Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Application of Hydrogels Based on Natural Polymers for Tissue Engineering

Author(s): Yasamin Davatgaran Taghipour, Vahideh Raeisdasteh Hokmabad, Azizeh Rahmani Del Bakhshayesh, Nahideh Asadi, Roya Salehi* and Hamid Tayefi Nasrabadi*

Volume 27, Issue 16, 2020

Page: [2658 - 2680] Pages: 23

DOI: 10.2174/0929867326666190711103956

Price: $65

Abstract

Hydrogels are known as polymer-based networks with the ability to absorb water and other body fluids. Because of this, the hydrogels are used to preserve drugs, proteins, nutrients or cells. Hydrogels possess great biocompatibility, and properties like soft tissue, and networks full of water, which allows oxygen, nutrients, and metabolites to pass. Therefore, hydrogels are extensively employed as scaffolds in tissue engineering. Specifically, hydrogels made of natural polymers are efficient structures for tissue regeneration, because they mimic natural environment which improves the expression of cellular behavior.

Producing natural polymer-based hydrogels from collagen, hyaluronic acid (HA), fibrin, alginate, and chitosan is a significant tactic for tissue engineering because it is useful to recognize the interaction between scaffold with a tissue or cell, their cellular reactions, and potential for tissue regeneration. The present review article is focused on injectable hydrogels scaffolds made of biocompatible natural polymers with particular features, the methods that can be employed to engineer injectable hydrogels and their latest applications in tissue regeneration.

Keywords: Hydrogel, Natural polymers, Tissue engineering, Biomaterials, Polymer-based networks, Hyaluronic acid (HA).

[1]
Singh, M.R.; Patel, S.; Singh, D. Natural polymer-based hydrogels as scaffolds for tissue engineering. Nanobiomaterials in Soft Tissue Engineering; Elsevier, 2016, pp. 231-260.
[http://dx.doi.org/10.1016/B978-0-323-42865-1.00009-X]
[2]
Raeisdasteh Hokmabad, V.; Davaran, S.; Ramazani, A.; Salehi, R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J. Biomater. Sci. Polym. Ed., 2017, 28(16), 1797-1825.
[http://dx.doi.org/10.1080/09205063.2017.1354674] [PMID: 28707508]
[3]
Zijah, V.; Salehi, R.; Aghazadeh, M.; Samiei, M.; Alizadeh, E.; Davaran, S. Towards optimization of odonto/osteogenic bioengineering: in vitro comparison of simvastatin, sodium fluoride, melanocyte-stimulating hormone. In Vitro Cell. Dev. Biol. Anim., 2017, 53(6), 502-512.
[http://dx.doi.org/10.1007/s11626-017-0141-6] [PMID: 28342024]
[4]
Samiei, M.; Aghazadeh, M.; Alizadeh, E.; Aslaminabadi, N.; Davaran, S.; Shirazi, S.; Ashrafi, F.; Salehi, R. Osteogenic/odontogenic bioengineering with co-administration of simvastatin and hydroxyapatite on poly caprolactone based nanofibrous scaffold. Adv. Pharm. Bull., 2016, 6(3), 353-365.
[http://dx.doi.org/10.15171/apb.2016.047] [PMID: 27766219]
[5]
Seidi, A.; Ramalingam, M. Protocols for biomaterial scaffold fabrication. In: Integrated Biomaterials in Tissue Engineering; Ramalingam, M.; Haidar, Z.; Ramakrishna, S.; Kobayashi, H.; Haikel, Y., Eds.; Wiley, 2012, pp. 1-23.
[http://dx.doi.org/10.1002/9781118371183.ch1]
[6]
Hokmabad, V.R.; Davaran, S.; Aghazadeh, M.; Alizadeh, E.; Salehi, R.; Ramazani, A. A comparison of the effects of silica and hydroxyapatite nanoparticles on poly (ε-caprolactone)-Poly (ethylene glycol)-Poly (ε-caprolac-tone)/chitosan nanofibrous scaffolds for bone tissue engineering. Tissue Eng. Regen. Med., 2018, 15(6), 735-750.
[http://dx.doi.org/10.1007/s13770-018-0140-z] [PMID: 30603592]
[7]
Saghebasl, S.; Davaran, S.; Rahbarghazi, R.; Montaseri, A.; Salehi, R.; Ramazani, A. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. J. Biomater. Sci. Polym. Ed., 2018, 29(10), 1185-1206.
[http://dx.doi.org/10.1080/09205063.2018.1447627] [PMID: 29490569]
[8]
Asghari, F.; Salehi, R.; Agazadeh, M.; Alizadeh, E.; Adibkia, K.; Samiei, M.; Akbarzadeh, A.; Aval, N.A.; Davaran, S. The odontogenic differentiation of human dental pulp stem cells on hydroxyapatite-coated biodegradable nanofibrous scaffolds. Int. J. Pol. Mat. Pol. Bio., 2016, 65(14), 720-728.
[http://dx.doi.org/10.1080/00914037.2016.1163564]
[9]
Salehi, R.; Aghazadeh, M.; Rashidi, M.; Samadi, N.; Salehi, S.; Davaran, S.; Samiei, M. Bioengineering of dental pulp stem cells in a microporous PNIPAAm-PLGA scaffold. Int. J. Pol. Mat. Pol. Bio., 2014, 63(15), 767-776.
[http://dx.doi.org/10.1080/00914037.2013.879449]
[10]
Miyazawa, A.; Matsuno, T.; Asano, K.; Tabata, Y.; Satoh, T. Controlled release of simvastatin from biodegradable hydrogels promotes odontoblastic differentiation. Dent. Mater. J., 2015, 34(4), 466-474.
[http://dx.doi.org/10.4012/dmj.2014-272] [PMID: 26235711]
[11]
Soares, P.A.; Bourbon, A.I.; Vicente, A.A.; Andrade, C.A.; Barros, W., Jr; Correia, M.T.; Pessoa, A., Jr; Carneiro-da-Cunha, M.G. Development and characterization of hydrogels based on natural polysaccharides: policaju and chitosan. Mater. Sci. Eng. C, 2014, 42, 219-226.
[http://dx.doi.org/10.1016/j.msec.2014.05.009] [PMID: 25063113]
[12]
Elia, R.; Fuegy, P.W.; VanDelden, A.; Firpo, M.A.; Prestwich, G.D.; Peattie, R.A. Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials, 2010, 31(17), 4630-4638.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.043] [PMID: 20227760]
[13]
El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 316-342.
[http://dx.doi.org/10.5339/gcsp.2013.38] [PMID: 24689032]
[14]
Hamlet, S.M.; Vaquette, C.; Shah, A.; Hutmacher, D.W.; Ivanovski, S. 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J. Clin. Periodontol., 2017, 44(4), 428-437.
[http://dx.doi.org/10.1111/jcpe.12686] [PMID: 28032906]
[15]
Deepthi, S.; Jayakumar, R. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering. Bioact. Mater., 2017, 3(2), 194-200.
[http://dx.doi.org/10.1016/j.bioactmat.2017.09.005] [PMID: 29744457]
[16]
Meng, Q.; Man, Z.; Dai, L.; Huang, H.; Zhang, X.; Hu, X.; Shao, Z.; Zhu, J.; Zhang, J.; Fu, X.; Duan, X.; Ao, Y. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration. Sci. Rep., 2015, 5, 17802.
[http://dx.doi.org/10.1038/srep17802] [PMID: 26632447]
[17]
Rahmani Del Bakhshayesh, A.; Mostafavi, E.; Alizadeh, E.; Asadi, N.; Akbarzadeh, A.; Davaran, S. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega, 2018, 3(8), 8605-8611.
[http://dx.doi.org/10.1021/acsomega.8b01219] [PMID: 31458990]
[18]
Asadi, N.; Alizadeh, E.; Rahmani Del Bakhshayesh, A.; Mostafavi, E.; Akbarzadeh, A.; Davaran, S. Fabrication and in vitro evaluation of nanocomposite hydrogel scaffolds based on gelatin/PCL-PEG-PCL for cartilage tissue engineering. ACS Omega, 2019, 4(1), 449-457.
[http://dx.doi.org/10.1021/acsomega.8b02593]
[19]
Jatav, V.S.; Singh, H.; Singh, S.K. Recent trends on hydrogel in human body. Int. J. Res. Pharm. Biomed. Sci., 2011, 2, 442-447.
[20]
Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50(1), 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[21]
Park, J-B. The use of hydrogels in bone-tissue engineering. Med. Oral Patol. Oral Cir. Bucal, 2011, 16(1), e115-e118.
[http://dx.doi.org/10.4317/medoral.16.e115] [PMID: 20526262]
[22]
Suresh, P.K.; Suryawani, S.K.; Dewangan, D. Chitosan based interpenetrating polymer network (IPN) hydrogels: a potential multicomponent oral drug delivery vehicle. Pharmacie Globale Int. J. Compr. Pharm, 2011, 8, 1-8.
[23]
Simões, S.; Figueiras, A.; Veiga, F. Modular hydrogels for drug delivery. J. Biomater. Nanobiotechnol., 2012, 3(02), 185.
[http://dx.doi.org/10.4236/jbnb.2012.32025]
[24]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2001, 53(3), 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[25]
Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5), 1387-1408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[26]
Nanjundswami, N.; Dasankoppa, F.S.; Sholapur, H. A review on hydrogels and its use in in situ ocular drug delivery. Indian J. Nov. Drug Deliv., 2009, 1, 11-17.
[27]
Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res., 2017, 5, 17014.
[http://dx.doi.org/10.1038/boneres.2017.14] [PMID: 28584674]
[28]
Teixeira, L.S.M.; Feijen, J.; van Blitterswijk, C.A.; Dijkstra, P.J.; Karperien, M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials, 2012, 33(5), 1281-1290.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.067] [PMID: 22118821]
[29]
Yang, J-A.; Yeom, J.; Hwang, B.W.; Hoffman, A.S.; Hahn, S.K. In situ forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci., 2014, 39(12), 1973-1986.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006]
[30]
Buwalda, S.J.; Vermonden, T.; Hennink, W.E. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules, 2017, 18(2), 316-330.
[http://dx.doi.org/10.1021/acs.biomac.6b01604] [PMID: 28027640]
[31]
Sá-Lima, H.; Tuzlakoglu, K.; Mano, J.F.; Reis, R.L. Thermoresponsive poly(N-isopropylacrylamide)-g-methylcellulose hydrogel as a three-dimensional extracellular matrix for cartilage-engineered applications. J. Biomed. Mater. Res. A, 2011, 98(4), 596-603.
[http://dx.doi.org/10.1002/jbm.a.33140] [PMID: 21721116]
[32]
Fang, R.; Tian, W.; Chen, X. Synthesis of injectable alginate hydrogels with muscle-derived stem cells for potential myocardial infarction repair. Appl. Sci. (Basel), 2017, 7(3), 252.
[http://dx.doi.org/10.3390/app7030252]
[33]
Annabi, N.; Mithieux, S.M.; Weiss, A.S.; Dehghani, F. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials, 2010, 31(7), 1655-1665.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.051] [PMID: 19969349]
[34]
Kondiah, P.J.; Choonara, Y.E.; Kondiah, P.P.; Marimuthu, T.; Kumar, P.; du Toit, L.C.; Pillay, V. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules, 2016, 21(11), 1580.
[http://dx.doi.org/10.3390/molecules21111580] [PMID: 27879635]
[35]
Ruel-Gariépy, E.; Leroux, J-C. In situ-forming hydrogels--review of temperature-sensitive systems. Eur. J. Pharm. Biopharm., 2004, 58(2), 409-426.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.019] [PMID: 15296964]
[36]
Cho, I.S.; Cho, M.O.; Li, Z.; Nurunnabi, M.; Park, S.Y.; Kang, S-W.; Huh, K.M. Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydr. Polym., 2016, 144, 59-67.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.029] [PMID: 27083793]
[37]
Choi, B.; Loh, X.J.; Tan, A.; Loh, C.K.; Ye, E.; Joo, M.K.; Jeong, B. Introduction to in situ forming hydrogels for biomedical applications. In: In Situ Gelling Polymers; Loh, X.J., Ed.; Springer, 2015, pp. 5-35.
[http://dx.doi.org/10.1007/978-981-287-152-7_2]
[38]
Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci., 2006, 31(5), 487-531.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.03.001]
[39]
Yu, Y.; Deng, C.; Meng, F.; Shi, Q.; Feijen, J.; Zhong, Z. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers. J. Biomed. Mater. Res. A, 2011, 99(2), 316-326.
[http://dx.doi.org/10.1002/jbm.a.33199] [PMID: 21887740]
[40]
Maleki, A. One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett., 2013, 54(16), 2055-2059.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.123]
[41]
Kuang, L.; Lengemann, P.A.; Deng, M. Polymeric hydrogels via click chemistry for regenerative engineering. In: Regenerative Engineering; Khan, Y.; Laurencin, C.T; CRC Press, 2018, pp. 11-25.
[http://dx.doi.org/10.1201/9781315121079-2]
[42]
Yoon, S.J.; Fang, Y.H.; Lim, C.H.; Kim, B.S.; Son, H.S.; Park, Y.; Sun, K. Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 91(1), 163-171.
[http://dx.doi.org/10.1002/jbm.b.31386] [PMID: 19399850]
[43]
Chen, C.; Wang, L.; Deng, L.; Hu, R.; Dong, A. Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure. J. Biomed. Mater. Res. A, 2013, 101(3), 684-693.
[http://dx.doi.org/10.1002/jbm.a.34364] [PMID: 22941894]
[44]
Maleki, A. One-pot three-component synthesis of pyrido [2′, 1′: 2, 3] imidazo [4, 5-c] isoquinolines using Fe3O4@ SiO2-OSO3H as an efficient heterogeneous nanocatalyst. RSC Advances, 2014, 4(109), 64169-64173.
[http://dx.doi.org/10.1039/C4RA10856F]
[45]
Maleki, A. Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron, 2012, 68(38), 7827-7833.
[http://dx.doi.org/10.1016/j.tet.2012.07.034]
[46]
Tan, H.; Chu, C.R.; Payne, K.A.; Marra, K.G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 2009, 30(13), 2499-2506.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.080] [PMID: 19167750]
[47]
Ossipov, D.A.; Brännvall, K.; Forsberg‐Nilsson, K.; Hilborn, J. Formation of the first injectable poly (vinyl alcohol) hydrogel by mixing of functional PVA precursors. J. Appl. Polym. Sci., 2007, 106(1), 60-70.
[http://dx.doi.org/10.1002/app.26455]
[48]
Wang, D-A.; Varghese, S.; Sharma, B.; Strehin, I.; Fermanian, S.; Gorham, J.; Fairbrother, D.H.; Cascio, B.; Elisseeff, J.H. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater., 2007, 6(5), 385-392.
[http://dx.doi.org/10.1038/nmat1890] [PMID: 17435762]
[49]
Maia, J.; Ferreira, L.; Carvalho, R.; Ramos, M.A.; Gil, M.H. Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer (Guildf.), 2005, 46(23), 9604-9614.
[http://dx.doi.org/10.1016/j.polymer.2005.07.089]
[50]
Fan, M.; Ma, Y.; Tan, H.; Jia, Y.; Zou, S.; Guo, S.; Zhao, M.; Huang, H.; Ling, Z.; Chen, Y.; Hu, X. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Mater. Sci. Eng. C, 2017, 71, 67-74.
[http://dx.doi.org/10.1016/j.msec.2016.09.068] [PMID: 27987759]
[51]
Kupal, S.G.; Cerroni, B.; Ghugare, S.V.; Chiessi, E.; Paradossi, G. Biointerface properties of core-shell poly(vinyl alcohol)-hyaluronic acid microgels based on chemoselective chemistry. Biomacromolecules, 2012, 13(11), 3592-3601.
[http://dx.doi.org/10.1021/bm301034a] [PMID: 23082791]
[52]
Hu, X.; Li, D.; Zhou, F.; Gao, C. Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry. Acta Biomater., 2011, 7(4), 1618-1626.
[http://dx.doi.org/10.1016/j.actbio.2010.12.005] [PMID: 21145437]
[53]
Xu, X.D.; Chen, C.S.; Lu, B.; Wang, Z.C.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Modular synthesis of thermosensitive P (NIPAAm‐co‐HEMA)/β‐CD based hydrogels via click chemistry. Macromol. Rapid Commun., 2009, 30(3), 157-164.
[http://dx.doi.org/10.1002/marc.200800671] [PMID: 21706592]
[54]
Adzima, B.J.; Tao, Y.; Kloxin, C.J.; DeForest, C.A.; Anseth, K.S.; Bowman, C.N. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem., 2011, 3(3), 256-259.
[http://dx.doi.org/10.1038/nchem.980] [PMID: 21336334]
[55]
Chen, R.T.; Marchesan, S.; Evans, R.A.; Styan, K.E.; Such, G.K.; Postma, A.; McLean, K.M.; Muir, B.W.; Caruso, F. Photoinitiated alkyne-azide click and radical cross-linking reactions for the patterning of PEG hydrogels. Biomacromolecules, 2012, 13(3), 889-895.
[http://dx.doi.org/10.1021/bm201802w] [PMID: 22332589]
[56]
van Dijk, M.; van Nostrum, C.F.; Hennink, W.E.; Rijkers, D.T.; Liskamp, R.M. Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry. Biomacromolecules, 2010, 11(6), 1608-1614.
[http://dx.doi.org/10.1021/bm1002637] [PMID: 20496905]
[57]
Gopinathan, J.; Noh, I. Click chemistry-based injectable hydrogels and bioprinting inks for tissue engineering applications. Tissue Eng. Regen. Med., 2018, 15(5), 531-546.
[http://dx.doi.org/10.1007/s13770-018-0152-8] [PMID: 30603577]
[58]
Deforest, C.A.; Sims, E.A.; Anseth, K.S. Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell culture. Chem. Mater., 2010, 22(16), 4783-4790.
[http://dx.doi.org/10.1021/cm101391y] [PMID: 20842213]
[59]
Fan, Y.; Deng, C.; Cheng, R.; Meng, F.; Zhong, Z. In situ forming hydrogels via catalyst-free and bioorthogonal “tetrazole-alkene” photo-click chemistry. Biomacromolecules, 2013, 14(8), 2814-2821.
[http://dx.doi.org/10.1021/bm400637s] [PMID: 23819863]
[60]
Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Wang, Z.; Li, Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J. Control. Release, 2018, 273, 160-179.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.023] [PMID: 29382547]
[61]
Wei, H-L.; Yang, Z.; Chu, H-J.; Zhu, J.; Li, Z-C.; Cui, J-S. Facile preparation of poly (N-isopropylacrylamide)-based hydrogels via aqueous Diels-Alder click reaction. Polymer (Guildf.), 2010, 51(8), 1694-1702.
[http://dx.doi.org/10.1016/j.polymer.2010.02.008]
[62]
Alge, D.L.; Azagarsamy, M.A.; Donohue, D.F.; Anseth, K.S. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromolecules, 2013, 14(4), 949-953.
[http://dx.doi.org/10.1021/bm4000508] [PMID: 23448682]
[63]
Nimmo, C.M.; Owen, S.C.; Shoichet, M.S. Diels-Alder Click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules, 2011, 12(3), 824-830.
[http://dx.doi.org/10.1021/bm101446k] [PMID: 21314111]
[64]
Tan, H.; Rubin, J.P.; Marra, K.G. Direct synthesis of biodegradable polysaccharide derivative hydrogels through aqueous Diels-Alder chemistry. Macromol. Rapid Commun., 2011, 32(12), 905-911.
[http://dx.doi.org/10.1002/marc.201100125] [PMID: 21520481]
[65]
Ogushi, Y.; Sakai, S.; Kawakami, K. Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J. Biosci. Bioeng., 2007, 104(1), 30-33.
[http://dx.doi.org/10.1263/jbb.104.30] [PMID: 17697980]
[66]
Lee, F.; Chung, J.E.; Kurisawa, M. An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter, 2008, 4(4), 880-887.
[http://dx.doi.org/10.1039/b719557e]
[67]
Kurisawa, M.; Lee, F.; Wang, L-S.; Chung, J.E. Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. J. Mater. Chem., 2010, 20(26), 5371-5375.
[http://dx.doi.org/10.1039/b926456f]
[68]
Kuo, K-C.; Lin, R-Z.; Tien, H-W.; Wu, P-Y.; Li, Y-C.; Melero-Martin, J.M.; Chen, Y-C. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater., 2015, 27, 151-166.
[http://dx.doi.org/10.1016/j.actbio.2015.09.002] [PMID: 26348142]
[69]
Khanmohammadi, M.; Dastjerdi, M.B.; Ai, A.; Ahmadi, A.; Godarzi, A.; Rahimi, A.; Ai, J. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater. Sci., 2018, 6(6), 1286-1298.
[http://dx.doi.org/10.1039/C8BM00056E] [PMID: 29714366]
[70]
Zhou, B.; Wang, P.; Cui, L.; Yu, Y.; Deng, C.; Wang, Q.; Fan, X. Self-crosslinking of silk fibroin using H 2 O 2-horseradish peroxidase system and the characteristics of the resulting fibroin membranes. Appl. Biochem. Biotechnol., 2017, 182(4), 1548-1563.
[http://dx.doi.org/10.1007/s12010-017-2417-4] [PMID: 28138929]
[71]
Toh, W.S.; Lim, T.C.; Kurisawa, M.; Spector, M. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 2012, 33(15), 3835-3845.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.065] [PMID: 22369963]
[72]
Lim, T.C.; Toh, W.S.; Wang, L-S.; Kurisawa, M.; Spector, M. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials, 2012, 33(12), 3446-3455.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.037] [PMID: 22306021]
[73]
Kurisawa, M.; Chung, J.E.; Yang, Y.Y.; Gao, S.J.; Uyama, H. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem. Commun. (Camb.), 2005, (34), 4312-4314.
[http://dx.doi.org/10.1039/b506989k] [PMID: 16113732]
[74]
Sakai, S.; Ogushi, Y.; Kawakami, K. Enzymatically crosslinked carboxymethylcellulose-tyramine conjugate hydrogel: cellular adhesiveness and feasibility for cell sheet technology. Acta Biomater., 2009, 5(2), 554-559.
[http://dx.doi.org/10.1016/j.actbio.2008.10.010] [PMID: 19010747]
[75]
Jin, R.; Teixeira, L.S.; Dijkstra, P.J.; van Blitterswijk, C.A.; Karperien, M.; Feijen, J. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials, 2010, 31(11), 3103-3113.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.013] [PMID: 20116847]
[76]
Wang, L-S.; Du, C.; Toh, W.S.; Wan, A.C.; Gao, S.J.; Kurisawa, M. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials, 2014, 35(7), 2207-2217.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.070] [PMID: 24333028]
[77]
Zhuang, Y.; Yu, F.; Chen, H.; Zheng, J.; Ma, J.; Chen, J. Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(28), 10885-10892.
[http://dx.doi.org/10.1039/C6TA02738E]
[78]
Zhang, Y.; Li, Y.; Liu, W. Dipole-Dipole and H‐bonding interactions significantly enhance the multifaceted mechanical properties of thermoresponsive shape memory hydrogels. Adv. Funct. Mater., 2015, 25(3), 471-480.
[http://dx.doi.org/10.1002/adfm.201401989] [PMID: 26069467]
[79]
Bhattacharyya, R.; Ray, S.K. Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem. Eng. J., 2015, 260, 269-283.
[http://dx.doi.org/10.1016/j.cej.2014.08.030]
[80]
De France, K.J.; Chan, K.J.; Cranston, E.D.; Hoare, T. Enhanced mechanical properties in cellulose nanocrystal-poly (oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules, 2016, 17(2), 649-660.
[http://dx.doi.org/10.1021/acs.biomac.5b01598] [PMID: 26741744]
[81]
Arakawa, C.; Ng, R.; Tan, S.; Kim, S.; Wu, B.; Lee, M. Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J. Tissue Eng. Regen. Med., 2017, 11(1), 164-174.
[http://dx.doi.org/10.1002/term.1896] [PMID: 24771649]
[82]
Wona, G.; Janik, H. Review: synthetic polymer hydrogels forbiomedical application. Chem. Chem. Technol., 2010, 4(4), 297-304.
[83]
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Polymeric scaffolds in tissue engineering application: a review. Int. J. Pol. Sci., 2011, 1687-9422.
[http://dx.doi.org/10.1155/2011/290602]
[84]
Ramamurthi, A.; Vesely, I. Ultraviolet light-induced modification of crosslinked hyaluronan gels. J. Biomed. Mater. Res. A, 2003, 66(2), 317-329.
[http://dx.doi.org/10.1002/jbm.a.10588] [PMID: 12889002]
[85]
Denizli, B.K.; Can, H.K.; Rzaev, Z.M.; Guner, A. Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinking agents. Polymer (Guildf.), 2004, 45(19), 6431-6435.
[http://dx.doi.org/10.1016/j.polymer.2004.07.067]
[86]
Ehrick, J.D.; Deo, S.K.; Browning, T.W.; Bachas, L.G.; Madou, M.J.; Daunert, S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat. Mater., 2005, 4(4), 298-302.
[http://dx.doi.org/10.1038/nmat1352] [PMID: 15765106]
[87]
Glowacki, J.; Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers, 2008, 89(5), 338-344.
[http://dx.doi.org/10.1002/bip.20871] [PMID: 17941007]
[88]
Kimelman-Bleich, N.; Pelled, G.; Sheyn, D.; Kallai, I.; Zilberman, Y.; Mizrahi, O.; Tal, Y.; Tawackoli, W.; Gazit, Z.; Gazit, D. The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials, 2009, 30(27), 4639-4648.
[http://dx.doi.org/10.1016/j.biomaterials.2009.05.027] [PMID: 19540585]
[89]
Sakai, S.; Hirose, K.; Taguchi, K.; Ogushi, Y.; Kawakami, K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 2009, 30(20), 3371-3377.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.030] [PMID: 19345991]
[90]
Sengupta, D.; Heilshorn, S.C. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds. Tissue Eng. Part B Rev., 2010, 16(3), 285-293.
[http://dx.doi.org/10.1089/ten.teb.2009.0591] [PMID: 20141386]
[91]
Stabenfeldt, S.E.; García, A.J.; LaPlaca, M.C. Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J. Biomed. Mater. Res. A, 2006, 77(4), 718-725.
[http://dx.doi.org/10.1002/jbm.a.30638] [PMID: 16555267]
[92]
Shikanov, A.; Xu, M.; Woodruff, T.K.; Shea, L.D. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials, 2009, 30(29), 5476-5485.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.054] [PMID: 19616843]
[93]
Davidenko, N.; Campbell, J.J.; Thian, E.S.; Watson, C.J.; Cameron, R.E. Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater., 2010, 6(10), 3957-3968.
[http://dx.doi.org/10.1016/j.actbio.2010.05.005] [PMID: 20466086]
[94]
Lee, C.K.; Shin, S.R.; Lee, S.H.; Jeon, J.H.; So, I.; Kang, T.M.; Kim, S.I.; Mun, J.Y.; Han, S.S.; Spinks, G.M.; Wallace, G.G.; Kim, S.J. DNA hydrogel fiber with self-entanglement prepared by using an ionic liquid. Angew. Chem. Int. Ed. Engl., 2008, 47(13), 2470-2474.
[http://dx.doi.org/10.1002/anie.200704600] [PMID: 18288661]
[95]
Park, N.; Kahn, J.S.; Rice, E.J.; Hartman, M.R.; Funabashi, H.; Xu, J.; Um, S.H.; Luo, D. High-yield cell-free protein production from P-gel. Nat. Protoc., 2009, 4(12), 1759-1770.
[http://dx.doi.org/10.1038/nprot.2009.174] [PMID: 20010927]
[96]
Xing, Y.; Cheng, E.; Yang, Y.; Chen, P.; Zhang, T.; Sun, Y.; Yang, Z.; Liu, D. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv. Mater., 2011, 23(9), 1117-1121.
[http://dx.doi.org/10.1002/adma.201003343] [PMID: 21181766]
[97]
Domingues, R.M.; Silva, M.; Gershovich, P.; Betta, S.; Babo, P.; Caridade, S.G.; Mano, J.F.; Motta, A.; Reis, R.L.; Gomes, M.E. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug. Chem., 2015, 26(8), 1571-1581.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00209] [PMID: 26106949]
[98]
Liao, Y-H.; Jones, S.A.; Forbes, B.; Martin, G.P.; Brown, M.B. Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv., 2005, 12(6), 327-342.
[http://dx.doi.org/10.1080/10717540590952555] [PMID: 16253949]
[99]
Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev., 2007, 59(4-5), 207-233.
[http://dx.doi.org/10.1016/j.addr.2007.03.012] [PMID: 17482309]
[100]
Eke, G.; Mangir, N.; Hasirci, N.; MacNeil, S.; Hasirci, V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 2017, 129, 188-198.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.021] [PMID: 28343005]
[101]
Chen, F.; Ni, Y.; Liu, B.; Zhou, T.; Yu, C.; Su, Y.; Zhu, X.; Yu, X.; Zhou, Y. Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr. Polym., 2017, 166, 31-44.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.059] [PMID: 28385238]
[102]
Khanlari, A.; Schulteis, J.E.; Suekama, T.C.; Detamore, M.S.; Gehrke, S.H. Designing crosslinked hyaluronic acid hydrogels with tunable mechanical properties for biomedical applications. J. Appl. Polym. Sci., 2015, 132(22)
[http://dx.doi.org/10.1002/app.42009]
[103]
Kuang, L.; Damayanti, N.P.; Jiang, C.; Fei, X.; Liu, W.; Narayanan, N.; Irudayaraj, J.; Campanella, O.; Deng, M. Bioinspired glycosaminoglycan hydrogels via click chemistry for 3D dynamic cell encapsulation. J. Appl. Polym. Sci., 2019, 136(5), 47212.
[http://dx.doi.org/10.1002/app.47212] [PMID: 31534270]
[104]
Feng, Q.; Lin, S.; Zhang, K.; Dong, C.; Wu, T.; Huang, H.; Yan, X.; Zhang, L.; Li, G.; Bian, L. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater., 2017, 53, 329-342.
[http://dx.doi.org/10.1016/j.actbio.2017.02.015] [PMID: 28193542]
[105]
Maleki, A.; Ghassemi, M.; Firouzi-Haji, R. Green multicomponent synthesis of four different classes of six-membered N-containing and O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure Appl. Chem., 2018, 90(2), 387-394.
[http://dx.doi.org/10.1515/pac-2017-0702]
[106]
Martínez, A.; Blanco, M.D.; Davidenko, N.; Cameron, R.E. Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohydr. Polym., 2015, 132, 606-619.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.084] [PMID: 26256388]
[107]
Rahmani Del Bakhshayesh, A.; Annabi, N.; Khalilov, R.; Akbarzadeh, A.; Samiei, M.; Alizadeh, E.; Alizadeh-Ghodsi, M.; Davaran, S.; Montaseri, A. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 691-705.
[http://dx.doi.org/10.1080/21691401.2017.1349778] [PMID: 28697631]
[108]
Farshi Azhar, F.; Olad, A.; Salehi, R. Fabrication and characterization of chitosan–gelatin/nanohydroxyapatite-polyaniline composite with potential application in tissue engineering scaffolds. Des. Monomers Polym., 2014, 17(7), 654-667.
[http://dx.doi.org/10.1080/15685551.2014.907621]
[109]
Huang, S.; Fu, X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J. Control. Release, 2010, 142(2), 149-159.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.018] [PMID: 19850093]
[110]
Naderi-Meshkin, H.; Andreas, K.; Matin, M.M.; Sittinger, M.; Bidkhori, H.R.; Ahmadiankia, N.; Bahrami, A.R.; Ringe, J. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol. Int., 2014, 38(1), 72-84.
[http://dx.doi.org/10.1002/cbin.10181] [PMID: 24108671]
[111]
Cheng, N-C.; Lin, W-J.; Ling, T-Y.; Young, T-H. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater., 2017, 51, 258-267.
[http://dx.doi.org/10.1016/j.actbio.2017.01.060] [PMID: 28131942]
[112]
Dasgupta, S.; Maji, K.; Nandi, S.K. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Mater. Sci. Eng. C, 2019, 94, 713-728.
[http://dx.doi.org/10.1016/j.msec.2018.10.022] [PMID: 30423758]
[113]
Jayakumar, R.; Ramachandran, R.; Divyarani, V.V.; Chennazhi, K.P.; Tamura, H.; Nair, S.V. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications. Int. J. Biol. Macromol., 2011, 48(2), 336-344.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.12.010] [PMID: 21182857]
[114]
Janmey, P.A.; Winer, J.P.; Weisel, J.W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface, 2009, 6(30), 1-10.
[http://dx.doi.org/10.1098/rsif.2008.0327] [PMID: 18801715]
[115]
Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev., 2001, 101(7), 1869-1879.
[http://dx.doi.org/10.1021/cr000108x] [PMID: 11710233]
[116]
Mol, A.; van Lieshout, M.I.; Dam-de Veen, C.G.; Neuenschwander, S.; Hoerstrup, S.P.; Baaijens, F.P.; Bouten, C.V. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 2005, 26(16), 3113-3121.
[http://dx.doi.org/10.1016/j.biomaterials.2004.08.007] [PMID: 15603806]
[117]
Jaikumar, D.; Sajesh, K.M.; Soumya, S.; Nimal, T.R.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int. J. Biol. Macromol., 2015, 74, 318-326.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.037] [PMID: 25544040]
[118]
Park, K-H.; Kim, H.; Moon, S.; Na, K. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J. Biosci. Bioeng., 2009, 108(6), 530-537.
[http://dx.doi.org/10.1016/j.jbiosc.2009.05.021] [PMID: 19914589]
[119]
Feldman, D.S.; Osborne, S. Fibrin as a tissue adhesive and scaffold with an angiogenic agent (FGF-1) to enhance burn graft healing in vivo and clinically. J. Funct. Biomater., 2018, 9(4), 68.
[http://dx.doi.org/10.3390/jfb9040068] [PMID: 30486230]
[120]
Kuznetsov, S.A.; Hailu-Lazmi, A.; Cherman, N.; de Castro, L.F.; Robey, P.G.; Gorodetsky, R. In vivo formation of stable hyaline cartilage by naïve human bone marrow stromal cells with modified fibrin microbeads. Stem Cells Transl. Med., 2019, 8(6), 586-592.
[http://dx.doi.org/10.1002/sctm.18-0129] [PMID: 30767420]
[121]
Moreira, C.D.F.; Carvalho, S.M.; Mansur, H.S.; Pereira, M.M. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater. Sci. Eng. C, 2016, 58, 1207-1216.
[http://dx.doi.org/10.1016/j.msec.2015.09.075] [PMID: 26478423]
[122]
Rhee, S.; Puetzer, J.L.; Mason, B.N.; Reinhart-King, C.A.; Bonassar, L.J. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater. Sci. Eng., 2016, 2(10), 1800-1805.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00288]
[123]
Zheng, L.; Jiang, X.; Chen, X.; Fan, H.; Zhang, X. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering. Biomed. Mater., 2014, 9(6), 065004
[http://dx.doi.org/10.1088/1748-6041/9/6/065004] [PMID: 25358331]
[124]
Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z.Y.; Cui, W.; Annabi, N.; Ng, K.W.; Dokmeci, M.R.; Ghaemmaghami, A.M.; Khademhosseini, A. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater., 2016, 5(1), 108-118.
[http://dx.doi.org/10.1002/adhm.201500005] [PMID: 25880725]
[125]
Hardy, J.G.; Lin, P.; Schmidt, C.E. Biodegradable hydrogels composed of oxime crosslinked poly(ethylene glycol), hyaluronic acid and collagen: a tunable platform for soft tissue engineering. J. Biomater. Sci. Polym. Ed., 2015, 26(3), 143-161.
[http://dx.doi.org/10.1080/09205063.2014.975393] [PMID: 25555089]
[126]
Ryan, E.J.; Ryan, A.J.; González-Vázquez, A.; Philippart, A.; Ciraldo, F.E.; Hobbs, C.; Nicolosi, V.; Boccaccini, A.R.; Kearney, C.J.; O’Brien, F.J. Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials, 2019, 197, 405-416.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.031] [PMID: 30708184]
[127]
Heinemann, S.; Heinemann, C.; Jäger, M.; Neunzehn, J.; Wiesmann, H.P.; Hanke, T. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. ACS Appl. Mater. Interfaces, 2011, 3(11), 4323-4331.
[http://dx.doi.org/10.1021/am200993q] [PMID: 21942510]
[128]
Zuo, Z-Q.; Chen, K-G.; Yu, X-Y.; Zhao, G.; Shen, S.; Cao, Z-T.; Luo, Y-L.; Wang, Y-C.; Wang, J. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials, 2016, 82, 48-59.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.014] [PMID: 26751819]
[129]
Wu, X.; Liu, Y.; Li, X.; Wen, P.; Zhang, Y.; Long, Y.; Wang, X.; Guo, Y.; Xing, F.; Gao, J. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater., 2010, 6(3), 1167-1177.
[http://dx.doi.org/10.1016/j.actbio.2009.08.041] [PMID: 19733699]
[130]
Zhao, X.; Sun, X.; Yildirimer, L.; Lang, Q.; Lin, Z.Y.W.; Zheng, R.; Zhang, Y.; Cui, W.; Annabi, N.; Khademhosseini, A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater., 2017, 49, 66-77.
[http://dx.doi.org/10.1016/j.actbio.2016.11.017] [PMID: 27826004]
[131]
Chan, G.; Mooney, D.J. Ca(2+) released from calcium alginate gels can promote inflammatory responses in vitro and in vivo. Acta Biomater., 2013, 9(12), 9281-9291.
[http://dx.doi.org/10.1016/j.actbio.2013.08.002] [PMID: 23938198]
[132]
Almeida, H.V.; Sathy, B.N.; Dudurych, I.; Buckley, C.T.; O’Brien, F.J.; Kelly, D.J. Anisotropic shape-memory alginate scaffolds functionalized with either type I or type II collagen for cartilage tissue engineering. Tissue Eng. Part A, 2017, 23(1-2), 55-68.
[http://dx.doi.org/10.1089/ten.tea.2016.0055] [PMID: 27712409]
[133]
Zhang, F.; Su, K.; Fang, Y.; Sandhya, S.; Wang, D.A. A mixed co-culture of mesenchymal stem cells and transgenic chondrocytes in alginate hydrogel for cartilage tissue engineering. J. Tissue Eng. Regen. Med., 2015, 9(1), 77-84.
[http://dx.doi.org/10.1002/term.1641] [PMID: 23166064]
[134]
Ma, R.; Wang, Y.; Qi, H.; Shi, C.; Wei, G.; Xiao, L.; Huang, Z.; Liu, S.; Yu, H.; Teng, C. Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: in vitro and in vivo evaluation. Compos., Part B Eng., 2019, •••
[http://dx.doi.org/10.1016/j.compositesb.2019.03.006]
[135]
Zeng, L.; Yao, Y.; Wang, D.A.; Chen, X. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering. Mater. Sci. Eng. C, 2014, 34, 168-175.
[http://dx.doi.org/10.1016/j.msec.2013.09.003] [PMID: 24268246]
[136]
Gonzalez-Fernandez, T.; Tierney, E.G.; Cunniffe, G.M.; O’Brien, F.J.; Kelly, D.J. Gene delivery of TGF-β3 and BMP2 in an MSC-laden alginate hydrogel for articular cartilage and endochondral bone tissue engineering. Tissue Eng. Part A, 2016, 22(9-10), 776-787.
[http://dx.doi.org/10.1089/ten.tea.2015.0576] [PMID: 27079852]
[137]
Qi, X.; Ye, J.; Wang, Y. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. J. Biomed. Mater. Res. A, 2009, 89(4), 980-987.
[http://dx.doi.org/10.1002/jbm.a.32054] [PMID: 18470921]
[138]
Kim, M.S.; Kim, G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr. Polym., 2014, 114, 213-221.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.008] [PMID: 25263884]
[139]
Shahriari, D.; Koffler, J.; Lynam, D.A.; Tuszynski, M.H.; Sakamoto, J.S. Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. J. Biomed. Mater. Res. A, 2016, 104(3), 611-619.
[http://dx.doi.org/10.1002/jbm.a.35600] [PMID: 26488452]
[140]
Favi, P.M.; Ospina, S.P.; Kachole, M.; Gao, M.; Atehortua, L.; Webster, T.J. Preparation and characterization of biodegradable nano hydroxyapatite-bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose, 2016, 23(2), 1263-1282.
[http://dx.doi.org/10.1007/s10570-016-0867-4]
[141]
Maleki, A.; Jafari, A.A.; Yousefi, S. MgFe2O4/cellulose/SO3H nanocomposite: a new biopolymer-based nanocatalyst for one-pot multicomponent syntheses of polysubstituted tetrahydropyridines and dihydropyrimidinones. J. Indian Chem. Soc., 2017, 14(8), 1801-1813.
[http://dx.doi.org/10.1007/s13738-017-1120-2]
[142]
Maleki, A.; Movahed, H.; Ravaghi, P. Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohydr. Polym., 2017, 156, 259-267.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.002] [PMID: 27842821]
[143]
Maleki, A.; Jafari, A.A.; Yousefi, S. Green cellulose-based nanocomposite catalyst: Design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr. Polym., 2017, 175, 409-416.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.019] [PMID: 28917883]
[144]
Maleki, A.; Kamalzare, M. Fe3O4@ cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines. Catal. Commun., 2014, 53, 67-71.
[http://dx.doi.org/10.1016/j.catcom.2014.05.004]
[145]
Maleki, A.; Ravaghi, P.; Aghaei, M.; Movahed, H. A novel magnetically recyclable silver-loaded cellulose-based bionanocomposite catalyst for green synthesis of tetrazolo [1, 5-a] pyrimidines. Res. Chem. Intermed., 2017, 43(10), 5485-5494.
[http://dx.doi.org/10.1007/s11164-017-2941-4]
[146]
Kirdponpattara, S.; Khamkeaw, A.; Sanchavanakit, N.; Pavasant, P.; Phisalaphong, M. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydr. Polym., 2015, 132, 146-155.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.059] [PMID: 26256335]
[147]
Ran, J.; Jiang, P.; Liu, S.; Sun, G.; Yan, P.; Shen, X.; Tong, H. Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering. Mater. Sci. Eng. C, 2017, 78, 130-140.
[http://dx.doi.org/10.1016/j.msec.2017.04.062] [PMID: 28575967]
[148]
Naseri, N.; Deepa, B.; Mathew, A.P.; Oksman, K.; Girandon, L. Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules, 2016, 17(11), 3714-3723.
[http://dx.doi.org/10.1021/acs.biomac.6b01243] [PMID: 27726351]
[149]
Zhang, X.; Wang, C.; Liao, M.; Dai, L.; Tang, Y.; Zhang, H.; Coates, P.; Sefat, F.; Zheng, L.; Song, J.; Zheng, Z.; Zhao, D.; Yang, M.; Zhang, W.; Ji, P. Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering. Carbohydr. Polym., 2019, 213, 27-38.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.038] [PMID: 30879669]
[150]
Kumar, A.; Rao, K.M.; Han, S.S. Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chem. Eng. J., 2017, 317, 119-131.
[http://dx.doi.org/10.1016/j.cej.2017.02.065]
[151]
Zander, N.E.; Dong, H.; Steele, J.; Grant, J.T. Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl. Mater. Interfaces, 2014, 6(21), 18502-18510.
[http://dx.doi.org/10.1021/am506007z] [PMID: 25295848]
[152]
Wang, J.; Chao, J.; Liu, H.; Su, S.; Wang, L.; Huang, W.; Willner, I.; Fan, C. Clamped hybridization chain reactions for the self‐assembly of patterned DNA hydrogels. Angew. Chem. Int. Ed. Engl., 2017, 56(8), 2171-2175.
[http://dx.doi.org/10.1002/anie.201610125] [PMID: 28079290]
[153]
Stanton, M.M.; Samitier, J.; Sánchez, S. Bioprinting of 3D hydrogels. Lab Chip, 2015, 15(15), 3111-3115.
[http://dx.doi.org/10.1039/C5LC90069G] [PMID: 26066320]
[154]
Shahbazi, M.A.; Bauleth‐Ramos, T.; Santos, H.A. DNA hydrogel assemblies: bridging synthesis principles to biomedical applications. Adv. Ther., 2018, 1(4), 1800042
[http://dx.doi.org/10.1002/adtp.201800042]
[155]
Xiong, X.; Wu, C.; Zhou, C.; Zhu, G.; Chen, Z.; Tan, W. Responsive DNA-based hydrogels and their applications. Macromol. Rapid Commun., 2013, 34(16), 1271-1283.
[http://dx.doi.org/10.1002/marc.201300411] [PMID: 23857726]
[156]
Stoll, H.; Steinle, H.; Stang, K.; Kunnakattu, S.; Scheideler, L.; Neumann, B.; Kurz, J.; Degenkolbe, I.; Perle, N.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Generation of large-scale DNA hydrogels with excellent blood and cell compatibility. Macromol. Biosci., 2017, 17(4), 1600252
[http://dx.doi.org/10.1002/mabi.201600252] [PMID: 27758025]
[157]
Wang, Y.; Shao, Y.; Ma, X.; Zhou, B.; Faulkner-Jones, A.; Shu, W.; Liu, D. Constructing tissuelike complex structures using cell-laden DNA hydrogel bricks. ACS Appl. Mater. Interfaces, 2017, 9(14), 12311-12315.
[http://dx.doi.org/10.1021/acsami.7b01604] [PMID: 28300395]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy