best Pract Res Clin Endocrinol Metab 2006; 20(4): 665-79.
[http://dx.doi.org/10.1016/j.beem.2006.09.007] [PMID: 17161338]
[62]
Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab 2007; 5(4): 237-52.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
[63]
Kim B, Feldman EL. Insulin resistance in the nervous system. Trends Endocrinol Metab 2012; 23(3): 133-41.
[http://dx.doi.org/10.1016/j.tem.2011.12.004] [PMID: 22245457]
[64]
Boura-Halfon S, Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 2009; 296(4): E581-91.
[http://dx.doi.org/10.1152/ajpendo.90437.2008] [PMID: 18728222]
[65]
Gonzalez E, McGraw TE. Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc Natl Acad Sci USA 2009; 106(17): 7004-9.
[http://dx.doi.org/10.1073/pnas.0901933106] [PMID: 19372382]
[66]
Hay N. Akt isoforms and glucose homeostasis - the leptin connection. Trends Endocrinol Metab 2011; 22(2): 66-73.
[http://dx.doi.org/10.1016/j.tem.2010.09.003] [PMID: 20947368]
[67]
Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105(3): 311-20.
[http://dx.doi.org/10.1172/JCI7535] [PMID: 10675357]
[68]
Kim B, Feldman EL. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med 2015; 47(3)e149
[http://dx.doi.org/10.1038/emm.2015.3] [PMID: 25766618]
[69]
Unger JW, Livingston JN, Moss AM. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 1991; 36(5): 343-62.
[http://dx.doi.org/10.1016/0301-0082(91)90015-S] [PMID: 1887067]
[70]
van der Heide LP, Ramakers GMJ, Smidt MP. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol 2006; 79(4): 205-21.
[http://dx.doi.org/10.1016/j.pneurobio.2006.06.003] [PMID: 16916571]
[71]
Park CR, Seeley RJ, Craft S, Woods SC. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 2000; 68(4): 509-14.
[http://dx.doi.org/10.1016/S0031-9384(99)00220-6] [PMID: 10713291]
[72]
Craft S, Asthana S, Newcomer JW, et al. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 1999; 56(12): 1135-40.
[http://dx.doi.org/10.1001/archpsyc.56.12.1135] [PMID: 10591291]
[73]
McNay EC, Ong CT, McCrimmon RJ, Cresswell J, Bogan JS, Sherwin RS. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 2010; 93(4): 546-53.
[http://dx.doi.org/10.1016/j.nlm.2010.02.002] [PMID: 20176121]
[74]
Sharma S, Taliyan R. Histone deacetylase inhibitors: Future therapeutics for insulin resistance and type 2 diabetes. Pharmacol Res 2016; 113(Pt A): 320-6.
[http://dx.doi.org/10.1016/j.phrs.2016.09.009] [PMID: 27620069]
[75]
Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. lancet Neurol 2004; 3(3): 169-78.
[76]
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012; 2012384017
[77]
Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 2010; 31(2): 224-43.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.04.002] [PMID: 18479783]
[78]
Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong C-X. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 2011; 225(1): 54-62.
[http://dx.doi.org/10.1002/path.2912] [PMID: 21598254]
[79]
Bosco D, Fava A, Plastino M, Montalcini T, Pujia A. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med 2011; 15(9): 1807-21.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01318.x] [PMID: 21435176]
[80]
Freude S, Schilbach K, Schubert M. The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer’s disease: from model organisms to human disease. Curr Alzheimer Res 2009; 6(3): 213-23.
[http://dx.doi.org/10.2174/156720509788486527] [PMID: 19519303]
[81]
Gammeltoft S, Fehlmann M, Van Obberghen E. Insulin receptors in the mammalian central nervous system: binding characteristics and subunit structure. Biochimie 1985; 67(10-11): 1147-53.
[http://dx.doi.org/10.1016/S0300-9084(85)80113-9] [PMID: 3907719]
[82]
Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 2004; 18(7): 902-4.
[http://dx.doi.org/10.1096/fj.03-0978fje] [PMID: 15033922]
[83]
Takeda S, Sato N, Uchio-Yamada K, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci USA 2010; 107(15): 7036-41.
[http://dx.doi.org/10.1073/pnas.1000645107] [PMID: 20231468]
[84]
Hiltunen M, Khandelwal VKM, Yaluri N, et al. Contribution of genetic and dietary insulin resistance to Alzheimer phenotype in APP/PS1 transgenic mice. J Cell Mol Med 2012; 16(6): 1206-22.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01384.x] [PMID: 21762376]
[85]
Jiménez-Palomares M, Ramos-Rodríguez JJ, López-Acosta JF, et al. Increased Aβ production prompts the onset of glucose intolerance and insulin resistance. Am J Physiol Endocrinol Metab 2012; 302(11): E1373-80.
[http://dx.doi.org/10.1152/ajpendo.00500.2011] [PMID: 22414803]
[86]
Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 2013; 12(4): 357-67.
[http://dx.doi.org/10.1016/S1474-4422(13)70044-9] [PMID: 23477989]
[87]
Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 1998; 50(1): 164-8.
[http://dx.doi.org/10.1212/WNL.50.1.164] [PMID: 9443474]
[88]
Reger MA, Watson GS, Green PS, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-β in memory-impaired older adults. J Alzheimers Dis 2008; 13(3): 323-31.
[http://dx.doi.org/10.3233/JAD-2008-13309] [PMID: 18430999]
[89]
Son SM, Song H, Byun J, et al. Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy 2012; 8(12): 1842-4.
[http://dx.doi.org/10.4161/auto.21861] [PMID: 22931791]
[90]
Vandal M, White PJ, Tremblay C, et al. Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes 2014; 63(12): 4291-301.
[http://dx.doi.org/10.2337/db14-0375] [PMID: 25008180]
[91]
Leissring MA, Farris W, Chang AY, et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 2003; 40(6): 1087-93.
[http://dx.doi.org/10.1016/S0896-6273(03)00787-6] [PMID: 14687544]
[92]
De Felice FG, Vieira MNN, Bomfim TR, et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA 2009; 106(6): 1971-6.
[http://dx.doi.org/10.1073/pnas.0809158106] [PMID: 19188609]
[93]
Bomfim TR, Forny-Germano L, Sathler LB, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 2012; 122(4): 1339-53.
[http://dx.doi.org/10.1172/JCI57256] [PMID: 22476196]
[94]
Zhao W-Q, De Felice FG, Fernandez S, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 2008; 22(1): 246-60.
[http://dx.doi.org/10.1096/fj.06-7703com] [PMID: 17720802]
[95]
Bharadwaj P, Wijesekara N, Liyanapathirana M, et al. The link between type 2 diabetes and neurodegeneration: roles for amyloid-β, amylin, and tau proteins. J Alzheimers Dis 2017; 59(2): 421-32.
[http://dx.doi.org/10.3233/JAD-161192] [PMID: 28269785]
[96]
Sharma S, Taliyan R. Synergistic effects of GSK-3β and HDAC inhibitors in intracerebroventricular streptozotocin-induced cognitive deficits in rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(3): 337-49.
[http://dx.doi.org/10.1007/s00210-014-1081-2] [PMID: 25547373]
[97]
Sharma S, Taliyan R. Neuroprotective role of Indirubin-3′-monoxime, a GSKβ inhibitor in high fat diet induced cognitive impairment in mice. Biochem Biophys Res Commun 2014; 452(4): 1009-15.
[http://dx.doi.org/10.1016/j.bbrc.2014.09.034] [PMID: 25234596]
[98]
Wang Y, Wu L, Li J, et al. Synergistic exacerbation of mitochondrial and synaptic dysfunction and resultant learning and memory deficit in a mouse model of diabetic Alzheimer’s disease. J Alzheimers Dis 2015; 43(2): 451-63.
[http://dx.doi.org/10.3233/JAD-140972] [PMID: 25096625]
[99]
Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 2008; 14(2): 45-53.
[http://dx.doi.org/10.1016/j.molmed.2007.12.002] [PMID: 18218341]
[100]
Frisardi V, Solfrizzi V, Capurso C, et al. Is insulin resistant brain state a central feature of the metabolic-cognitive syndrome? J Alzheimers Dis 2010; 21(1): 57-63.
[http://dx.doi.org/10.3233/JAD-2010-100015] [PMID: 20421697]
[101]
Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 2006; 9(1): 13-33.
[http://dx.doi.org/10.3233/JAD-2006-9102] [PMID: 16627931]
[102]
Baskin DG, Figlewicz DP, Woods SC, Porte D Jr, Dorsa DM. Insulin in the brain. Annu Rev Physiol 1987; 49(1): 335-47.
[http://dx.doi.org/10.1146/annurev.ph.49.030187.002003] [PMID: 3551804]
[103]
Havrankova J, Schmechel D, Roth J, Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci USA 1978; 75(11): 5737-41.
[http://dx.doi.org/10.1073/pnas.75.11.5737] [PMID: 364489]
[104]
Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 1978; 272(5656): 827-9.
[http://dx.doi.org/10.1038/272827a0] [PMID: 205798]
[105]
Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 2000; 24(8): 855-72.
[http://dx.doi.org/10.1016/S0149-7634(00)00040-3] [PMID: 11118610]
[106]
Benedict C, Frey WH II, Schiöth HB, Schultes B, Born J, Hallschmid M. Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol 2011; 46(2-3): 112-5.
[http://dx.doi.org/10.1016/j.exger.2010.08.026] [PMID: 20849944]
[107]
Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115(6): 1627-35.
[http://dx.doi.org/10.1172/JCI23606] [PMID: 15902306]
[108]
Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2(4): 217-25.
[http://dx.doi.org/10.1016/j.cmet.2005.09.001] [PMID: 16213224]
[109]
Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143(5): 1741-7.
[http://dx.doi.org/10.1210/endo.143.5.8850] [PMID: 11956156]
[110]
Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004; 19(3): 429-35.
[http://dx.doi.org/10.1359/JBMR.0301264] [PMID: 15040831]
[111]
Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492(1): 203-6.
[http://dx.doi.org/10.1016/S0167-4781(00)00067-1] [PMID: 10858549]
[112]
Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149(12): 6018-27.
[http://dx.doi.org/10.1210/en.2008-0816] [PMID: 18687777]
[113]
Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007; 148(2): 774-81.
[http://dx.doi.org/10.1210/en.2006-1168] [PMID: 17068132]
[114]
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007; 5(6): 426-37.
[http://dx.doi.org/10.1016/j.cmet.2007.05.002] [PMID: 17550778]
[115]
Ogawa Y, Kurosu H, Yamamoto M, et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 2007; 104(18): 7432-7.
[http://dx.doi.org/10.1073/pnas.0701600104] [PMID: 17452648]
[116]
Micanovic R, Raches DW, Dunbar JD, et al. Different roles of N- and C- termini in the functional activity of FGF21. J Cell Physiol 2009; 219(2): 227-34.
[http://dx.doi.org/10.1002/jcp.21675] [PMID: 19117008]
[117]
Wiedemann M, Trueb B. Characterization of a novel protein (FGFRL1) from human cartilage related to FGF receptors. Genomics 2000; 69(2): 275-9.
[http://dx.doi.org/10.1006/geno.2000.6332] [PMID: 11031111]
[118]
Kilkenny DM, Rocheleau JV. The FGF21 receptor signaling complex: Klotho β, FGFR1c, and other regulatory interactions. Vitam & Horm 2016; 17-58.
[119]
Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 2015; 4(3): 215-66.
[http://dx.doi.org/10.1002/wdev.176] [PMID: 25772309]
[120]
Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 2008; 99(7): 1319-25.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00840.x] [PMID: 18452557]
[121]
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16(2): 139-49.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.001] [PMID: 15863030]
[122]
Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24(50): 7455-64.
[http://dx.doi.org/10.1038/sj.onc.1209085] [PMID: 16288292]
[123]
Peters KG, Marie J, Wilson E, et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 1992; 358(6388): 678-81.
[http://dx.doi.org/10.1038/358678a0] [PMID: 1379697]
[124]
Klint P, Claesson-Welsh L. Signal transduction by fibroblast growth factor receptors. Front Biosci 1999; 4(22): D165-77.
[http://dx.doi.org/10.2741/Klint] [PMID: 9989949]
[125]
Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 2000; 19(29): 3309-20.
[http://dx.doi.org/10.1038/sj.onc.1203650] [PMID: 10918587]
[126]
Kang S, Elf S, Dong S, et al. Fibroblast growth factor receptor 3 associates with and tyrosine phosphorylates p90 RSK2, leading to RSK2 activation that mediates hematopoietic transformation. Mol Cell Biol 2009; 29(8): 2105-17.
[http://dx.doi.org/10.1128/MCB.00998-08] [PMID: 19223461]
[127]
Dutchak PA, Katafuchi T, Bookout AL, et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 2012; 148(3): 556-67.
[http://dx.doi.org/10.1016/j.cell.2011.11.062] [PMID: 22304921]
[128]
Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011; 286(15): 12983-90.
[http://dx.doi.org/10.1074/jbc.M110.215889] [PMID: 21317437]
[129]
Enerbäck S. Human brown adipose tissue. Cell Metab 2010; 11(4): 248-52.
[http://dx.doi.org/10.1016/j.cmet.2010.03.008] [PMID: 20374955]
[130]
Adams AC, Cheng CC, Coskun T, Kharitonenkov A. FGF21 requires βklotho to act in vivo. PLoS One 2012; 7(11)e49977
[http://dx.doi.org/10.1371/journal.pone.0049977] [PMID: 23209629]
[131]
Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 2013; 17(5): 790-7.
[http://dx.doi.org/10.1016/j.cmet.2013.03.019] [PMID: 23663742]
[132]
Johnson CL, Mehmood R, Laing SW, Stepniak CV, Kharitonenkov A, Pin CL. Silencing of the Fibroblast growth factor 21 gene is an underlying cause of acinar cell injury in mice lacking MIST1 2014.
[http://dx.doi.org/10.1152/ajpendo.00559.2013]
[133]
Owen BM, Ding X, Morgan DA, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 2014; 20(4): 670-7.
[http://dx.doi.org/10.1016/j.cmet.2014.07.012] [PMID: 25130400]
[134]
Douris N, Stevanovic DM, Fisher FM, et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 2015; 156(7): 2470-81.
[http://dx.doi.org/10.1210/en.2014-2001] [PMID: 25924103]
[135]
Chau MDL, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. Proc Natl Acad Sci USA 2010; 107(28): 12553-8.
[http://dx.doi.org/10.1073/pnas.1006962107] [PMID: 20616029]
[136]
Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012; 26(3): 271-81.
[http://dx.doi.org/10.1101/gad.177857.111] [PMID: 22302939]
[137]
Müller TD, Sullivan LM, Habegger K, et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J Pept Sci 2012; 18(6): 383-93.
[http://dx.doi.org/10.1002/psc.2408] [PMID: 22565812]
[138]
Fisher ffolliott M, Estall JL, Adams AC, et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011; 152(8): 2996-3004.
[139]
Ding X, Boney-Montoya J, Owen BM, et al. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 2012; 16(3): 387-93.
[http://dx.doi.org/10.1016/j.cmet.2012.08.002] [PMID: 22958921]
[140]
Adams AC, Yang C, Coskun T, et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab 2012; 2(1): 31-7.
[http://dx.doi.org/10.1016/j.molmet.2012.08.007] [PMID: 24024127]
[141]
Lee P, Linderman JD, Smith S, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 2014; 19(2): 302-9.
[http://dx.doi.org/10.1016/j.cmet.2013.12.017] [PMID: 24506871]
[142]
Zhang X, Yeung DCY, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008; 57(5): 1246-53.
[http://dx.doi.org/10.2337/db07-1476] [PMID: 18252893]
[143]
Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5(6): 415-25.
[http://dx.doi.org/10.1016/j.cmet.2007.05.003] [PMID: 17550777]
[144]
Markan KR, Naber MC, Ameka MK, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 2014; 63(12): 4057-63.
[http://dx.doi.org/10.2337/db14-0595] [PMID: 25008183]
[145]
Xu J, Stanislaus S, Chinookoswong N, et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin resistant mouse models-Association with liver and adipose tissue effects 2009.
[http://dx.doi.org/10.1152/ajpendo.00348.2009]
[146]
Camporez JPG, Jornayvaz FR, Petersen MC, et al. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 2013; 154(9): 3099-109.
[http://dx.doi.org/10.1210/en.2013-1191] [PMID: 23766126]
[147]
Wente W, Efanov AM, Brenner M, et al. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006; 55(9): 2470-8.
[http://dx.doi.org/10.2337/db05-1435] [PMID: 16936195]
[148]
Brownsey RW, Zhande R, Boone AN. Isoforms of acetyl-CoA carboxylase: structures, regulatory properties and metabolic functions 1997.
[149]
McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest 1977; 60(1): 265-70.
[http://dx.doi.org/10.1172/JCI108764] [PMID: 874089]
[150]
Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18(3): 333-40.
[http://dx.doi.org/10.1016/j.cmet.2013.08.005] [PMID: 24011069]
[151]
Wei W, Dutchak PA, Wang X, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci USA 2012; 109(8): 3143-8.
[http://dx.doi.org/10.1073/pnas.1200797109] [PMID: 22315431]
[152]
Sanyal A, Charles ED, Neuschwander-Tetri B, et al. BMS-986036 (pegylated FGF21) in patients with non-alcoholic steatohepatitis: a phase 2 study. J Hepatol 2017; 66(1): S89-90.
[http://dx.doi.org/10.1016/S0168-8278(17)30443-9]
[153]
Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides 2007; 28(12): 2382-6.
[http://dx.doi.org/10.1016/j.peptides.2007.10.007] [PMID: 17996984]
[154]
Yu Y, Bai F, Wang W, et al. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol Biochem Behav 2015; 133: 122-31.
[http://dx.doi.org/10.1016/j.pbb.2015.03.020] [PMID: 25871519]
[155]
Kuroda M, Muramatsu R, Maedera N, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest 2017; 127(9): 3496-509.
[http://dx.doi.org/10.1172/JCI94337] [PMID: 28825598]
[156]
Wang Q, Yuan J, Yu Z, et al. FGF21 attenuates high-fat diet-induced cognitive impairment via metabolic regulation and anti-inflammation of obese mice. Mol Neurobiol 2018; 55(6): 4702-17.
[http://dx.doi.org/10.1007/s12035-017-0663-7] [PMID: 28712011]
[157]
Mäkelä J, Tselykh TV, Maiorana F, et al. Fibroblast growth factor-21 enhances mitochondrial functions and increases the activity of PGC-1α in human dopaminergic neurons via Sirtuin-1. Springerplus 2014; 3(1): 2.
[http://dx.doi.org/10.1186/2193-1801-3-2] [PMID: 25932355]
[158]
Katsouri L, Lim YM, Blondrath K, et al. PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci USA 2016; 113(43): 12292-7.
[http://dx.doi.org/10.1073/pnas.1606171113] [PMID: 27791018]
[159]
Planavila A, Redondo I, Hondares E, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun 2013; 4: 2019.
[http://dx.doi.org/10.1038/ncomms3019] [PMID: 23771152]
[160]
Kim HW, Lee JE, Cha JJ, et al. Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology 2013; 154(9): 3366-76.
[http://dx.doi.org/10.1210/en.2012-2276] [PMID: 23825123]
[161]
Yu Y, He J, Li S, et al. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway. Int Immunopharmacol 2016; 38: 144-52.
[http://dx.doi.org/10.1016/j.intimp.2016.05.026] [PMID: 27276443]
[162]
Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009; 58(1): 250-9.
[http://dx.doi.org/10.2337/db08-0392] [PMID: 18840786]
[163]
So WY, Cheng Q, Xu A, Lam KSL, Leung PS. Loss of fibroblast growth factor 21 action induces insulin resistance, pancreatic islet hyperplasia and dysfunction in mice. Cell Death Dis 2015; 6(3)e1707
[http://dx.doi.org/10.1038/cddis.2015.80] [PMID: 25811804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy