Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Biochemometrics and Required Tools in Botanical Natural Products Research: A Review

Author(s): Kevin M. Wyss, Graham C. Llivina and Angela I. Calderón*

Volume 22, Issue 5, 2019

Page: [290 - 306] Pages: 17

DOI: 10.2174/1386207322666190704094003

Price: $65

Abstract

This review serves to highlight the role of chemometrics and biochemometrics in recent literature as well as including a perspective on the current state of the field, as well as the future needs and possible directions. Specifically examining the analytical methods and statistical tools that are available to chemists, current applications of QTOF-MS, Orbitrap-MS, LC with PDA/UV detectors, NMR, and IMS coupled MS are detailed. Of specific interest, these techniques can be applied to botanical dietary supplement quality, efficacy, and safety. Application in natural products drug discovery, industrial quality control, experimental design, and more are also discussed.

Keywords: Chemometrics, biochemometrics, botanical dietary supplements, natural products, phytochemicals, massspectrometry.

[1]
Yi, L.; Dong, N.; Yun, Y.; Deng, B.; Ren, D.; Liu, S.; Liang, Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal. Chim. Acta, 2016, 914, 17-34. [http://dx.doi.org/10.1016/j.aca.2016.02.001]. [PMID: 26965324].
[2]
Liu, S.; Liang, Y.Z.; Liu, H.T. Chemometrics applied to quality control and metabolomics for traditional Chinese medicines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1015-1016, 82-91. [http://dx.doi.org/10.1016/j.jchromb.2016.02.011]. [PMID: 26901849].
[3]
Rupert, J.; Righetti, L.; Stranska-Zachariasova, M.; Dzuman, Z.; Chrpova, J.; Dall’Asta, C. Hajslova. J. Food Chem, 2017, 224, 423-431. [http://dx.doi.org/10.1016/j.foodchem.2016.11.132]. [PMID: 28159289].
[4]
Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in metabolomics--a review in human disease diagnosis. Anal. Chim. Acta, 2010, 659(1-2), 23-33. [http://dx.doi.org/10.1016/j.aca.2009.11.042]. [PMID: 20103103].
[5]
Roberts, J.J.; Cozzolino, D. An overview on the application of chemometrics in food science and technology- An approach to quantitative data analysis. Food Anal. Methods, 2016, 9, 3528. [http://dx.doi.org/10.1007/s12161-016-0574-7].
[6]
Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: an innovative technique in food supplement quality control. J. Food Sci. Technol., 2016, 53(2), 1071-1083. [http://dx.doi.org/10.1007/s13197-015-2115-6]. [PMID: 27162387].
[7]
Oliveri, P.; Simonetti, R. Chemometrics for food authenticity applications. Advances in food authenticity testing; Woodhead Publishing, 2016, pp. 701-728. [http://dx.doi.org/10.1016/B978-0-08-100220-9.00025-4]
[8]
Granato, D.; Putnik, P.; Kovacevic, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Gomes Da Cruz, A. Trends in chemometrics: food authentication, microbiology, and effects of processing. Comp. Rev. Food Sci, 2018, 17(3), 663-677. [http://dx.doi.org/10.1111/1541-4337.12341].
[9]
Castro-Puyana, M.; Perez-Miguez, R.; Montero, L.; Herrero, M. Application of mass spectrometry-based metabolomics approaches for food safety, quality, and traceability. Trends Analyt. Chem., 2017, 93, 102-118. [http://dx.doi.org/10.1016/j.trac.2017.05.004].
[10]
Singh, I.; Juneja, P.; Kaur, B.; Kumar, P. pharmaceutical applications of chemometric techniques. ISRN Anal. Chem, 2013, 2013, 13. [http://dx.doi.org/10.1155/2013/795178].
[11]
Miller, C.E. The use of chemometric techniques in process analytical method development and operation. Chemom. Intell. Lab. Syst., 1995, 30(1), 11-22. [http://dx.doi.org/10.1016/0169-7439(95)00026-7].
[12]
Pederssn, D.K.; Engelsen, S.B. monitoring industrial food processes using spectroscopy & chemometrics. New Food, 2001, 2, 9-13.
[13]
Jong, S.D. Chemometrical applications in an industrial food research laboratory. Mikrochim. Acta, 1991, 104(3), 93-101. [http://dx.doi.org/10.1007/BF01245500].
[14]
Scotti, M.T.; Scotti, L. Editorial: chemometrics in drug discovery. Comb. Chem. High Throughput Screen., 2015, 18(8), 702-703. [http://dx.doi.org/10.2174/138620731808150904121214]. [PMID: 26362030].
[15]
Pawar, H.A.; Kamat, S.R. chemometrics and its application in pharmaceutical field. J. Phys. Chem. Biophys., 2014, 4(6), 169. [http://dx.doi.org/10.4172/21610398.1000169].
[16]
Mocak, J. chemometrics in medicine and pharmacy. Nova Biotech. Et Chimica, 2012, 11(1), 11-26. [http://dx.doi.org/10.2478/v10296-012-0002-3].
[17]
Bansal, A.; Chhabra, V.; Rawal, R.K.; Sharma, S. Chemometrics: A new scenario in herbal drug standardization. J. Pharm. Anal., 2014, 4(4), 223-233. [http://dx.doi.org/10.1016/j.jpha.2013.12.001]. [PMID: 29403886].
[18]
Fujimura, Y.; Kawano, C.; Maeda-Murayama, A.; Nakamura, A.; Koike-Miki, A.; Yukihira, D.; Hayakawa, E.; Ishii, T.; Tachibana, H.; Wariishi, H.; Miura, D. A Chemometrics-driven strategy for the bioactivity evaluation of complex multicomponent systems and the effective selection of bioactivity-predictive chemical combinations. Sci. Rep., 2017, 7(1), 2257. [http://dx.doi.org/10.1038/s41598-017-02499-1]. [PMID: 28536476].
[19]
Kvalheim, O.M.; Chan, H.; Benzie, I.F.F.; Szeto, Y.; Hing-chung, A.; Chau, F. Chromatographic profiling and multivariate analysis for screening and quantifying the contributions from individual components to the bioactive signature in natural products. Chemom. Intell. Lab. Syst., 2011, 107(1), 98-105. [http://dx.doi.org/10.1016/j.chemolab.2011.02.002].
[20]
Jović, O.; Smolić, T.; Primožič, I.; Hrenar, T. spectroscopic and chemometric analysis of binary and ternary edible oil mixtures: qualitative and quantitative study. Anal. Chem., 2016, 88(8), 4516-4524. [http://dx.doi.org/10.1021/acs.analchem.6b00505]. [PMID: 26971405].
[21]
Kellogg, J.J.; Todd, D.A.; Egan, J.M.; Raja, H.A.; Oberlies, N.H.; Kvalheim, O.M.; Cech, N.B. biochemometrics for natural products research: comparison of data analysis approaches and application to identification of bioactive compounds. J. Nat. Prod., 2016, 79(2), 376-386. [http://dx.doi.org/10.1021/acs.jnatprod.5b01014]. [PMID: 26841051].
[22]
Britton, E.R.; Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Biochemometrics to identify synergists and additives from botanical medicines: A case study with hydrastis canadensis (Goldenseal). J. Nat. Prod., 2018, 81(3), 484-493. [http://dx.doi.org/10.1021/acs.jnatprod.7b00654]. [PMID: 29091439].
[23]
Strömstedt, A.A.; Felth, J.; Bohlin, L. Bioassays in natural product research - strategies and methods in the search for anti-inflammatory and antimicrobial activity. Phytochem. Anal., 2014, 25(1), 13-28. [http://dx.doi.org/10.1002/pca.2468]. [PMID: 24019222].
[24]
Qiu, F.; Cai, G.; Jaki, B.U.; Lankin, D.C.; Franzblau, S.G.; Pauli, G.F. Quantitative purity-activity relationships of natural products: the case of anti-tuberculosis active triterpenes from Oplopanax horridus. J. Nat. Prod., 2013, 76(3), 413-419. [http://dx.doi.org/10.1021/np3007809]. [PMID: 23356207].
[25]
Zhu, J. Fan, X; Cheng, Y; Agarwail, R; Moore, C.M.V; Chen, S.T; Tong, W. chemometric anALYSIS for identification of botanical raw materials for pharmaceutical use: A case study using panax notoginseng. PLoS One, 2013.
[26]
Simmler, C.; Graham, J.G.; Chen, S.N.; Pauli, G.F. Integrated analytical assests aid botanical authenticity and adulteration management. Fitoterapia, 2017, 129, 401-414.
[27]
Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: an innovative technique in food supplement quality control. J. Food Sci. Technol., 2016, 53(2), 1071-1083. [http://dx.doi.org/10.1007/s13197-015-2115-6]. [PMID: 27162387].
[28]
Ronowicz, J.; Kupcewicz, B.; Budzisz, E. Chemometric analysis of antioxidant properties of herbal products containing Ginkgo biloba extract. Cent. Eur. J. Biol., 2013, 8(4), 374-385.
[29]
Brown, P.N.; Lister, P. Current initiatives for the validation of analytical methods for botanicals. Curr. Opin. Biotechnol., 2014, 25, 124-128. [http://dx.doi.org/10.1016/j.copbio.2013.10.003]. [PMID: 24484890].
[30]
Khan, H.; Ali, J. UHPLC/Q-TOF-MS Technique: Introduction and applications. Lett. Org. Chem., 2015, 12(6), 371-378. [http://dx.doi.org/10.2174/1570178612666150331204147].
[31]
Xie, C.; Zhong, D.; Yu, K.; Chen, X. Recent advances in metabolite identification and quantitative bioanalysis by LC-Q-TOF MS. Bioanalysis, 2012, 4(8), 937-959. [http://dx.doi.org/10.4155/bio.12.43]. [PMID: 22533568].
[32]
Ferrer, I.; Thurman, E.M. Measuring the mass of an electron by LC/TOF-MS: a study of “twin ions”. Anal. Chem., 2005, 77(10), 3394-3400. [http://dx.doi.org/10.1021/ac0485942]. [PMID: 15889935].
[33]
Jandrić, Z Cannavan, A An investigative study on differentiation of citrus fruit/fruit juices by UPLC-QToF MS and chemometrics. Food Control., 2017, 72(B), 173-180.
[34]
da Silva, G.S.; Canuto, K.M.; Ribeiro, P.R.V.; de Brito, E.S.; Nascimento, M.M.; Zocolo, G.J.; Coutinho, J.P.; de Jesus, R.M. Chemical profiling of guarana seeds (Paullinia cupana) from different geographical origins using UPLC-QTOF-MS combined with chemometrics. Food Res. Int., 2017, 102, 700-709. [http://dx.doi.org/10.1016/j.foodres.2017.09.055]. [PMID: 29196003].
[35]
Farag, M.A.; Ezzat, S.M.; Salama, M.M.; Tadros, M.G. Anti-acetylcholinesterase potential and metabolome classification of 4 Ocimum species as determined via UPLC/qTOF/MS and chemometric tools. J. Pharm. Biomed. Anal., 2016, 125, 292-302. [http://dx.doi.org/10.1016/j.jpba.2016.03.037]. [PMID: 27061877].
[36]
Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Ghisoni, S.; Baccolo, G.; Blasi, F.; Montesano, D.; Trevisan, M.; Luchini, L. UHPLC-ESI-QTOF-MS profile of polyphenols in Goji berries (Lycium barbarum L.) and its dynamics during in vitro gastrointestinal digestion and fermentation. J. Funct. Foods, 2018, 40, 564-572. [http://dx.doi.org/10.1016/j.jff.2017.11.042].
[37]
Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol., 2018, 72, 83-90. [http://dx.doi.org/10.1016/j.tifs.2017.12.006].
[38]
Yang, J.; Wen, H.; Zhang, L.; Zhang, X.; Fu, Z.; Li, J. The influence of ripening stage and region on the chemical compounds in mulberry fruits (Morus atropurpurea Roxb.) based on UPLC-QTOF-MS. Food Res. Int., 2017, 100(Pt 2), 159-165. [http://dx.doi.org/10.1016/j.foodres.2017.08.023]. [PMID: 28888436].
[39]
Ghisoni, S.; Chiodelli, G.; Rocchetti, G.; Kane, D.; Lucini, L. UHPLC-ESI-QTOF-MS screening of lignans and other phenolics in dry seeds for human consumption. J. Funct. Foods, 2017, 34, 229-236. [http://dx.doi.org/10.1016/j.jff.2017.04.037].
[40]
Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Investigating the organic and conventional production type of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using chemical similarity and advanced chemometrics. Anal. Bioanal. Chem., 2017, 409(23), 5413-5426. [http://dx.doi.org/10.1007/s00216-017-0395-6]. [PMID: 28540463].
[41]
Hoffmann, J.F.; Carvalho, I.R.; Barbieri, R.L.; Rombaldi, C.V.; Chaves, F.C. Butia spp. (Arecaceae) LC-MS-Based metabolomics for species and geographical origin discrimination. J. Agric. Food Chem., 2017, 65(2), 523-532. [http://dx.doi.org/10.1021/acs.jafc.6b03203]. [PMID: 27984853].
[42]
Ni, Y.; Peng, Y.; Kokot, S. Fingerprint analysis of eucommia bark by LC-DAD and LC-MS with the aid of chemometrics. Chromatographia, 2009, 67(3), 211-217.
[43]
Cichon, M.J.; Riedl, K.M.; Schwartz, S.J. A metabolomic evaluation of the phytochemical composition of tomato juices being used in human clinical trials. Food Chem., 2017, 228, 270-278. [http://dx.doi.org/10.1016/j.foodchem.2017.01.118]. [PMID: 28317724].
[44]
Chan, K.M.; Yue, G.G.; Li, P.; Wong, E.C.; Lee, J.K.; Kennelly, E.J.; Lau, C.B. Screening and analysis of potential anti-tumor components from the stipe of Ganoderma sinense using high-performance liquid chromatography/time-of-flight mass spectrometry with multivariate statistical tool. J. Chromatogr. A, 2017, 1487, 162-167. [http://dx.doi.org/10.1016/j.chroma.2017.01.044]. [PMID: 28143662].
[45]
Huang, W.P.; Tan, T.; Li, Z.F.; OuYang, H.; Xu, X.; Zhou, B.; Feng, Y.L. Structural characterization and discrimination of Chimonanthus nitens Oliv. leaf from different geographical origins based on multiple chromatographic analysis combined with chemometric methods. J. Pharm. Biomed. Anal., 2018, 154, 236-244. [http://dx.doi.org/10.1016/j.jpba.2018.02.020]. [PMID: 29558724].
[46]
Liu, Y.; Li, L.; Xiao, Y.Q.; Yao, J.Q.; Li, P.Y.; Yu, D.R.; Ma, Y.L. Global metabolite profiling and diagnostic ion filtering strategy by LC-QTOF MS for rapid identification of raw and processed pieces of Rheum palmatum L. Food Chem., 2016, 192, 531-540. [http://dx.doi.org/10.1016/j.foodchem.2015.07.013]. [PMID: 26304381].
[47]
Dai, W.; Xie, D.; Lu, M.; Li, P.; Lv, H.; Yang, C.; Peng, Q.; Zhu, Y.; Guo, L.; Zhang, Y.; Tan, J.; Lin, Z. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Res. Int., 2017, 96, 40-45. [http://dx.doi.org/10.1016/j.foodres.2017.03.028]. [PMID: 28528106].
[48]
Yang, W.; Qiao, X.; Li, K.; Fan, J.; Bo, T.; Guo, D.A.; Ye, M. Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm. Sin. B, 2016, 6(6), 568-575. [http://dx.doi.org/10.1016/j.apsb.2016.05.005]. [PMID: 27818924].
[49]
Wang, F.; Wang, B.; Wang, L.; Xiong, Z.Y.; Gao, W.; Li, P.; Li, H.J. Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study. J. Pharm. Biomed. Anal., 2017, 138, 70-79. [http://dx.doi.org/10.1016/j.jpba.2017.02.004]. [PMID: 28189048].
[50]
He, M.; Wu, H.; Nie, J.; Yan, P.; Yang, T.B.; Yang, Z.Y.; Pei, R. Accurate recognition and feature qualify for flavonoid extracts from Liang-wai Gan Cao by liquid chromatography-high resolution-mass spectrometry and computational MS/MS fragmentation. J. Pharm. Biomed. Anal., 2017, 146, 37-47. [http://dx.doi.org/10.1016/j.jpba.2017.07.065]. [PMID: 28850862].
[51]
Zubarev, R.A.; Makarov, A. Orbitrap mass spectrometry. Anal. Chem., 2013, 85(11), 5288-5296. [http://dx.doi.org/10.1021/ac4001223]. [PMID: 23590404].
[52]
Perry, R.H.; Cooks, R.G.; Noll, R.J. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev., 2008, 27(6), 661-699. [http://dx.doi.org/10.1002/mas.20186]. [PMID: 18683895].
[53]
Eliuk, S.; Makarov, A. Evolution of orbitrap mass spectrometry instrumentation. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2015, 8, 61-80. [http://dx.doi.org/10.1146/annurev-anchem-071114-040325]. [PMID: 26161972].
[54]
Castro-Puyana, M.; Perez-Miguez, R.; Montero, L.; Herrero, M. Application of mass spectrometry-based metabolomics approaches for food safety, quality, and traceability. Trends Analyt. Chem., 2017, 93, 102-118. [http://dx.doi.org/10.1016/j.trac.2017.05.004].
[55]
Farré, M.; Picó, Y.; Barceló, D. Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues. J. Chromatogr. A, 2014, 1328, 66-79. [http://dx.doi.org/10.1016/j.chroma.2013.12.082]. [PMID: 24438835].
[56]
La Barbera, G.; Capriotti, A.L.; Cavaliere, C.; Montone, C.M.; Piovesana, S.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res. Int., 2017, 100(Pt 1), 28-52. [http://dx.doi.org/10.1016/j.foodres.2017.07.080]. [PMID: 28873689].
[57]
Lucci, P.; Saurina, J.; Nuñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. Trends Analyt. Chem., 2017, 88, 1-24. [http://dx.doi.org/10.1016/j.trac.2016.12.006].
[58]
Chen, M.L.; Chang, W.Q.; Zhou, J.L.; Yin, Y.H.; Xia, W.R.; Liu, J.Q.; Liu, L.F.; Xin, G.Z. Comparison of three officinal species of Callicarpa based on a biochemome profiling strategy with UHPLC-IT-MS and chemometrics analysis. J. Pharm. Biomed. Anal., 2017, 145, 666-674. [http://dx.doi.org/10.1016/j.jpba.2017.07.054]. [PMID: 28800528].
[59]
Yang, Y.; Peng, Y.; Chang, Q.; Dan, C.; Guo, W.; Wang, Y. Selective identification of organic iodine compounds using liquid chromatography-high resolution mass spectrometry. Anal. Chem., 2016, 88(2), 1275-1280. [http://dx.doi.org/10.1021/acs.analchem.5b03694]. [PMID: 26653564].
[60]
Cottet, K.; Kouloura, E.; Kritsanida, M.; Wansi, J.D.; Odonne, G.; Michel, S.; Halabalaki, M.; Lallemand, M.C. Comparative metabolomic study between African and Amazonian Symphonia globulifera by tandem LC-HRMS. Phytochem. Lett., 2017, 20, 309-315. [http://dx.doi.org/10.1016/j.phytol.2017.01.012].
[61]
Taylor, T. Important aspects of UV detection for HPLC. LC GC N. Am., 2015, 33(11), 870-872.
[62]
Craig, A.P.; Fields, C.; Liang, N.; Kitts, D.; Erickson, A. Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts. Talanta, 2016, 154, 481-485. [http://dx.doi.org/10.1016/j.talanta.2016.03.101]. [PMID: 27154703].
[63]
Dong, M.W.; Guillarme, D. Newer developments in HPLC impacting pharmaceutical analysis: a brief review. Am. Pharmaceut. Rev., 2013, 16(4), 36-43.
[64]
Li, S.L.; Song, J.Z.; Qiao, C.F.; Zhou, Y.; Xu, H.X. UPLC-PDA-TOFMS based chemical profiling approach to rapidly evaluate chemical consistency between traditional and dispensing granule decoctions of traditional medicine combinatorial formulae. J. Pharm. Biomed. Anal., 2010, 52(4), 468-478. [http://dx.doi.org/10.1016/j.jpba.2010.01.032]. [PMID: 20138455].
[65]
Pardo-Mates, N.; Vera, A.; Barbosa, S.; Hidalgo-Serrano, M.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Characterization, classification and authentication of fruit-based extracts by means of HPLC-UV chromatographic fingerprints, polyphenolic profiles and chemometric methods. Food Chem., 2017, 221, 29-38. [http://dx.doi.org/10.1016/j.foodchem.2016.10.033]. [PMID: 27979205].
[66]
Li, S.L.; Lin, G.; Tam, Y.K. Time-course accumulation of main bioactive components in the rhizome of Ligusticum chuanxiong. Planta Med., 2006, 72(3), 278-280. [http://dx.doi.org/10.1055/s-2005-916199]. [PMID: 16534738].
[67]
Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol., 2017, 43, 34-40. [http://dx.doi.org/10.1016/j.copbio.2016.08.001]. [PMID: 27580257].
[68]
Deborde, C.; Moing, A.; Roch, L.; Jacob, D.; Rolin, D.; Giraudeau, P. Plant metabolism as studied by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc., 2017, 102-103, 61-97. [http://dx.doi.org/10.1016/j.pnmrs.2017.05.001]. [PMID: 29157494].
[69]
Ludwig, C.; Viant, M.R. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem. Anal., 2010, 21(1), 22-32. [http://dx.doi.org/10.1002/pca.1186]. [PMID: 19904730].
[70]
Hedenström, M.; Wiklund-Lindström, S.; Oman, T.; Lu, F.; Gerber, L.; Schatz, P.; Sundberg, B.; Ralph, J. Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. Mol. Plant, 2009, 2(5), 933-942. [http://dx.doi.org/10.1093/mp/ssp047]. [PMID: 19825670].
[71]
Dowlatabadi, R.; Weljie, A.M.; Thorpe, T.A.; Yeung, E.C.; Vogel, H.J. Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiol. Biochem., 2009, 47(5), 343-350. [http://dx.doi.org/10.1016/j.plaphy.2008.12.023]. [PMID: 19195904].
[72]
da Graça, J.V.; Douhan, G.W.; Halbert, S.E.; Keremane, M.L.; Lee, R.F.; Vidalakis, G.; Zhao, H. Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J. Integr. Plant Biol., 2016, 58(4), 373-387. [http://dx.doi.org/10.1111/jipb.12437]. [PMID: 26466921].
[73]
Freitas, D. S.; Carlos, E.F.; Gil, M.C.S.S.; Vieira, L.G.E.; Alcantara, G.B. NMR-based metabolomic analysis of huanglongbing-asymptomatic and -symptomatic citrus trees. J. Agric. Food Chem., 2015, 63(34), 7582-7588. [http://dx.doi.org/10.1021/acs.jafc.5b03598]. [PMID: 26285838].
[74]
Jia, P.; Jin, Y.; Chen, L.; Zhang, J.; Jia, K.; Yi, M. Molecular characterization and expression analysis of mitochondrial antiviral signaling protein gene in sea perch, Lateolabrax japonicus. Dev. Comp. Immunol., 2016, 55, 188-193. [http://dx.doi.org/10.1016/j.dci.2015.10.014]. [PMID: 26493015].
[75]
D’Urso, G.; Pizza, C.; Piacente, S.; Montoro, P. Combination of LC-MS based metabolomics and antioxidant activity for evaluation of bioactive compounds in Fragaria vesca leaves from Italy. J. Pharm. Biomed. Anal., 2018, 150, 233-240. [http://dx.doi.org/10.1016/j.jpba.2017.12.005]. [PMID: 29253779].
[76]
Klein-Júnior, L.C.; Viaene, J.; Tuenter, E.; Salton, J.; Gasper, A.L.; Apers, S.; Andries, J.P.; Pieters, L.; Henriques, A.T.; Vander Heyden, Y. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: Indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A. J. Chromatogr. A, 2016, 1463, 71-80. [http://dx.doi.org/10.1016/j.chroma.2016.08.005]. [PMID: 27511709].
[77]
Spiteri, M.; Rogers, K.M.; Jamin, E.; Thomas, F.; Guyader, S.; Lees, M.; Rutledge, D.N. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Food Chem., 2017, 217, 766-772. [http://dx.doi.org/10.1016/j.foodchem.2016.09.027]. [PMID: 27664696].
[78]
Kanu, A.B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H.H. Jr Ion mobility-mass spectrometry. J. Mass Spectrom., 2008, 43(1), 1-22. [http://dx.doi.org/10.1002/jms.1383]. [PMID: 18200615].
[79]
Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst , 2015, 140(5), 1376-1390. [http://dx.doi.org/10.1039/C4AN01100G] [PMID: 25465076]
[80]
Clemmer, D.E.; Hudgins, R.R.; Jarrold, M.F. Naked protein conformations: cytochrome c in gas phase. J. Am. Soc. Mass Spectrom., 1995, 117, 10141.
[81]
Paglia, G.; Astarita, G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc., 2017, 12(4), 797-813. [http://dx.doi.org/10.1038/nprot.2017.013]. [PMID: 28301461].
[82]
Shi, X.; Yang, W.; Qiu, S.; Hou, J.; Wu, W.; Guo, D. Systematic profiling and comparison of the lipidomes from Panax ginseng, P. quinquefolius, and P. notoginseng by ultrahigh performance supercritical fluid chromatography/high-resolution mass spectrometry and ion mobility-derived collision cross section measurement. J. Chromatogr. A, 2018, 1548, 64-75. [http://dx.doi.org/10.1016/j.chroma.2018.03.025]. [PMID: 295881 00].
[83]
Garmón-Lobato, S.; Abad-García, B.; Sánchez-Ilárduya, M.B.; Romera-Fernández, M.; Berrueta, L.A.; Gallo, B.; Vicente, F. Improvement using chemometrics in ion mobility coupled to mass spectrometry as a tool for mass spectrometry fragmentation studies: flavonoid aglycone cases. Anal. Chim. Acta, 2013, 771, 56-64. [http://dx.doi.org/10.1016/j.aca.2013.01.065]. [PMID: 23522113].
[84]
Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A.V.; Meehan, M.J.; Liu, W.T.; Crüsemann, M.; Boudreau, P.D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R.D.; Pace, L.A.; Quinn, R.A.; Duncan, K.R.; Hsu, C.C.; Floros, D.J.; Gavilan, R.G.; Kleigrewe, K.; Northen, T.; Dutton, R.J.; Parrot, D.; Carlson, E.E.; Aigle, B.; Michelsen, C.F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B.T.; Gerwick, L.; Liaw, C.C.; Yang, Y.L.; Humpf, H.U.; Maansson, M.; Keyzers, R.A.; Sims, A.C.; Johnson, A.R.; Sidebottom, A.M.; Sedio, B.E.; Klitgaard, A.; Larson, C.B. P, C.A.B.; Torres-Mendoza, D.; Gonzalez, D.J.; Silva, D.B.; Marques, L.M.; Demarque, D.P.; Pociute, E.; O’Neill, E.C.; Briand, E.; Helfrich, E.J.N.; Granatosky, E.A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J.J.; Zeng, Y.; Vorholt, J.A.; Kurita, K.L.; Charusanti, P.; McPhail, K.L.; Nielsen, K.F.; Vuong, L.; Elfeki, M.; Traxler, M.F.; Engene, N.; Koyama, N.; Vining, O.B.; Baric, R.; Silva, R.R.; Mascuch, S.J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P.G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A.M.C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B.M.; Almaliti, J.; Allard, P.M.; Phapale, P.; Nothias, L.F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.L.; Kyle, J.E.; Metz, T.O.; Peryea, T.; Nguyen, D.T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K.M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P.R.; Palsson, B.O.; Pogliano, K.; Linington, R.G.; Gutiérrez, M.; Lopes, N.P.; Gerwick, W.H.; Moore, B.S.; Dorrestein, P.C.; Bandeira, N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol., 2016, 34(8), 828-837. [http://dx.doi.org/10.1038/nbt.3597]. [PMID: 27504778].
[85]
Caesar, L.K.; Kellogg, J.J.; Kvalheim, O.M.; Cech, R.A.; Cech, N.B. Integration of biochemometrics and molecular networking to identify antimicrobials in Angelica keiskei. Planta Med., 2018, 84(9-10), 721-728. [http://dx.doi.org/10.1055/a-0590-5223]. [PMID: 29571174].
[86]
Lyu, Q.; Kuo, T.H.; Sun, C.; Chen, K.; Hsu, C.C.; Li, X. Comprehensive structural characterization of phenolics in litchi pulp using tandem mass spectral molecular networking. Food Chem., 2019, 282, 9-17. [http://dx.doi.org/10.1016/j.foodchem.2019.01.001]. [PMID: 30711110].
[87]
Abbas-Mohammadi, M.; Moridi Farimani, M.; Salehi, P.; Nejad Ebrahimi, S.; Sonboli, A.; Kelso, C.; Skropeta, D. Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. J. Pharm. Biomed. Anal., 2018, 158, 471-479. [http://dx.doi.org/10.1016/j.jpba.2018.06.026]. [PMID: 29960238].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy