Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Multimodal Analgesia for Perioperative Management of Patients presenting for Spinal Surgery

Author(s): Deepak Agarwal*, Praveen Chahar, Mark Chmiela, Afrin Sagir, Arnold Kim, Faysal Malik and Ehab Farag

Volume 25, Issue 19, 2019

Page: [2123 - 2132] Pages: 10

DOI: 10.2174/1381612825666190708174639

Price: $65

Abstract

Multimodal, non-opioid based analgesia has become the cornerstone of ERAS protocols for effective analgesia after spinal surgery. Opioid side effects, dependence and legislation restricting long term opioid use has led to a resurgence in interest in opioid sparing techniques. The increasing array of multimodal opioid sparing analgesics available for spinal surgery targeting novel receptors, transmitters, and altering epigenetics can help provide an optimal perioperative experience with less opioid side effects and long-term dependence. Epigenetic mechanisms of pain may enhance or suppress gene expression, without altering the genome itself. Such mechanisms are complex, dynamic and responsive to environment. Alterations that occur can affect the pathophysiology of pain management at a DNA level, modifying perceived pain relief. In this review, we provide a brief overview of epigenetics of pain, systemic local anesthetics and neuraxial techniques that continue to remain useful for spinal surgery, neuropathic agents, as well as other common and less common target receptors for a truly multimodal approach to perioperative pain management.

Keywords: Epigenetics of pain, liposomal bupivacaine, ketamine, spinal surgery, multimodal opioid, pathophysiology.

[1]
Loeser JD, Melzack R. Pain: An overview. Lancet 1999; 353(9164): 1607-9.[PubMed].
[http://dx.doi.org/[http://dx.doi.org/10.1016/S0140-6736(99)01311-2] [PMID: 10334273]
[2]
Bajwa SJ, Haldar R. Pain management following spinal surgeries: An appraisal of the available options. J Craniovertebr Junction Spine 2015; 6(3): 105-10.
[http://dx.doi.org/10.4103/0974-8237.161589] [PMID: 26288544]
[3]
Raw DA, Beattie JK, Hunter JM. Anaesthesia for spinal surgery in adults. Br J Anaesth 2003; 91(6): 886-904.
[http://dx.doi.org/10.1093/bja/aeg253] [PMID: 14633762]
[4]
Ali ZS, Ma TS, Ozturk AK, et al. Pre-optimization of spinal surgery patients: Development of a neurosurgical enhanced recovery after surgery (ERAS) protocol. Clin Neurol Neurosurg 2018; 164: 142-53.
[http://dx.doi.org/10.1016/j.clineuro.2017.12.003] [PMID: 29232645]
[5]
Wang MY, Chang PY, Grossman J. Development of an Enhanced Recovery After Surgery (ERAS) approach for lumbar spinal fusion. J Neurosurg Spine 2017; 26(4): 411-8.
[http://dx.doi.org/10.3171/2016.9.SPINE16375] [PMID: 28009223]
[6]
Reinhold AK, Jentho E, Schäfer ST, Bauer M, Rittner HL. [Epigenetics : Important aspects for anesthesiologists, pain and intensive care physicians Anaesthesist 2018; 67(4): 246-54.
[http://dx.doi.org/ [http://dx.doi.org/10.1007/s00101-018-0424-7] [PMID: 29560499]
[7]
Doehring A, Geisslinger G, Lötsch J. Epigenetics in pain and analgesia: An imminent research field. Eur J Pain 2011; 15(1): 11-6.
[http://dx.doi.org/10.1016/j.ejpain.2010.06.004] [PMID: 20584621]
[8]
Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther 2007; 81(3): 429-44.
[http://dx.doi.org/10.1038/sj.clpt.6100095] [PMID: 17339873]
[9]
Shaogen W, Bono J, Tao YX. Long noncoding RNA (lncRNA): A target in neuropathic pain. Expert Opin Ther Targets 2018; 12. 23(1): 15-20.
[10]
Cheng R. Surgical pain, Fundamentals of pain medicine. Springer 2018.
[http://dx.doi.org/10.1007/978-3-319-64922-1]
[11]
Chahar P, Cummings KC III. Liposomal bupivacaine: A review of a new bupivacaine formulation. J Pain Res 2012; 5: 257-64.
[PMID: 23049275]
[12]
Ames WA, Songhurst L, Gullan RW. Local anaesthesia for laminectomy surgery. Br J Neurosurg 1999; 13(6): 598-600.
[http://dx.doi.org/10.1080/02688699943132] [PMID: 10715731]
[13]
Khan MB, Kumar R, Enam SA. Thoracic and lumbar spinal surgery under local anesthesia for patients with multiple comorbidities: A consecutive case series. Surg Neurol Int 2014; 5(Suppl. 3): S62-5.
[http://dx.doi.org/10.4103/2152-7806.130669] [PMID: 24843813]
[14]
Reynolds RAK, Legakis JE, Tweedie J, et al. Postoperative pain management after spinal fusion surgery: An analysis of the efficacy of continuous infusion of local anesthetics. Global Spine J 2013; 3(1): 7-14.
[http://dx.doi.org/10.1055/s-0033-1337119] [PMID: 24436846]
[15]
Sadrolsadat SH, Mahdavi AR, Moharari RS, et al. A prospective randomized trial comparing the technique of spinal and general anesthesia for lumbar disk surgery: A study of 100 cases. Surg Neurol 2009; 71(1): 60-5.
[http://dx.doi.org/10.1016/j.surneu.2008.08.003] [PMID: 19084683]
[16]
Jellish WS, Thalji Z, Stevenson K, Shea J. A prospective randomized study comparing short- and intermediate-term perioperative outcome variables after spinal or general anesthesia for lumbar disk and laminectomy surgery. Anesth Analg 1996; 83(3): 559-64.
[http://dx.doi.org/10.1213/00000539-199609000-00021] [PMID: 8780281]
[17]
Kahveci K, Doger C, Ornek D, Gokcinar D, Aydemir S, Ozay R. Perioperative outcome and cost-effectiveness of spinal versus general anesthesia for lumbar spine surgery. Neurol Neurochir Pol 2014; 48(3): 167-73.
[http://dx.doi.org/10.1016/j.pjnns.2014.05.005] [PMID: 24981180]
[18]
Mergeay M, Verster A, Van Aken D, Vercauteren M. Regional versus general anesthesia for spine surgery. A comprehensive review. Acta Anaesthesiol Belg 2015; 66(1): 1-9.
[PMID: 26103736]
[19]
Li Y, Hong RA, Robbins CB, et al. Intrathecal morphine and oral analgesics provide safe and effective pain control after posterior spinal fusion for adolescent idiopathic scoliosis. Spine 2018; 43(2): E98-E104.
[http://dx.doi.org/10.1097/BRS.0000000000002245] [PMID: 28538591]
[20]
Attari MA, Mirhosseini SA, Honarmand A, Safavi MR. Spinal anesthesia versus general anesthesia for elective lumbar spine surgery: A randomized clinical trial. J Res Med Sci 2011; 16(4): 524-9.
[PMID: 22091269]
[21]
Benyahia NM, Verster A, Saldien V, Breebaart M, Sermeus L, Vercauteren M. Regional anaesthesia and postoperative analgesia techniques for spine surgery - a review. Rom J Anaesth Intensive Care 2015; 22(1): 25-33.
[PMID: 28913452]
[22]
Taenzer AH, Clark C. Efficacy of postoperative epidural analgesia in adolescent scoliosis surgery: A meta-analysis. Paediatr Anaesth 2010; 20(2): 135-43.
[http://dx.doi.org/10.1111/j.1460-9592.2009.03226.x] [PMID: 20091934]
[23]
Gauger VT, Voepel-Lewis TD, Burke CN, et al. Epidural analgesia compared with intravenous analgesia after pediatric posterior spinal fusion. J Pediatr Orthop 2009; 29(6): 588-93.
[http://dx.doi.org/10.1097/BPO.0b013e3181b2ba08] [PMID: 19700988]
[24]
Blumenthal S, Min K, Nadig M, Borgeat A. Double epidural catheter with ropivacaine versus intravenous morphine: A comparison for postoperative analgesia after scoliosis correction surgery. Anesthesiology 2005; 102(1): 175-80.
[http://dx.doi.org/10.1097/00000542-200501000-00026] [PMID: 15618801]
[25]
Blumenthal S, Borgeat A, Nadig M, Min K. Postoperative analgesia after anterior correction of thoracic scoliosis: A prospective randomized study comparing continuous double epidural catheter technique with intravenous morphine. Spine 2006; 31(15): 1646-51.
[http://dx.doi.org/10.1097/01.brs.0000224174.54622.1b] [PMID: 16816757]
[26]
Klatt JW, Mickelson J, Hung M, Durcan S, Miller C, Smith JT. A randomized prospective evaluation of 3 techniques of postoperative pain management after posterior spinal instrumentation and fusion. Spine 2013; 38(19): 1626-31.
[http://dx.doi.org/10.1097/BRS.0b013e31829cab0b] [PMID: 23715024]
[27]
Jellish WS, Abodeely A, Fluder EM, Shea J. The effect of spinal bupivacaine in combination with either epidural clonidine and/or 0.5% bupivacaine administered at the incision site on postoperative outcome in patients undergoing lumbar laminectomy. Anesth Analg 2003; 96(3): 874-80.
[http://dx.doi.org/10.1213/01.ANE.0000049682.48703.44] [PMID: 12598277]
[28]
Kundra S, Gupta V, Bansal H, Grewal A, Katyal S, Choudhary AK. Comparative study of epidural application of morphine versus gelfoam soaked in morphine for lumbar laminectomy. J Anaesthesiol Clin Pharmacol 2014; 30(1): 46-52.
[http://dx.doi.org/10.4103/0970-9185.125703] [PMID: 24574593]
[29]
Dhawan BN, Cesselin F, Raghubir R, et al. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 1996; 48(4): 567-92.
[PMID: 8981566]
[30]
Pathan H, Williams J. Basic opioid pharmacology: An update. Br J Pain 2012; 6(1): 11-6.
[http://dx.doi.org/10.1177/2049463712438493] [PMID: 26516461]
[31]
Ghanem CI, Pérez MJ, Manautou JE, Mottino AD. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharmacol Res 2016; 109: 119-31.
[http://dx.doi.org/10.1016/j.phrs.2016.02.020] [PMID: 26921661]
[32]
Lachiewicz PF. The role of intravenous acetaminophen in multimodal pain protocols for perioperative orthopedic patients. Orthopedics 2013; 36(2)(Suppl.): 15-9.
[http://dx.doi.org/10.3928/01477447-20130122-52] [PMID: 23379571]
[33]
Royal MA, Gosselin NH, Pan CP, Mouksassi MS, Brietmeyer JB. Route of administration significantly impact hepatic acetaminophen exposure. Nature 2010; 87(Suppl. 1): S63.
[34]
Jibril F, Sharaby S, Mohamed A, Wilby KJ. Intravenous versus Oral Acetaminophen for Pain: Systematic Review of Current Evidence to Support Clinical Decision-Making. Can J Hosp Pharm 2015; 68(3): 238-47.
[http://dx.doi.org/10.4212/cjhp.v68i3.1458] [PMID: 26157186]
[35]
Grundmann U, Wörnle C, Biedler A, Kreuer S, Wrobel M, Wilhelm W. The efficacy of the non-opioid analgesics parecoxib, paracetamol and metamizol for postoperative pain relief after lumbar microdiscectomy. Anesth Analg 2006; 103(1): 217-22.
[http://dx.doi.org/10.1213/01.ane.0000221438.08990.06] [PMID: 16790656]
[36]
Hernández-Palazón J, Tortosa JA, Martínez-Lage JF, Pérez-Flores D. Intravenous administration of propacetamol reduces morphine consumption after spinal fusion surgery. Anesth Analg 2001; 92(6): 1473-6.
[http://dx.doi.org/10.1097/00000539-200106000-00024] [PMID: 11375828]
[37]
Olbrecht VA, Ding L, Spruance K, Hossain M, Sadhasivam S, Chidambaran V. Intravenous acetaminophen reduces length of stay via mediation of postoperative opioid consumption following posterior spinal fusion in a pediatric cohort 2018; 34(7): 593-9.
[http://dx.doi.org/10.1097/AJP.0000000000000576]
[38]
Gornitzky AL, Flynn JM, Muhly WT, Sankar WN. A rapid recovery pathway for adolescent idiopathic scoliosis that improves pain control and reduces time to inpatient recovery after posterior spinal fusion. Spine Deform 2016; 4(4): 288-95.
[http://dx.doi.org/10.1016/j.jspd.2016.01.001] [PMID: 27927519]
[39]
Zhang Z, Xu H, Zhang Y, et al. Nonsteroidal anti-inflammatory drugs for postoperative pain control after lumbar spine surgery: A meta-analysis of randomized controlled trials. J Clin Anesth 2017; 43: 84-9.
[http://dx.doi.org/10.1016/j.jclinane.2017.08.030] [PMID: 29046234]
[40]
Simon LS. Role and regulation of cyclooxygenase-2 during inflammation. Am J Med 1999; 106(5B): 37S-42S.
[http://dx.doi.org/10.1016/S0002-9343(99)00115-1] [PMID: 10390126]
[41]
Jirarattanaphochai K, Jung S. Nonsteroidal anti-inflammatory drugs for postoperative pain management after lumbar spine surgery: A meta-analysis of randomized controlled trials. J Neurosurg Spine 2005; (9): 22-31.
[42]
Yamashita K, Fukusaki M, Ando Y, et al. Preoperative administration of intravenous flurbiprofen axetil reduces postoperative pain for spinal fusion surgery. J Anesth 2006; 20(2): 92-5.
[http://dx.doi.org/10.1007/s00540-006-0389-6] [PMID: 16633764]
[43]
Yukawa Y, Kato F, Ito K, Terashima T, Horie Y. A prospective randomized study of preemptive analgesia for postoperative pain in the patients undergoing posterior lumbar interbody fusion: Continuous subcutaneous morphine, continuous epidural morphine, and diclofenac sodium. Spine 2005; 30(21): 2357-61.
[http://dx.doi.org/10.1097/01.brs.0000184377.31427.fa] [PMID: 16261108]
[44]
Reuben SS, Ekman EF. The effect of cyclooxygenase-2 inhibition on analgesia and spinal fusion. J Bone Joint Surg Am 2005; 87(3): 536-42.
[http://dx.doi.org/10.2106/JBJS.D.02283] [PMID: 15741619]
[45]
Aubrun F, Langeron O, Heitz D, Coriat P, Riou B. Randomised, placebo-controlled study of the postoperative analgesic effects of ketoprofen after spinal fusion surgery. Acta Anaesthesiol Scand 2000; 44(8): 934-9.
[http://dx.doi.org/10.1034/j.1399-6576.2000.440807.x] [PMID: 10981569]
[46]
Cassinelli EH, Dean CL, Garcia RM, Furey CG, Bohlman HH. Ketorolac use for postoperative pain management following lumbar decompression surgery: A prospective, randomized, double-blinded, placebo-controlled trial. Spine 2008; 33(12): 1313-7.
[http://dx.doi.org/10.1097/BRS.0b013e31817329bd] [PMID: 18496342]
[47]
Lumawig JM, Yamazaki A, Watanabe K. Dose-dependent inhibition of diclofenac sodium on posterior lumbar interbody fusion rates. Spine J 2009; 9(5): 343-9.
[http://dx.doi.org/10.1016/j.spinee.2008.06.455] [PMID: 18790686]
[48]
Pradhan BB, Tatsumi RL, Gallina J, Kuhns CA, Wang JC, Dawson EG. Ketorolac and spinal fusion: Does the perioperative use of ketorolac really inhibit spinal fusion? Spine 2008; 33(19): 2079-82.
[http://dx.doi.org/10.1097/BRS.0b013e31818396f4] [PMID: 18698276]
[49]
Li J, Ajiboye RM, Orden MH, Sharma A, Drysch A, Pourtaheri S. The effect of ketorolac on thoracolumbar posterolateral fusion: A systemic review and meta-analysis. Clin Spine Surg 2018; 31(2): 65-72. [Meta-analysis of effect of ketorolac on spinal fusion.
[http://dx.doi.org/[http://dx.doi.org/10.1097/BSD.0000000000000613] [PMID: 29351095]
[51]
Puffer RC, Tou K, Winkel RE, Bydon M, Currier B, Freedman BA. Liposomal bupivacaine incisional injection in single-level lumbar spine surgery. Spine J 2016; 16(11): 1305-8.
[http://dx.doi.org/10.1016/j.spinee.2016.06.013] [PMID: 27349628]
[52]
Grieff AN, Ghobrial GM, Jallo J. Use of liposomal bupivacaine in the postoperative management of posterior spinal decompression. J Neurosurg Spine 2016; 25(1): 88-93.
[http://dx.doi.org/10.3171/2015.11.SPINE15957] [PMID: 26943250]
[53]
Brown L, Weir T, Shasti M, et al. The efficacy of liposomal bupivacaine in lumbar spine surgery. Int J Spine Surg 2018; 12(4): 434-40.
[http://dx.doi.org/10.14444/5052] [PMID: 30276103]
[54]
da Silva CMG, Franz-Montan M, Limia CEG, et al. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient) liposomal system promotes extended anesthesia time. PLoS One 2017; 12(10)e0185828
[http://dx.doi.org/10.1371/journal.pone.0185828] [PMID: [ 28982145]
[55]
Fran-Montan M, Motta CDCB, de Paula E, et al. Pharmacokinetic profile of liposome-encapsulated ropivacaine after maxillary infiltration anaesthesia. J Braz Chem Soc 2010; 21(10): 1945-51.
[http://dx.doi.org/10.1590/S0103-50532010001000021]
[56]
Clivatti J, Sakata RK, Issy AM. Review of the use of gabapentin in the control of postoperative pain. Rev Bras Anestesiol 2009; 59(1): 87-98.
[http://dx.doi.org/10.1590/S0034-70942009000100012] [PMID: 19374220]
[57]
Khurana G, Jindal P, Sharma JP, Bansal KK. Postoperative pain and long-term functional outcome after administration of gabapentin and pregabalin in patients undergoing spinal surgery. Spine 2014; 39(6): E363-8.
[http://dx.doi.org/10.1097/BRS.0000000000000185] [PMID: 24384657]
[58]
Han C, Li X-D, Jiang H-Q, Ma J-X, Ma X-L. The use of gabapentin in the management of postoperative pain after total knee arthroplasty: A PRISMA-compliant meta-analysis of randomized controlled trials. Medicine (Baltimore) 2016; 95(23)e3883
[http://dx.doi.org/10.1097/MD.0000000000003883] [PMID: [27281103]
[59]
Pandey CK, Navkar DV, Giri PJ, Raza M, Behari S, Singh RB, et al. Evaluation of the optimal preemptive dose of gabapentin for post-operative pain relief after lumbar discectomy. J Neurosurg Anesthesiol 2005; 17: 65-8.
[http://dx.doi.org/10.1097/01.ana.0000151407.62650.51] [PMID: 15840990]
[60]
Khan ZH, Rahimi M, Makarem J, Khan RH. Optimal dose of pre-incision/post-incision gabapentin for pain relief following lumbar laminectomy: A randomized study. Acta Anaesthesiol Scand 2011; 55(3): 306-12.
[http://dx.doi.org/10.1111/j.1399-6576.2010.02377.x] [PMID: 21288211]
[61]
Mathiesen O, Moiniche S, Dahl JB. Gabapentin and postoperative pain: A qualitative and quantitative systematic review, with focus on procedure. BMC Anesthesiol 2007; 7.
[http://dx.doi.org/10.1186/1471-2253-7-6]
[62]
Kong VK, Irwin MG. Gabapentin: A multimodal perioperative drug? Br J Anaesth 2007; 99(6): 775-86.
[http://dx.doi.org/10.1093/bja/aem316] [PMID: 18006529]
[63]
Liu B, Liu R, Wang L. A meta-analysis of the preoperative use of gabapentinoids for the treatment of acute postoperative pain following spinal surgery. Medicine (Baltimore) 2017; 96(37)e8031
[http://dx.doi.org/10.1097/MD.0000000000008031] [PMID: [ 28906391]
[64]
Khurana G, Jindal P, Sharma JP, Bansal KK. Postoperative pain and long-term functional outcome after administration of gabapentin and pregabalin in patients undergoing spinal surgery. Spine 2014; 39(6): E363-8.
[http://dx.doi.org/10.1097/BRS.0000000000000185] [PMID: 24384657]
[65]
Urban MK, Labib KM, Reid SC, et al. Pregabalin did not improve pain management after spinal fusions. HSS J 2018; 14(1): 41-6.
[http://dx.doi.org/10.1007/s11420-017-9584-2] [PMID: 29398993]
[66]
Berde CB, Strichartz GR. Local anesthetics.Miller’s Anesthesia 7th ed Philadelphia, Pa: Elsevier, Churchill Livingstone. 2009.
[67]
Katzung BG, White PF. Local anesthetics.Basic and Clinical Pharmacology 11th ed New York, NY: McGraw-Hill Companies Inc. 2009.
[68]
Becker DE, Reed KL. Local anesthetics: Review of pharmacological considerations. Anesth Prog 2012; 59(2): 90-101.
[http://dx.doi.org/10.2344/0003-3006-59.2.90] [PMID: 22822998]
[69]
Pai A, Heining M. Ketamine. Contin Educ Anaesth Crit Care Pain 2007; 7(2): 59-63.
[http://dx.doi.org/10.1093/bjaceaccp/mkm008]
[70]
Niesters M, Martini C, Dahan A. Ketamine for chronic pain: Risks and benefits. Br J Clin Pharmacol 2014; 77(2): 357-67.
[http://dx.doi.org/10.1111/bcp.12094] [PMID: 23432384]
[71]
Zanos P, Moaddel R, Morris PJ, et al. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharmacol Rev 2018; 70(3): 621-60.
[http://dx.doi.org/10.1124/pr.117.015198] [PMID: 29945898]
[72]
Miyasaka M, Domino EF. Neural mechanisms of ketamine-induced anesthesia. Int J Neuropharmacol 1968; 7(6): 557-73.
[http://dx.doi.org/10.1016/0028-3908(68)90067-1] [PMID: 5753175]
[73]
Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth 2011; 58(10): 911-23.
[http://dx.doi.org/10.1007/s12630-011-9560-0] [PMID: 21773855]
[74]
Mion G, Villevieille T. Ketamine pharmacology: An update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 2013; 19(6): 370-80.
[http://dx.doi.org/10.1111/cns.12099] [PMID: 23575437]
[75]
Sifonios AN, Le V, Eloy JD, Radvansky BM, Shah K, Parikh A. Role of ketmina in acute post-operative pain management - a narrative review. BioMed Res Int 2015; 2015749837
[76]
Jonkman K, Dahan A, van de Donk T, Aarts L, Niesters M, van Velzen M. Ketamine for pain. F1000 Res 2017; 6: 1711.
[http://dx.doi.org/10.12688/f1000research.11372.1] [PMID: 28979762]
[77]
Ossipov MH, Dussor GOPF, Porreca F. Central modulation of pain. J Clin Invest 2010; 120(11): 3779-87.
[http://dx.doi.org/10.1172/JCI43766] [PMID: 21041960]
[78]
Nielsen RV, Siegel H, Fomsgaard JS, et al. Preoperative dexamethasone reduces acute but not sustained pain after lumbar disk surgery: A randomized, blinded, placebo-controlled trial. Pain 2015; 156(12): 2538-44.
[http://dx.doi.org/10.1097/j.pain.0000000000000326] [PMID: 26270586]
[79]
Furfari A, Wan BA, Ding K, et al. Genetic biomarkers associated with pain flare and dexamethasone response following palliative radiotherapy in patients with painful bone metastases. Ann Palliat Med 2017; 6(Suppl. 2): S240-7.
[http://dx.doi.org/10.21037/apm.2017.09.04] [PMID: 29156912]
[80]
Waldron NH, Jones CA, Gan TJH, Allen TK, Habib AS. Impact of perioperative dexamethasone on postoperative analgesia and side-effects: Systematic review and meta-analysis. Br J Anaesth 2013; 110(2): 191-200.
[http://dx.doi.org/10.1093/bja/aes431] [PMID: 23220857]
[81]
Khan ZP, Ferguson CN, Jones RM. alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 1999; 54(2): 146-65.
[http://dx.doi.org/10.1046/j.1365-2044.1999.00659.x] [PMID: 10215710]
[82]
Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin Pharmacokinet 2017; 56(8): 893-913.
[http://dx.doi.org/10.1007/s40262-017-0507-7] [PMID: 28105598]
[83]
Ertler RAG, Rown HCLB. Itchell DOHM IE 1999.
[84]
Emelife PI, Eng MR, Menard BL, et al. Adjunct medications for peripheral and neuraxial anesthesia. Best Pract Res Clin Anaesthesiol 2018; 32(2): 83-99.
[http://dx.doi.org/10.1016/j.bpa.2018.06.011] [PMID: 30322466]
[85]
Lin N, Vutskits L, Bebawy JF, Gelb AW. Perspectives on Dexmedetomidine Use for Neurosurgical Patients. J Neurosurg Anesthesiol 2018; 00(00): 1.
[http://dx.doi.org/10.1097/ANA.0000000000000554] [PMID: 30363004]
[86]
Giovannitti JA Jr, Thoms SM, Crawford JJ. Alpha-2 adrenergic receptor agonists: A review of current clinical applications. Anesth Prog 2015; 62(1): 31-9.
[http://dx.doi.org/10.2344/0003-3006-62.1.31] [PMID: 25849473]
[87]
Brown EN, Pavone KJ, Naranjo M. Multimodal General Anesthesia: Theory and Practice. Anesth Analg 2018; 127(5): 1246-58.
[http://dx.doi.org/10.1213/ANE.0000000000003668] [PMID: 30252709]
[88]
Chan AKM, Cheung CW, Chong YK. Alpha-2 agonists in acute pain management. Expert Opin Pharmacother 2010; 11(17): 2849-68.
[http://dx.doi.org/10.1517/14656566.2010.511613] [PMID: 20707597]
[89]
Hetta DF, Fares KM, Abedalmohsen AM, Abdel-Wahab AH, Elfadl GMA, Ali WN. Epidural dexmedetomidine infusion for perioperative analgesia in patients undergoing abdominal cancer surgery: Randomized trial. J Pain Res 2018; 11: 2675-85.
[http://dx.doi.org/10.2147/JPR.S163975] [PMID: 30464585]
[90]
Wang L, Shen J, Ge L, et al. Dexmedetomidine for craniotomy under general anesthesia: A systematic review and meta-analysis of randomized clinical trials. J Clin Anesth 2019; 54(54): 114-25.
[http://dx.doi.org/10.1016/j.jclinane.2018.11.001] [PMID: 30445412]
[91]
Miao S, Shi M, Zou L, Wang G. Effect of intrathecal dexmedetomidine on preventing shivering in cesarean section after spinal anesthesia : A meta-analysis and trial sequential analysis 2018; 12:: 3775-83.
[92]
Ng KT, Shubash CJ, Chong JS. The effect of dexmedetomidine on delirium and agitation in patients in intensive care: Systematic review and meta-analysis with trial sequential analysis. Anaesthesia 2019; 74(3): 380-92.
[http://dx.doi.org/10.1111/anae.14472] [PMID: [ 30367689]
[93]
Nguyen V, Tiemann D, Park E, Salehi A. Alpha-2 Agonists. Anesthesiol Clin 2017; 35(2): 233-45.
[http://dx.doi.org/10.1016/j.anclin.2017.01.009]
[94]
Khan ZP, Ferguson CN, Jones RM. alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 1999; 54(2): 146-65.
[http://dx.doi.org/10.1046/j.1365-2044.1999.00659.x] [PMID: 10215710]
[95]
Chan AKM, Cheung CW, Chong YK. Alpha-2 agonists in acute pain management. Expert Opin Pharmacother 2010; 11(17): 2849-68.
[http://dx.doi.org/10.1517/14656566.2010.511613] [PMID: 20707597]
[96]
Aley KO, Levine JD. Multiple receptors involved in peripheral alpha 2, mu, and A1 antinociception, tolerance, and withdrawal. J Neurosci 1997; 17(2): 735-44.
[http://dx.doi.org/10.1523/JNEUROSCI.17-02-00735.1997] [PMID: 8987795]
[97]
Giovannitti JA Jr, Thoms SM, Crawford JJ. Alpha-2 adrenergic receptor agonists: A review of current clinical applications. Anesth Prog 2015; 62(1): 31-9.
[http://dx.doi.org/10.2344/0003-3006-62.1.31] [PMID: 25849473]
[98]
Sahinovic MM, Struys MMRF, Absalom AR. Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clin Pharmacokinet 2018; 57(12): 1539-58.
[http://dx.doi.org/10.1007/s40262-018-0672-3] [PMID: 30019172]
[99]
Phillips WJ, Currier BL. Analgesic pharmacology: II. Specific analgesics. J Am Acad Orthop Surg 2004; 12(4): 221-33.
[http://dx.doi.org/10.5435/00124635-200407000-00003] [PMID: 15473674]
[100]
Engelman E, Marsala C. Efficacy of adding clonidine to intrathecal morphine in acute postoperative pain: Meta-analysis. Br J Anaesth 2013; 110(1): 21-7.
[http://dx.doi.org/10.1093/bja/aes344] [PMID: 23002167]
[101]
Herroeder S, Schönherr ME, De Hert SG, Hollmann MW. Magnesium-essentials for anesthesiologists. Anesthesiology 2011; 114(4): 971-93.
[102]
Czarnetzki C, Lysakowski C, Elia N, Tramèr MR. Time course of rocuronium-induced neuromuscular block after pre-treatment with magnesium sulphate: A randomised study. Acta Anaesthesiol Scand 2010; 54(3): 299-306.
[http://dx.doi.org/10.1111/j.1399-6576.2009.02160.x] [PMID: 19919585]
[103]
Koinig H, Wallner T, Marhofer P, Andel H, Hörauf K, Mayer N. Magnesium sulfate reduces intra- and postoperative analgesic requirements. Anesth Analg 1998; 87(1): 206-10.
[PMID: 9661575]
[104]
Garthwaite G, Garthwaite J. Receptor-linked ionic channels mediate N-methyl-D-aspartate neurotoxicity in rat cerebellar slices. Neurosci Lett 1987; 83(3): 241-6.
[http://dx.doi.org/10.1016/0304-3940(87)90093-0] [PMID: 2450312]
[105]
Feria M, Abad F, Sánchez A, Abreu P. Magnesium sulphate injected subcutaneously suppresses autotomy in peripherally deafferented rats. Pain 1993; 53(3): 287-93.
[http://dx.doi.org/10.1016/0304-3959(93)90225-E] [PMID: 8351158]
[106]
Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991; 44(3): 293-9.
[http://dx.doi.org/10.1016/0304-3959(91)90100-C] [PMID: 1828878]
[107]
Kara H, Sahin N, Ulusan V, Aydogdu T. Magnesium infusion reduces perioperative pain. Eur J Anaesthesiol 2002; 19(1): 52-6.
[http://dx.doi.org/10.1097/00003643-200201000-00008] [PMID: 11913804]
[108]
Levaux Ch, Bonhomme V, Dewandre PY, Brichant JF, Hans P. Effect of intra-operative magnesium sulphate on pain relief and patient comfort after major lumbar orthopaedic surgery. Anaesthesia 2003; 58(2): 131-5.
[http://dx.doi.org/10.1046/j.1365-2044.2003.02999.x] [PMID: 12562408]
[109]
Do SH. Magnesium: A versatile drug for anesthesiologists. Korean J Anesthesiol 2013; 65(1): 4-8.
[http://dx.doi.org/10.4097/kjae.2013.65.1.4] [PMID: 23904932]
[110]
Ryu JH, Sohn IS, Do SH. Controlled hypotension for middle ear surgery: A comparison between remifentanil and magnesium sulphate. Br J Anaesth 2009; 103(4): 490-5.
[http://dx.doi.org/10.1093/bja/aep229] [PMID: 19687032]
[111]
Tramèr MR, Glynn CJ. An evaluation of a single dose of magnesium to supplement analgesia after ambulatory surgery: Randomized controlled trial. Anesth Analg 2007; 104(6): 1374-9.
[http://dx.doi.org/10.1213/01.ane.0000263416.14948.dc] [PMID: 17513629]
[112]
Ryu JH, Kang MH, Park KS, Do SH. Effects of magnesium sulphate on intraoperative anaesthetic requirements and postoperative analgesia in gynaecology patients receiving total intravenous anaesthesia. Br J Anaesth 2008; 100(3): 397-403.
[http://dx.doi.org/10.1093/bja/aem407] [PMID: 18276652]
[113]
Apfel CC, Kranke P, Katz MH, et al. Volatile anaesthetics may be the main cause of early but not delayed postoperative vomiting: A randomized controlled trial of factorial design. Br J Anaesth 2002; 88(5): 659-68.
[http://dx.doi.org/10.1093/bja/88.5.659] [PMID: 12067003]
[114]
Seyhan TO, Tugrul M, Sungur MO, et al. Effects of three different dose regimens of magnesium on propofol requirements, haemodynamic variables and postoperative pain relief in gynaecological surgery. Br J Anaesth 2006; 96(2): 247-52.
[http://dx.doi.org/10.1093/bja/aei291] [PMID: 16311277]
[115]
James MF, Beer RE, Esser JD. Intravenous magnesium sulfate inhibits catecholamine release associated with tracheal intubation. Anesth Analg 1989; 68(6): 772-6.
[http://dx.doi.org/10.1213/00000539-198906000-00015] [PMID: 2735543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy