Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design of Inhibitors for Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Enzyme of Leishmania mexicana

Author(s): Krisnna M.A. Alves, Fábio José Bonfim Cardoso, Kathia M. Honorio and Fábio A. de Molfetta*

Volume 16, Issue 6, 2020

Page: [784 - 795] Pages: 12

DOI: 10.2174/1573406415666190712111139

Price: $65

Abstract

Background: Leishmaniosis is a neglected tropical disease and glyceraldehyde 3- phosphate dehydrogenase (GAPDH) is a key enzyme in the design of new drugs to fight this disease.

Objective: The present study aimed to evaluate potential inhibitors of GAPDH enzyme found in Leishmania mexicana (L. mexicana).

Methods: A search for novel antileishmanial molecules was carried out based on similarities from the pharmacophoric point of view related to the binding site of the crystallographic enzyme using the ZINCPharmer server. The molecules selected in this screening were subjected to molecular docking and molecular dynamics simulations.

Results: Consensual analysis of the docking energy values was performed, resulting in the selection of ten compounds. These ligand-receptor complexes were visually inspected in order to analyze the main interactions and subjected to toxicophoric evaluation, culminating in the selection of three compounds, which were subsequently submitted to molecular dynamics simulations. The docking results showed that the selected compounds interacted with GAPDH from L. mexicana, especially by hydrogen bonds with Cys166, Arg249, His194, Thr167, and Thr226. From the results obtained from molecular dynamics, it was observed that one of the loop regions, corresponding to the residues 195-222, can be related to the fitting of the substrate at the binding site, assisting in the positioning and the molecular recognition via residues responsible for the catalytic activity.

Conclusion: The use of molecular modeling techniques enabled the identification of promising compounds as inhibitors of the GAPDH enzyme from L. mexicana, and the results obtained here can serve as a starting point to design new and more effective compounds than those currently available.

Keywords: Leishmaniosis, glyceraldehydes-3-phosphate dehydrogenase, pharmacophore analysis, molecular docking, molecular dynamics, Leishmania genus.

Graphical Abstract

[1]
Kim, H.; Feil, I.K.; Verlinde, C.L.; Petra, P.H.; Hol, W.G.J. Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site. Biochemistry, 1995, 34(46), 14975-14986.
[http://dx.doi.org/10.1021/bi00046a004] [PMID: 7578111]
[2]
Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; Iftikhar, F.; Sultana, N.; Asghar, S.; Yasinzai, M.; Ansari, F.L.; Qureshi, N.A. Structure based medicinal chemistry driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem., 2016, 115, 230-244.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.022] [PMID: 27017551]
[3]
Kaur, P.K.; Tripathi, N.; Desale, J.; Neelagiri, S.; Yadav, S.; Bharatam, P.V.; Singh, S. Mutational and structural analysis of conserved residues in ribose-5-phosphate isomerase B from Leishmania donovani: Role in substrate recognition and conformational stability. PLoS One, 2016, 11(3), e0150764.
[http://dx.doi.org/10.1371/journal.pone.0150764] [PMID: 26953696]
[4]
Nühs, A.; De Rycker, M.; Manthri, S.; Comer, E.; Scherer, C.A.; Schreiber, S.L.; Ioset, J.R.; Gray, D.W. Development and validation of a novel Leishmania donovani screening cascade for high throughput screening using a novel axenic assay with high predictivity of Leishmanicidal intracellular activity. PLoS Negl. Trop. Dis., 2015, 9(9), e0004094.
[http://dx.doi.org/10.1371/journal.pntd.0004094] [PMID: 26407168]
[5]
Hartley, M.A.; Kohl, K.; Ronet, C.; Fasel, N. The therapeutic potential of immune cross-talk in leishmaniasis. Clin. Microbiol. Infect., 2013, 19(2), 119-130.
[http://dx.doi.org/10.1111/1469-0691.12095] [PMID: 23398405]
[6]
Rocha, C.A.; Sanches, P.R.S.; Marchetto, R.; Zottis, A. The Octahydroindene carboxyl substructure from dihydrobetulinic acid is essential to inhibit topoisomerase IB from Leishmania donovani. J. Braz. Chem. Soc., 2016, 27(3), 591-598.
[7]
Cota, G.F.; de Sousa, M.R.; Fereguetti, T.O.; Saleme, P.S.; Alvarisa, T.K.; Rabello, A. The cure rate after placebo or no therapy in american cutaneous Leishmaniasis: A systematic review and meta-analysis. PLoS One, 2016, 11(2), e0149697.
[http://dx.doi.org/10.1371/journal.pone.0149697] [PMID: 26894430]
[8]
Scotti, L.; Ishiki, H.; Mendonça Júnior, F.J.; Da Silva, M.S.; Scotti, M.T. In silico analyses of natural products on leishmania enzyme targets. Mini Rev. Med. Chem., 2015, 15(3), 253-269.
[http://dx.doi.org/10.2174/138955751503150312141854] [PMID: 25769973]
[9]
Thakur, C.P.; Dedet, J.P.; Narain, S.; Pratlong, F. Leishmania species, drug unresponsiveness and visceral leishmaniasis in Bihar, India. Trans. R. Soc. Trop. Med. Hyg., 2001, 95(2), 187-189.
[http://dx.doi.org/10.1016/S0035-9203(01)90160-9] [PMID: 11355558]
[10]
Fairlamb, A.H.; Opperdoes, F.R.; Borst, P. New approach to screening drugs for activity against African trypanosomes. Nature, 1977, 265(5591), 270-271.
[http://dx.doi.org/10.1038/265270a0] [PMID: 834274]
[11]
Opperdoes, F.R.; Borst, P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett., 1977, 80(2), 360-364.
[http://dx.doi.org/10.1016/0014-5793(77)80476-6] [PMID: 142663]
[12]
Verlinde, C.L.; Hol, W.G.J. Structure-based drug design: progress, results and challenges. Structure, 1994, 2(7), 577-587.
[http://dx.doi.org/10.1016/S0969-2126(00)00060-5] [PMID: 7922037]
[13]
Rajasekaran, R.; Chen, Y.P.P. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov. Today, 2015, 20(8), 958-968.
[http://dx.doi.org/10.1016/j.drudis.2015.04.006] [PMID: 25936844]
[14]
Zhang, W.W.; McCall, L.I.; Matlashewski, G. Role of cytosolic glyceraldehyde-3-phosphate dehydrogenase in visceral organ infection by Leishmania donovani. Eukaryot. Cell, 2013, 12(1), 70-77.
[http://dx.doi.org/10.1128/EC.00263-12] [PMID: 23125352]
[15]
Lozano, N.B.H.; Oliveira, R.F.; Weber, K.C.; Honorio, K.M.; Guido, R.V.C.; Andricopulo, A.D.; de Sousa, A.G.; da Silva, A.B.F. Pattern recognition techniques applied to the study of leishmanial glyceraldehyde-3-phosphate dehydrogenase inhibition. Int. J. Mol. Sci., 2014, 15(2), 3186-3203.
[http://dx.doi.org/10.3390/ijms15023186] [PMID: 24566143]
[16]
Bakker, B.M.; Michels, P.A.M.; Opperdoes, F.R.; Westerhoff, H.V. What controls glycolysis in bloodstream form Trypanosoma brucei? J. Biol. Chem., 1999, 274(21), 14551-14559.
[http://dx.doi.org/10.1074/jbc.274.21.14551] [PMID: 10329645]
[17]
Guido, R.V.C.; Oliva, G.; Montanari, C.A.; Andricopulo, A.D. Structural basis for selective inhibition of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase: molecular docking and 3D QSAR studies. J. Chem. Inf. Model., 2008, 48(4), 918-929.
[http://dx.doi.org/10.1021/ci700453j] [PMID: 18303835]
[18]
Suresh, S.; Bressi, J.C.; Kennedy, K.J.; Verlinde, C.L.; Gelb, M.H.; Hol, W.G.J. Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors. J. Mol. Biol., 2001, 309(2), 423-435.
[http://dx.doi.org/10.1006/jmbi.2001.4588] [PMID: 11371162]
[19]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[20]
Koes, D.R.; Camacho, C.J. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(Web Server issue), W409-14.
[http://dx.doi.org/10.1093/nar/gks378] [PMID: 22553363]
[21]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52(7), 1757-1768.
[http://dx.doi.org/10.1021/ci3001277] [PMID: 22587354]
[22]
Chuprina, A.; Lukin, O.; Demoiseaux, R.; Buzko, A.; Shivanyuk, A. Drug- and lead-likeness, target class, and molecular diversity analysis of 7.9 million commercially available organic compounds provided by 29 suppliers. J. Chem. Inf. Model., 2010, 50(4), 470-479.
[http://dx.doi.org/10.1021/ci900464s] [PMID: 20297844]
[23]
Rishton, G.M. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov. Today, 2003, 8(2), 86-96.
[http://dx.doi.org/10.1016/S1359644602025722] [PMID: 12565011]
[24]
Lang, P.T.; Brozell, S.R.; Mukherjee, S.; Pettersen, E.F.; Meng, E.C.; Thomas, V.; Rizzo, R.C.; Case, D.A.; James, T.L.; Kuntz, I.D. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA, 2009, 15(6), 1219-1230.
[http://dx.doi.org/10.1261/rna.1563609] [PMID: 19369428]
[25]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[26]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[27]
Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A new force-field for molecular mechanical simulation of nucleic-acids and proteins. J. Am. Chem. Soc., 1984, 106(3), 765-784.
[http://dx.doi.org/10.1021/ja00315a051]
[28]
Souza, D.H.F.; Garratt, R.C.; Araújo, A.P.U.; Guimarães, B.G.; Jesus, W.D.P.; Michels, P.A.M.; Hannaert, V.; Oliva, G. Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase: structure, catalytic mechanism and targeted inhibitor design. FEBS Lett., 1998, 424(3), 131-135.
[http://dx.doi.org/10.1016/S0014-5793(98)00154-9] [PMID: 9580189]
[29]
Jakalian, A.; Bush, B.L.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic Charges. AM1-BCC model: I. Method. J. Comput. Chem., 2000, 21(2), 132-146.
[http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132: AID-JCC5>3.0.CO;2-P] [PMID: 12395429]
[30]
Connolly, M.L. The molecular surface package. J. Mol. Graph., 1993, 11(2), 139-141.
[http://dx.doi.org/10.1016/0263-7855(93)87010-3] [PMID: 8347567]
[31]
Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol., 1982, 161(2), 269-288.
[http://dx.doi.org/10.1016/0022-2836(82)90153-X] [PMID: 7154081]
[32]
Meng, E.C.; Shoichet, B.K.; Kuntz, I.D. Automated docking with grid-based energy evaluation. J. Comput. Chem., 1992, 13(4), 505-524.
[http://dx.doi.org/10.1002/jcc.540130412]
[33]
Pinheiro, A.S.; Duarte, J.B.C.; Alves, C.N.; de Molfetta, F.A. Virtual screening and molecular dynamics simulations from a bank of molecules of the amazon region against functional NS3-4A protease-helicase enzyme of hepatitis C virus. Appl. Biochem. Biotechnol., 2015, 176(6), 1709-1721.
[http://dx.doi.org/10.1007/s12010-015-1672-5] [PMID: 26009474]
[34]
Wiggers, H.J.; Rocha, J.R.; Cheleski, J.; Montanari, C.A. Integration of ligand- and target-based virtual screening for the discovery of cruzain inhibitors. Mol. Inform., 2011, 30(6-7), 565-578.
[http://dx.doi.org/10.1002/minf.201000146] [PMID: 27467157]
[35]
Hawkins, M.J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev., 2008, 60(8), 876-885.
[http://dx.doi.org/10.1016/j.addr.2007.08.044] [PMID: 18423779]
[36]
Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, I.I.; Palyulin, V.A.; Radchenko, E.V.; Welsh, W.J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa, J.; Zhang, Q.Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I.V. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des., 2011, 25(6), 533-554.
[http://dx.doi.org/10.1007/s10822-011-9440-2] [PMID: 21660515]
[37]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[38]
Borhani, D.W.; Shaw, D.E. The future of molecular dynamics simulations in drug discovery. J. Comput. Aided Mol. Des., 2012, 26(1), 15-26.
[http://dx.doi.org/10.1007/s10822-011-9517-y] [PMID: 22183577]
[39]
Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9(1), 71.
[http://dx.doi.org/10.1186/1741-7007-9-71] [PMID: 22035460]
[40]
Case, D.A.D.T.; Cheatham, T.E., III; Simmerling, C.L.; Wang, J.; Duke, R.E.L.R.; Walker, R.C.; Zhang, W.; Merz, K.M.; Roberts, B.; Wang, B.H.S.; Roitberg, A.; Seabra, G.; Kolossváry, I.; Wong, K.F.; Paesani, F.V.J.; Liu, J.; Wu, X.; Brozell, S.R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.Y.X.; Wang, J.; Hsieh, M-J.; Cui, G.; Roe, D.R.; Mathews, D.H.; Seetin, M.G.S.C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P.A. University of California: San Francisco , 2012.
[41]
Breneman, C.M.; Wiberg, K.B. Determining atom-centered monopoles from molecular electrostatic potentials - the need for high sampling density in formamide conformational-analysis. J. Comput. Chem., 1990, 11(3), 361-373.
[http://dx.doi.org/10.1002/jcc.540110311]
[42]
Frisch, M.J.T.; Head-Gordon, M.; Gill, P.M.W.; Johnson, B.G.; Robb, M.A.C.J.R.; Keith, T.A.; Peterson, G.A.; Montgomery, J.A.R.K.; Al-Lahan, M.A.; Zakrzewski, V.G.; Ortiz, J.V.F.J.B.; Cioslowski, J.; Stefanov, B.B.; Norayakkara, A.C.M.; Peng, C.Y.; Ayala, P.Y.; Chen, W.; Womg, M.W.A.J.L.; Replogle, E.S.; Gomperts, R.; Martin, R.L.; Fox, D.J.; Binkley, J.S.D.D.J.; Baker, J.; Stewart, J.P.; Head-Gordon, M.; Gonzalez, C.P.J.A. Pittsburg PA 2003.
[43]
Roothaan, C.C.J. New developments in molecular orbital theory. Rev. Mod. Phys., 1951, 23(2), 68-89.
[http://dx.doi.org/10.1103/RevModPhys.23.69]
[44]
Roothaan, C.C.J. Self-consistent field theory for open shells of electronic systems. Rev. Mod. Phys., 1960, 32(2), 179-185.
[http://dx.doi.org/10.1103/RevModPhys.32.179]
[45]
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65(3), 712-725.
[http://dx.doi.org/10.1002/prot.21123] [PMID: 16981200]
[46]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[47]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[48]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[49]
Izaguirre, J.A.; Catarello, D.P.; Wozniak, J.M.; Skeel, R.D. Langevin stabilization of molecular dynamics. J. Chem. Phys., 2001, 114(5), 2090-2098.
[http://dx.doi.org/10.1063/1.1332996]
[50]
Darden, T.; York, D.; Pedersen, L. Particle mesh EWALD - An N.log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[51]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[52]
Verlet, L. Computer experiments on classical fluids. i. Thermodynamical properties of lennard-jones molecules. Phys. Rev., 1967, 159(1), 98-103.
[http://dx.doi.org/10.1103/PhysRev.159.98]
[53]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38.27-28..
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[54]
Yang, R.; Lee, M.C.; Yan, H.; Duan, Y. Loop conformation and dynamics of the Escherichia coli HPPK apo-enzyme and its binary complex with MgATP. Biophys. J., 2005, 89(1), 95-106.
[http://dx.doi.org/10.1529/biophysj.105.061556] [PMID: 15821168]
[55]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[56]
Wild, D.J. MINITAB Release 14. J. Chem. Inf. Model., 2005, 45(1), 212.
[http://dx.doi.org/10.1021/ci040130h]
[57]
Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 2011, 51(1), 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[58]
Desheng, L.; Jian, G.; Yuanhua, C.; Wei, C.; Huai, Z.; Mingjuan, J. Molecular dynamics simulations and MM/GBSA methods to investigate binding mechanisms of aminomethylpyrimidine inhibitors with DPP-IV. Bioorg. Med. Chem. Lett., 2011, 21(22), 6630-6635.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.093] [PMID: 21996517]
[59]
Feig, M.; Brooks, C.L., III Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr. Opin. Struct. Biol., 2004, 14(2), 217-224.
[http://dx.doi.org/10.1016/j.sbi.2004.03.009] [PMID: 15093837]
[60]
Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 2004, 55(2), 383-394.
[http://dx.doi.org/10.1002/prot.20033] [PMID: 15048829]
[61]
Weiser, J.; Shenkin, P.S.; Still, W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem., 1999, 20(2), 217-230.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217: AID-JCC4>3.0.CO;2-A]
[62]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[63]
Koes, D.R.; Pabon, N.A.; Deng, X.; Phillips, M.A.; Camacho, C.J. A teach-discover-treat application of Zincpharmer: An online interactive pharmacophore modeling and virtual screening tool. PLoS One, 2015, 10(8), e0134697.
[http://dx.doi.org/10.1371/journal.pone.0134697] [PMID: 26258606]
[64]
Hannaert, V.; Blaauw, M.; Kohl, L.; Allert, S.; Opperdoes, F.R.; Michels, P.A.M. Molecular analysis of the cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase in Leishmania mexicana. Mol. Biochem. Parasitol., 1992, 55(1-2), 115-126.
[http://dx.doi.org/10.1016/0166-6851(92)90132-4] [PMID: 1435864]
[65]
Hannaert, V.; Callens, M.; Opperdoes, F.R.; Michels, P.A.M. Purification and characterization of the native and the recombinant Leishmania mexicana glycosomal glyceraldehyde-3-phosphate dehydrogenase. Eur. J. Biochem., 1994, 225(1), 143-149.
[http://dx.doi.org/10.1111/j.1432-1033.1994.00143.x] [PMID: 7925431]
[66]
Reis, M.; Alves, C.N.; Lameira, J.; Tuñón, I.; Martí, S.; Moliner, V. The catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi elucidated via the QM/MM approach. Phys. Chem. Chem. Phys., 2013, 15(11), 3772-3785.
[http://dx.doi.org/10.1039/c3cp43968b] [PMID: 23389436]
[67]
Ladame, S.; Castilho, M.S.; Silva, C.H.; Denier, C.; Hannaert, V.; Périé, J.; Oliva, G.; Willson, M. Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid. Eur. J. Biochem., 2003, 270(22), 4574-4586.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03857.x] [PMID: 14622286]
[68]
Castilho, M.S.; Pavão, F.; Oliva, G.; Ladame, S.; Willson, M.; Périé, J. Evidence for the two phosphate binding sites of an analogue of the thioacyl intermediate for the Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase-catalyzed reaction, from its crystal structure. Biochemistry, 2003, 42(23), 7143-7151.
[http://dx.doi.org/10.1021/bi0206107] [PMID: 12795610]
[69]
Talfournier, F.; Colloc’h, N.; Mornon, J.P.; Branlant, G. Comparative study of the catalytic domain of phosphorylating glyceraldehyde-3-phosphate dehydrogenases from bacteria and archaea via essential cysteine probes and site-directed mutagenesis. Eur. J. Biochem., 1998, 252(3), 447-457.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2520447.x] [PMID: 9546660]
[70]
Verma, S.; Grover, S.; Tyagi, C.; Goyal, S.; Jamal, S.; Singh, A.; Grover, A. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as revealed by molecular dynamics simulations and MM/PBSA free energy calculations. PLoS One, 2016, 11(2), e0149014.
[http://dx.doi.org/10.1371/journal.pone.0149014] [PMID: 26863418]
[71]
Kuzmanic, A.; Zagrovic, B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys. J., 2010, 98(5), 861-871.
[http://dx.doi.org/10.1016/j.bpj.2009.11.011] [PMID: 20197040]
[72]
Pikkemaat, M.G.; Linssen, A.B.M.; Berendsen, H.J.C.; Janssen, D.B. Molecular dynamics simulations as a tool for improving protein stability. Protein Eng., 2002, 15(3), 185-192.
[http://dx.doi.org/10.1093/protein/15.3.185] [PMID: 11932489]
[73]
Silva, N.D.; Lameira, J.; Alves, C.N. A quantum mechanical/molecular mechanical study of the aspartic protease plasmepsin IV complexed with allophenylnorstatine-based inhibitor. Chem. Phys. Lett., 2011, 509(4-6), 169-174.
[http://dx.doi.org/10.1016/j.cplett.2011.04.085]
[74]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[75]
Costa, K.M.; Alves, C.N.; Silva, J.R.A.; Lameira, J. A computational analysis of Indomethacin derivative as Tubulin inhibitor: Insights into development of chemotherapeutic agents. Comb. Chem. High Throughput Screen., 2016, 19(6), 431-436.
[http://dx.doi.org/10.2174/1386207319666160504095838] [PMID: 27141989]
[76]
Lima, A.H.; Lameira, J.; Alves, C.N. Protein-ligand interaction of T. cruzi trans-sialidase inhibitors: a docking and QM/MM MD study. Struct. Chem., 2012, 23(1), 147-152.
[http://dx.doi.org/10.1007/s11224-011-9854-4]
[77]
de Farias Silva, N.; Lameira, J.; Alves, C.N. Computational analysis of aspartic protease plasmepsin II complexed with EH58 inhibitor: a QM/MM MD study. J. Mol. Model., 2011, 17(10), 2631-2638.
[http://dx.doi.org/10.1007/s00894-011-0963-1] [PMID: 21264482]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy