[1]
Yi, L.; Dong, N.; Yun, Y.; Deng, B.; Ren, D.; Liu, S.; Liang, Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal. Chim. Acta, 2016, 914, 17-34. [http://dx.doi.org/10.1016/j.aca.2016.02.001]. [PMID: 26965324].
[2]
Liu, S.; Liang, Y.Z.; Liu, H.T. Chemometrics applied to quality control and metabolomics for traditional Chinese medicines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1015-1016, 82-91. [http://dx.doi.org/10.1016/j.jchromb.2016.02.011]. [PMID: 26901849].
[3]
Rupert, J.; Righetti, L.; Stranska-Zachariasova, M.; Dzuman, Z.; Chrpova, J.; Dall’Asta, C. Hajslova. J. Food Chem, 2017, 224, 423-431. [http://dx.doi.org/10.1016/j.foodchem.2016.11.132]. [PMID: 28159289].
[4]
Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in metabolomics--a review in human disease diagnosis. Anal. Chim. Acta, 2010, 659(1-2), 23-33. [http://dx.doi.org/10.1016/j.aca.2009.11.042]. [PMID: 20103103].
[5]
Roberts, J.J.; Cozzolino, D. An overview on the application of chemometrics in food science and technology- An approach to quantitative data analysis. Food Anal. Methods, 2016, 9, 3528. [http://dx.doi.org/10.1007/s12161-016-0574-7].
[6]
Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: an innovative technique in food supplement quality control. J. Food Sci. Technol., 2016, 53(2), 1071-1083. [http://dx.doi.org/10.1007/s13197-015-2115-6]. [PMID: 27162387].
[7]
Oliveri, P.; Simonetti, R. Chemometrics for food authenticity applications. Advances in food authenticity testing; Woodhead Publishing, 2016, pp. 701-728. [http://dx.doi.org/10.1016/B978-0-08-100220-9.00025-4]
[8]
Granato, D.; Putnik, P.; Kovacevic, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Gomes Da Cruz, A. Trends in chemometrics: food authentication, microbiology, and effects of processing. Comp. Rev. Food Sci, 2018, 17(3), 663-677. [http://dx.doi.org/10.1111/1541-4337.12341].
[9]
Castro-Puyana, M.; Perez-Miguez, R.; Montero, L.; Herrero, M. Application of mass spectrometry-based metabolomics approaches for food safety, quality, and traceability. Trends Analyt. Chem., 2017, 93, 102-118. [http://dx.doi.org/10.1016/j.trac.2017.05.004].
[10]
Singh, I.; Juneja, P.; Kaur, B.; Kumar, P. pharmaceutical applications of chemometric techniques. ISRN Anal. Chem, 2013, 2013, 13. [http://dx.doi.org/10.1155/2013/795178].
[11]
Miller, C.E. The use of chemometric techniques in process analytical method development and operation. Chemom. Intell. Lab. Syst., 1995, 30(1), 11-22. [http://dx.doi.org/10.1016/0169-7439(95)00026-7].
[12]
Pederssn, D.K.; Engelsen, S.B. monitoring industrial food processes using spectroscopy & chemometrics. New Food, 2001, 2, 9-13.
[13]
Jong, S.D. Chemometrical applications in an industrial food research laboratory. Mikrochim. Acta, 1991, 104(3), 93-101. [http://dx.doi.org/10.1007/BF01245500].
[14]
Scotti, M.T.; Scotti, L. Editorial: chemometrics in drug discovery. Comb. Chem. High Throughput Screen., 2015, 18(8), 702-703. [http://dx.doi.org/10.2174/138620731808150904121214]. [PMID: 26362030].
[15]
Pawar, H.A.; Kamat, S.R. chemometrics and its application in pharmaceutical field. J. Phys. Chem. Biophys., 2014, 4(6), 169. [http://dx.doi.org/10.4172/21610398.1000169].
[16]
Mocak, J. chemometrics in medicine and pharmacy. Nova Biotech. Et Chimica, 2012, 11(1), 11-26. [http://dx.doi.org/10.2478/v10296-012-0002-3].
[17]
Bansal, A.; Chhabra, V.; Rawal, R.K.; Sharma, S. Chemometrics: A new scenario in herbal drug standardization. J. Pharm. Anal., 2014, 4(4), 223-233. [http://dx.doi.org/10.1016/j.jpha.2013.12.001]. [PMID: 29403886].
[18]
Fujimura, Y.; Kawano, C.; Maeda-Murayama, A.; Nakamura, A.; Koike-Miki, A.; Yukihira, D.; Hayakawa, E.; Ishii, T.; Tachibana, H.; Wariishi, H.; Miura, D. A Chemometrics-driven strategy for the bioactivity evaluation of complex multicomponent systems and the effective selection of bioactivity-predictive chemical combinations. Sci. Rep., 2017, 7(1), 2257. [http://dx.doi.org/10.1038/s41598-017-02499-1]. [PMID: 28536476].
[19]
Kvalheim, O.M.; Chan, H.; Benzie, I.F.F.; Szeto, Y.; Hing-chung, A.; Chau, F. Chromatographic profiling and multivariate analysis for screening and quantifying the contributions from individual components to the bioactive signature in natural products. Chemom. Intell. Lab. Syst., 2011, 107(1), 98-105. [http://dx.doi.org/10.1016/j.chemolab.2011.02.002].
[20]
Jović, O.; Smolić, T.; Primožič, I.; Hrenar, T. spectroscopic and chemometric analysis of binary and ternary edible oil mixtures: qualitative and quantitative study. Anal. Chem., 2016, 88(8), 4516-4524. [http://dx.doi.org/10.1021/acs.analchem.6b00505]. [PMID: 26971405].
[21]
Kellogg, J.J.; Todd, D.A.; Egan, J.M.; Raja, H.A.; Oberlies, N.H.; Kvalheim, O.M.; Cech, N.B. biochemometrics for natural products research: comparison of data analysis approaches and application to identification of bioactive compounds. J. Nat. Prod., 2016, 79(2), 376-386. [http://dx.doi.org/10.1021/acs.jnatprod.5b01014]. [PMID: 26841051].
[22]
Britton, E.R.; Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Biochemometrics to identify synergists and additives from botanical medicines: A case study with hydrastis canadensis (Goldenseal). J. Nat. Prod., 2018, 81(3), 484-493. [http://dx.doi.org/10.1021/acs.jnatprod.7b00654]. [PMID: 29091439].
[23]
Strömstedt, A.A.; Felth, J.; Bohlin, L. Bioassays in natural product research - strategies and methods in the search for anti-inflammatory and antimicrobial activity. Phytochem. Anal., 2014, 25(1), 13-28. [http://dx.doi.org/10.1002/pca.2468]. [PMID: 24019222].
[24]
Qiu, F.; Cai, G.; Jaki, B.U.; Lankin, D.C.; Franzblau, S.G.; Pauli, G.F. Quantitative purity-activity relationships of natural products: the case of anti-tuberculosis active triterpenes from Oplopanax horridus. J. Nat. Prod., 2013, 76(3), 413-419. [http://dx.doi.org/10.1021/np3007809]. [PMID: 23356207].
[25]
Zhu, J. Fan, X; Cheng, Y; Agarwail, R; Moore, C.M.V; Chen, S.T; Tong, W. chemometric anALYSIS for identification of botanical raw materials for pharmaceutical use: A case study using panax notoginseng. PLoS One, 2013.
[26]
Simmler, C.; Graham, J.G.; Chen, S.N.; Pauli, G.F. Integrated analytical assests aid botanical authenticity and adulteration management. Fitoterapia, 2017, 129, 401-414.
[27]
Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: an innovative technique in food supplement quality control. J. Food Sci. Technol., 2016, 53(2), 1071-1083. [http://dx.doi.org/10.1007/s13197-015-2115-6]. [PMID: 27162387].
[28]
Ronowicz, J.; Kupcewicz, B.; Budzisz, E. Chemometric analysis of antioxidant properties of herbal products containing Ginkgo biloba extract. Cent. Eur. J. Biol., 2013, 8(4), 374-385.
[29]
Brown, P.N.; Lister, P. Current initiatives for the validation of analytical methods for botanicals. Curr. Opin. Biotechnol., 2014, 25, 124-128. [http://dx.doi.org/10.1016/j.copbio.2013.10.003]. [PMID: 24484890].
[30]
Khan, H.; Ali, J. UHPLC/Q-TOF-MS Technique: Introduction and applications. Lett. Org. Chem., 2015, 12(6), 371-378. [http://dx.doi.org/10.2174/1570178612666150331204147].
[31]
Xie, C.; Zhong, D.; Yu, K.; Chen, X. Recent advances in metabolite identification and quantitative bioanalysis by LC-Q-TOF MS. Bioanalysis, 2012, 4(8), 937-959. [http://dx.doi.org/10.4155/bio.12.43]. [PMID: 22533568].
[32]
Ferrer, I.; Thurman, E.M. Measuring the mass of an electron by LC/TOF-MS: a study of “twin ions”. Anal. Chem., 2005, 77(10), 3394-3400. [http://dx.doi.org/10.1021/ac0485942]. [PMID: 15889935].
[33]
Jandrić, Z Cannavan, A An investigative study on differentiation
of citrus fruit/fruit juices by UPLC-QToF MS and chemometrics.
Food Control., 2017, 72(B), 173-180.
[34]
da Silva, G.S.; Canuto, K.M.; Ribeiro, P.R.V.; de Brito, E.S.; Nascimento, M.M.; Zocolo, G.J.; Coutinho, J.P.; de Jesus, R.M. Chemical profiling of guarana seeds (Paullinia cupana) from different geographical origins using UPLC-QTOF-MS combined with chemometrics. Food Res. Int., 2017, 102, 700-709. [http://dx.doi.org/10.1016/j.foodres.2017.09.055]. [PMID: 29196003].
[35]
Farag, M.A.; Ezzat, S.M.; Salama, M.M.; Tadros, M.G. Anti-acetylcholinesterase potential and metabolome classification of 4 Ocimum species as determined via UPLC/qTOF/MS and chemometric tools. J. Pharm. Biomed. Anal., 2016, 125, 292-302. [http://dx.doi.org/10.1016/j.jpba.2016.03.037]. [PMID: 27061877].
[36]
Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Ghisoni, S.; Baccolo, G.; Blasi, F.; Montesano, D.; Trevisan, M.; Luchini, L. UHPLC-ESI-QTOF-MS profile of polyphenols in Goji berries (Lycium barbarum L.) and its dynamics during in vitro gastrointestinal digestion and fermentation. J. Funct. Foods, 2018, 40, 564-572. [http://dx.doi.org/10.1016/j.jff.2017.11.042].
[37]
Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol., 2018, 72, 83-90. [http://dx.doi.org/10.1016/j.tifs.2017.12.006].
[38]
Yang, J.; Wen, H.; Zhang, L.; Zhang, X.; Fu, Z.; Li, J. The influence of ripening stage and region on the chemical compounds in mulberry fruits (Morus atropurpurea Roxb.) based on UPLC-QTOF-MS. Food Res. Int., 2017, 100(Pt 2), 159-165. [http://dx.doi.org/10.1016/j.foodres.2017.08.023]. [PMID: 28888436].
[39]
Ghisoni, S.; Chiodelli, G.; Rocchetti, G.; Kane, D.; Lucini, L. UHPLC-ESI-QTOF-MS screening of lignans and other phenolics in dry seeds for human consumption. J. Funct. Foods, 2017, 34, 229-236. [http://dx.doi.org/10.1016/j.jff.2017.04.037].
[40]
Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Investigating the organic and conventional production type of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using chemical similarity and advanced chemometrics. Anal. Bioanal. Chem., 2017, 409(23), 5413-5426. [http://dx.doi.org/10.1007/s00216-017-0395-6]. [PMID: 28540463].
[41]
Hoffmann, J.F.; Carvalho, I.R.; Barbieri, R.L.; Rombaldi, C.V.; Chaves, F.C. Butia spp. (Arecaceae) LC-MS-Based metabolomics for species and geographical origin discrimination. J. Agric. Food Chem., 2017, 65(2), 523-532. [http://dx.doi.org/10.1021/acs.jafc.6b03203]. [PMID: 27984853].
[42]
Ni, Y.; Peng, Y.; Kokot, S. Fingerprint analysis of eucommia bark by LC-DAD and LC-MS with the aid of chemometrics. Chromatographia, 2009, 67(3), 211-217.
[43]
Cichon, M.J.; Riedl, K.M.; Schwartz, S.J. A metabolomic evaluation of the phytochemical composition of tomato juices being used in human clinical trials. Food Chem., 2017, 228, 270-278. [http://dx.doi.org/10.1016/j.foodchem.2017.01.118]. [PMID: 28317724].
[44]
Chan, K.M.; Yue, G.G.; Li, P.; Wong, E.C.; Lee, J.K.; Kennelly, E.J.; Lau, C.B. Screening and analysis of potential anti-tumor components from the stipe of Ganoderma sinense using high-performance liquid chromatography/time-of-flight mass spectrometry with multivariate statistical tool. J. Chromatogr. A, 2017, 1487, 162-167. [http://dx.doi.org/10.1016/j.chroma.2017.01.044]. [PMID: 28143662].
[45]
Huang, W.P.; Tan, T.; Li, Z.F.; OuYang, H.; Xu, X.; Zhou, B.; Feng, Y.L. Structural characterization and discrimination of Chimonanthus nitens Oliv. leaf from different geographical origins based on multiple chromatographic analysis combined with chemometric methods. J. Pharm. Biomed. Anal., 2018, 154, 236-244. [http://dx.doi.org/10.1016/j.jpba.2018.02.020]. [PMID: 29558724].
[46]
Liu, Y.; Li, L.; Xiao, Y.Q.; Yao, J.Q.; Li, P.Y.; Yu, D.R.; Ma, Y.L. Global metabolite profiling and diagnostic ion filtering strategy by LC-QTOF MS for rapid identification of raw and processed pieces of Rheum palmatum L. Food Chem., 2016, 192, 531-540. [http://dx.doi.org/10.1016/j.foodchem.2015.07.013]. [PMID: 26304381].
[47]
Dai, W.; Xie, D.; Lu, M.; Li, P.; Lv, H.; Yang, C.; Peng, Q.; Zhu, Y.; Guo, L.; Zhang, Y.; Tan, J.; Lin, Z. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Res. Int., 2017, 96, 40-45. [http://dx.doi.org/10.1016/j.foodres.2017.03.028]. [PMID: 28528106].
[48]
Yang, W.; Qiao, X.; Li, K.; Fan, J.; Bo, T.; Guo, D.A.; Ye, M. Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm. Sin. B, 2016, 6(6), 568-575. [http://dx.doi.org/10.1016/j.apsb.2016.05.005]. [PMID: 27818924].
[49]
Wang, F.; Wang, B.; Wang, L.; Xiong, Z.Y.; Gao, W.; Li, P.; Li, H.J. Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study. J. Pharm. Biomed. Anal., 2017, 138, 70-79. [http://dx.doi.org/10.1016/j.jpba.2017.02.004]. [PMID: 28189048].
[50]
He, M.; Wu, H.; Nie, J.; Yan, P.; Yang, T.B.; Yang, Z.Y.; Pei, R. Accurate recognition and feature qualify for flavonoid extracts from Liang-wai Gan Cao by liquid chromatography-high resolution-mass spectrometry and computational MS/MS fragmentation. J. Pharm. Biomed. Anal., 2017, 146, 37-47. [http://dx.doi.org/10.1016/j.jpba.2017.07.065]. [PMID: 28850862].
[51]
Zubarev, R.A.; Makarov, A. Orbitrap mass spectrometry. Anal. Chem., 2013, 85(11), 5288-5296. [http://dx.doi.org/10.1021/ac4001223]. [PMID: 23590404].
[52]
Perry, R.H.; Cooks, R.G.; Noll, R.J. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev., 2008, 27(6), 661-699. [http://dx.doi.org/10.1002/mas.20186]. [PMID: 18683895].
[53]
Eliuk, S.; Makarov, A. Evolution of orbitrap mass spectrometry instrumentation. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2015, 8, 61-80. [http://dx.doi.org/10.1146/annurev-anchem-071114-040325]. [PMID: 26161972].
[54]
Castro-Puyana, M.; Perez-Miguez, R.; Montero, L.; Herrero, M. Application of mass spectrometry-based metabolomics approaches for food safety, quality, and traceability. Trends Analyt. Chem., 2017, 93, 102-118. [http://dx.doi.org/10.1016/j.trac.2017.05.004].
[55]
Farré, M.; Picó, Y.; Barceló, D. Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues. J. Chromatogr. A, 2014, 1328, 66-79. [http://dx.doi.org/10.1016/j.chroma.2013.12.082]. [PMID: 24438835].
[56]
La Barbera, G.; Capriotti, A.L.; Cavaliere, C.; Montone, C.M.; Piovesana, S.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res. Int., 2017, 100(Pt 1), 28-52. [http://dx.doi.org/10.1016/j.foodres.2017.07.080]. [PMID: 28873689].
[57]
Lucci, P.; Saurina, J.; Nuñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. Trends Analyt. Chem., 2017, 88, 1-24. [http://dx.doi.org/10.1016/j.trac.2016.12.006].
[58]
Chen, M.L.; Chang, W.Q.; Zhou, J.L.; Yin, Y.H.; Xia, W.R.; Liu, J.Q.; Liu, L.F.; Xin, G.Z. Comparison of three officinal species of Callicarpa based on a biochemome profiling strategy with UHPLC-IT-MS and chemometrics analysis. J. Pharm. Biomed. Anal., 2017, 145, 666-674. [http://dx.doi.org/10.1016/j.jpba.2017.07.054]. [PMID: 28800528].
[59]
Yang, Y.; Peng, Y.; Chang, Q.; Dan, C.; Guo, W.; Wang, Y. Selective identification of organic iodine compounds using liquid chromatography-high resolution mass spectrometry. Anal. Chem., 2016, 88(2), 1275-1280. [http://dx.doi.org/10.1021/acs.analchem.5b03694]. [PMID: 26653564].
[60]
Cottet, K.; Kouloura, E.; Kritsanida, M.; Wansi, J.D.; Odonne, G.; Michel, S.; Halabalaki, M.; Lallemand, M.C. Comparative metabolomic study between African and Amazonian Symphonia globulifera by tandem LC-HRMS. Phytochem. Lett., 2017, 20, 309-315. [http://dx.doi.org/10.1016/j.phytol.2017.01.012].
[61]
Taylor, T. Important aspects of UV detection for HPLC. LC GC N. Am., 2015, 33(11), 870-872.
[62]
Craig, A.P.; Fields, C.; Liang, N.; Kitts, D.; Erickson, A. Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts. Talanta, 2016, 154, 481-485. [http://dx.doi.org/10.1016/j.talanta.2016.03.101]. [PMID: 27154703].
[63]
Dong, M.W.; Guillarme, D. Newer developments in HPLC impacting pharmaceutical analysis: a brief review. Am. Pharmaceut. Rev., 2013, 16(4), 36-43.
[64]
Li, S.L.; Song, J.Z.; Qiao, C.F.; Zhou, Y.; Xu, H.X. UPLC-PDA-TOFMS based chemical profiling approach to rapidly evaluate chemical consistency between traditional and dispensing granule decoctions of traditional medicine combinatorial formulae. J. Pharm. Biomed. Anal., 2010, 52(4), 468-478. [http://dx.doi.org/10.1016/j.jpba.2010.01.032]. [PMID: 20138455].
[65]
Pardo-Mates, N.; Vera, A.; Barbosa, S.; Hidalgo-Serrano, M.; Núñez, O.; Saurina, J.; Hernández-Cassou, S.; Puignou, L. Characterization, classification and authentication of fruit-based extracts by means of HPLC-UV chromatographic fingerprints, polyphenolic profiles and chemometric methods. Food Chem., 2017, 221, 29-38. [http://dx.doi.org/10.1016/j.foodchem.2016.10.033]. [PMID: 27979205].
[66]
Li, S.L.; Lin, G.; Tam, Y.K. Time-course accumulation of main bioactive components in the rhizome of Ligusticum chuanxiong. Planta Med., 2006, 72(3), 278-280. [http://dx.doi.org/10.1055/s-2005-916199]. [PMID: 16534738].
[67]
Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol., 2017, 43, 34-40. [http://dx.doi.org/10.1016/j.copbio.2016.08.001]. [PMID: 27580257].
[68]
Deborde, C.; Moing, A.; Roch, L.; Jacob, D.; Rolin, D.; Giraudeau, P. Plant metabolism as studied by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc., 2017, 102-103, 61-97. [http://dx.doi.org/10.1016/j.pnmrs.2017.05.001]. [PMID: 29157494].
[69]
Ludwig, C.; Viant, M.R. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem. Anal., 2010, 21(1), 22-32. [http://dx.doi.org/10.1002/pca.1186]. [PMID: 19904730].
[70]
Hedenström, M.; Wiklund-Lindström, S.; Oman, T.; Lu, F.; Gerber, L.; Schatz, P.; Sundberg, B.; Ralph, J. Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. Mol. Plant, 2009, 2(5), 933-942. [http://dx.doi.org/10.1093/mp/ssp047]. [PMID: 19825670].
[71]
Dowlatabadi, R.; Weljie, A.M.; Thorpe, T.A.; Yeung, E.C.; Vogel, H.J. Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiol. Biochem., 2009, 47(5), 343-350. [http://dx.doi.org/10.1016/j.plaphy.2008.12.023]. [PMID: 19195904].
[72]
da Graça, J.V.; Douhan, G.W.; Halbert, S.E.; Keremane, M.L.; Lee, R.F.; Vidalakis, G.; Zhao, H. Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J. Integr. Plant Biol., 2016, 58(4), 373-387. [http://dx.doi.org/10.1111/jipb.12437]. [PMID: 26466921].
[73]
Freitas, D. S.; Carlos, E.F.; Gil, M.C.S.S.; Vieira, L.G.E.; Alcantara, G.B. NMR-based metabolomic analysis of huanglongbing-asymptomatic and -symptomatic citrus trees. J. Agric. Food Chem., 2015, 63(34), 7582-7588. [http://dx.doi.org/10.1021/acs.jafc.5b03598]. [PMID: 26285838].
[74]
Jia, P.; Jin, Y.; Chen, L.; Zhang, J.; Jia, K.; Yi, M. Molecular characterization and expression analysis of mitochondrial antiviral signaling protein gene in sea perch, Lateolabrax japonicus. Dev. Comp. Immunol., 2016, 55, 188-193. [http://dx.doi.org/10.1016/j.dci.2015.10.014]. [PMID: 26493015].
[75]
D’Urso, G.; Pizza, C.; Piacente, S.; Montoro, P. Combination of LC-MS based metabolomics and antioxidant activity for evaluation of bioactive compounds in Fragaria vesca leaves from Italy. J. Pharm. Biomed. Anal., 2018, 150, 233-240. [http://dx.doi.org/10.1016/j.jpba.2017.12.005]. [PMID: 29253779].
[76]
Klein-Júnior, L.C.; Viaene, J.; Tuenter, E.; Salton, J.; Gasper, A.L.; Apers, S.; Andries, J.P.; Pieters, L.; Henriques, A.T.; Vander Heyden, Y. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: Indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A. J. Chromatogr. A, 2016, 1463, 71-80. [http://dx.doi.org/10.1016/j.chroma.2016.08.005]. [PMID: 27511709].
[77]
Spiteri, M.; Rogers, K.M.; Jamin, E.; Thomas, F.; Guyader, S.; Lees, M.; Rutledge, D.N. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Food Chem., 2017, 217, 766-772. [http://dx.doi.org/10.1016/j.foodchem.2016.09.027]. [PMID: 27664696].
[78]
Kanu, A.B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H.H. Jr Ion mobility-mass spectrometry. J. Mass Spectrom., 2008, 43(1), 1-22. [http://dx.doi.org/10.1002/jms.1383]. [PMID: 18200615].
[79]
Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst , 2015, 140(5), 1376-1390. [http://dx.doi.org/10.1039/C4AN01100G] [PMID: 25465076]
[80]
Clemmer, D.E.; Hudgins, R.R.; Jarrold, M.F. Naked protein conformations: cytochrome c in gas phase. J. Am. Soc. Mass Spectrom., 1995, 117, 10141.
[81]
Paglia, G.; Astarita, G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc., 2017, 12(4), 797-813. [http://dx.doi.org/10.1038/nprot.2017.013]. [PMID: 28301461].
[82]
Shi, X.; Yang, W.; Qiu, S.; Hou, J.; Wu, W.; Guo, D. Systematic profiling and comparison of the lipidomes from Panax ginseng, P. quinquefolius, and P. notoginseng by ultrahigh performance supercritical fluid chromatography/high-resolution mass spectrometry and ion mobility-derived collision cross section measurement. J. Chromatogr. A, 2018, 1548, 64-75. [http://dx.doi.org/10.1016/j.chroma.2018.03.025]. [PMID: 295881 00].
[83]
Garmón-Lobato, S.; Abad-García, B.; Sánchez-Ilárduya, M.B.; Romera-Fernández, M.; Berrueta, L.A.; Gallo, B.; Vicente, F. Improvement using chemometrics in ion mobility coupled to mass spectrometry as a tool for mass spectrometry fragmentation studies: flavonoid aglycone cases. Anal. Chim. Acta, 2013, 771, 56-64. [http://dx.doi.org/10.1016/j.aca.2013.01.065]. [PMID: 23522113].
[84]
Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A.V.; Meehan, M.J.; Liu, W.T.; Crüsemann, M.; Boudreau, P.D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R.D.; Pace, L.A.; Quinn, R.A.; Duncan, K.R.; Hsu, C.C.; Floros, D.J.; Gavilan, R.G.; Kleigrewe, K.; Northen, T.; Dutton, R.J.; Parrot, D.; Carlson, E.E.; Aigle, B.; Michelsen, C.F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B.T.; Gerwick, L.; Liaw, C.C.; Yang, Y.L.; Humpf, H.U.; Maansson, M.; Keyzers, R.A.; Sims, A.C.; Johnson, A.R.; Sidebottom, A.M.; Sedio, B.E.; Klitgaard, A.; Larson, C.B. P, C.A.B.; Torres-Mendoza, D.; Gonzalez, D.J.; Silva, D.B.; Marques, L.M.; Demarque, D.P.; Pociute, E.; O’Neill, E.C.; Briand, E.; Helfrich, E.J.N.; Granatosky, E.A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J.J.; Zeng, Y.; Vorholt, J.A.; Kurita, K.L.; Charusanti, P.; McPhail, K.L.; Nielsen, K.F.; Vuong, L.; Elfeki, M.; Traxler, M.F.; Engene, N.; Koyama, N.; Vining, O.B.; Baric, R.; Silva, R.R.; Mascuch, S.J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P.G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A.M.C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B.M.; Almaliti, J.; Allard, P.M.; Phapale, P.; Nothias, L.F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.L.; Kyle, J.E.; Metz, T.O.; Peryea, T.; Nguyen, D.T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K.M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P.R.; Palsson, B.O.; Pogliano, K.; Linington, R.G.; Gutiérrez, M.; Lopes, N.P.; Gerwick, W.H.; Moore, B.S.; Dorrestein, P.C.; Bandeira, N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol., 2016, 34(8), 828-837. [http://dx.doi.org/10.1038/nbt.3597]. [PMID: 27504778].
[85]
Caesar, L.K.; Kellogg, J.J.; Kvalheim, O.M.; Cech, R.A.; Cech, N.B. Integration of biochemometrics and molecular networking to identify antimicrobials in Angelica keiskei. Planta Med., 2018, 84(9-10), 721-728. [http://dx.doi.org/10.1055/a-0590-5223]. [PMID: 29571174].
[86]
Lyu, Q.; Kuo, T.H.; Sun, C.; Chen, K.; Hsu, C.C.; Li, X. Comprehensive structural characterization of phenolics in litchi pulp using tandem mass spectral molecular networking. Food Chem., 2019, 282, 9-17. [http://dx.doi.org/10.1016/j.foodchem.2019.01.001]. [PMID: 30711110].
[87]
Abbas-Mohammadi, M.; Moridi Farimani, M.; Salehi, P.; Nejad Ebrahimi, S.; Sonboli, A.; Kelso, C.; Skropeta, D. Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. J. Pharm. Biomed. Anal., 2018, 158, 471-479. [http://dx.doi.org/10.1016/j.jpba.2018.06.026]. [PMID: 29960238].