Review Article

The Synergy between CRISPR and Chemical Engineering

Author(s): Cia-Hin Lau* and Chung Tin

Volume 19, Issue 3, 2019

Page: [147 - 171] Pages: 25

DOI: 10.2174/1566523219666190701100556

Price: $65

Abstract

Gene therapy and transgenic research have advanced quickly in recent years due to the development of CRISPR technology. The rapid development of CRISPR technology has been largely benefited by chemical engineering. Firstly, chemical or synthetic substance enables spatiotemporal and conditional control of Cas9 or dCas9 activities. It prevents the leaky expression of CRISPR components, as well as minimizes toxicity and off-target effects. Multi-input logic operations and complex genetic circuits can also be implemented via multiplexed and orthogonal regulation of target genes. Secondly, rational chemical modifications to the sgRNA enhance gene editing efficiency and specificity by improving sgRNA stability and binding affinity to on-target genomic loci, and hence reducing off-target mismatches and systemic immunogenicity. Chemically-modified Cas9 mRNA is also more active and less immunogenic than the native mRNA. Thirdly, nonviral vehicles can circumvent the challenges associated with viral packaging and production through the delivery of Cas9-sgRNA ribonucleoprotein complex or large Cas9 expression plasmids. Multi-functional nanovectors enhance genome editing in vivo by overcoming multiple physiological barriers, enabling ligand-targeted cellular uptake, and blood-brain barrier crossing. Chemical engineering can also facilitate viral-based delivery by improving vector internalization, allowing tissue-specific transgene expression, and preventing inactivation of the viral vectors in vivo. This review aims to discuss how chemical engineering has helped improve existing CRISPR applications and enable new technologies for biomedical research. The usefulness, advantages, and molecular action for each chemical engineering approach are also highlighted.

Keywords: CRISPR, gene editing, gene therapy, genome editing, genetic engineering, synthetic biology.

Graphical Abstract

[1]
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Sci 2014; 343(6166): 84-7.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571 ]
[2]
Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31(3): 230-2.
[http://dx.doi.org/10.1038/nbt.2507] [PMID: 23360966 ]
[3]
Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533(7601): 125-9.
[http://dx.doi.org/10.1038/nature17664] [PMID: 27120160 ]
[4]
Sadhu MJ, Bloom JS, Day L, Siegel JJ, Kosuri S, Kruglyak L. Highly parallel genome variant engineering with CRISPR-Cas9. Nat Genet 2018; 50(4): 510-4.
[http://dx.doi.org/10.1038/s41588-018-0087-y] [PMID: 29632376]
[5]
Garneau JE, Dupuis ME, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nat 2010; 468(7320): 67-71.
[http://dx.doi.org/10.1038/nature09523] [PMID: 21048762]
[6]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sci 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[7]
Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Sci 2008; 321(5891): 960-4.
[http://dx.doi.org/10.1126/science.1159689] [PMID: 18703739]
[8]
Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nat 2011; 471(7340): 602-7.
[http://dx.doi.org/10.1038/nature09886] [PMID: 21455174]
[9]
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucl Aci Res 2011; 39(21): 9275-82.
[http://dx.doi.org/10.1093/nar/gkr606] [PMID: 21813460]
[10]
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbio 2005; 151(8): 2551-61.
[http://dx.doi.org/10.1099/mic.0.28048-0] [PMID: 16079334]
[11]
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109] [PMID: 22949671]
[12]
Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol 2015; 33(11): 1159-61.
[http://dx.doi.org/10.1038/nbt.3390] [PMID: 26436575]
[13]
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3): 279-84.
[http://dx.doi.org/10.1038/nbt.2808] [PMID: 24463574]
[14]
Kiani S, Chavez A, Tuttle M, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods 2015; 12(11): 1051-4.
[http://dx.doi.org/10.1038/nmeth.3580] [PMID: 26344044]
[15]
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5): 1173-83.
[http://dx.doi.org/10.1016/j.cell.2013.02.022] [PMID: 23452860]
[16]
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013; 10(10): 977-9.
[http://dx.doi.org/10.1038/nmeth.2598] [PMID: 23892898]
[17]
Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014; 159(3): 647-61.
[http://dx.doi.org/10.1016/j.cell.2014.09.029] [PMID: 25307932]
[18]
Perez-Pinera P, Kocak DD, Vockley CM, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 2013; 10(10): 973-6.
[http://dx.doi.org/10.1038/nmeth.2600] [PMID: 23892895]
[19]
Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods 2015; 12(4): 326-8.
[http://dx.doi.org/10.1038/nmeth.3312] [PMID: 25730490]
[20]
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442-51.
[http://dx.doi.org/10.1016/j.cell.2013.06.044] [PMID: 23849981]
[21]
Liu XS, Wu H, Ji X, et al. Editing DNA methylation in the mammalian genome. Cell 2016; 167(1): 233-47.
[http://dx.doi.org/10.1016/j.cell.2016.08.056]
[22]
Liu XS, Wu H, Krzisch M, et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 2018; 172(5): 979-2.
[23]
Cano-Rodriguez D, Gjaltema RA, Jilderda LJ, et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 2016; 7: 12284.
[http://dx.doi.org/10.1038/ncomms12284] [PMID: 27506838]
[24]
Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyl transferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33(5): 510-7.
[http://dx.doi.org/10.1038/nbt.3199] [PMID: 25849900]
[25]
Vojta A, Dobrinić P, Tadić V, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; 44(12): 5615-28.
[http://dx.doi.org/10.1093/nar/gkw159] [PMID: 26969735]
[26]
Kearns NA, Pham H, Tabak B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 2015; 12(5): 401-3.
[http://dx.doi.org/10.1038/nmeth.3325] [PMID: 25775043]
[27]
Kwon DY, Zhao YT, Lamonica JM, Zhou Z. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat Commun 2017; 8: 15315.
[http://dx.doi.org/10.1038/ncomms15315] [PMID: 28497787]
[28]
Lau CH. Applications of CRISPR-Cas in bioengineering, biotechnology, and translational research. CRISPR J 2018; 1: 379-404.
[http://dx.doi.org/10.1089/crispr.2018.0026] [PMID: 31021245]
[29]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Sci 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[30]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Sci 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[31]
Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011; 29(2): 143-8.
[http://dx.doi.org/10.1038/nbt.1755] [PMID: 21179091]
[32]
Li T, Huang S, Jiang WZ, et al. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucl Aci Res 2011; 39(1): 359-72.
[http://dx.doi.org/10.1093/nar/gkq704] [PMID: 20699274]
[33]
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93(3): 1156-60.
[http://dx.doi.org/10.1073/pnas.93.3.1156] [PMID: 8577732]
[34]
Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA 1998; 95(18): 10570-5.
[http://dx.doi.org/10.1073/pnas.95.18.10570] [PMID: 9724744]
[35]
Ramirez CL, Foley JE, Wright DA, et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 2008; 5(5): 374-5.
[http://dx.doi.org/10.1038/nmeth0508-374] [PMID: 18446154]
[36]
Sander JD, Dahlborg EJ, Goodwin MJ, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 2011; 8(1): 67-9.
[http://dx.doi.org/10.1038/nmeth.1542] [PMID: 21151135]
[37]
Holkers M, Maggio I, Liu J, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucl Aci Res 2013; 41(5)e63
[http://dx.doi.org/10.1093/nar/gks1446] [PMID: 23275534]
[38]
Chatterjee P, Jakimo N, Jacobson JM. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci Adv 2018; 4(10)eaau0766
[http://dx.doi.org/10.1126/sciadv.aau0766] [PMID: 30397647]
[39]
Ran FA, Cong L, Yan WX, et al. in vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91.
[http://dx.doi.org/10.1038/nature14299] [PMID: 25830891]
[40]
Kim E, Koo T, Park SW, et al. in vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 2017; 8: 14500.
[http://dx.doi.org/10.1038/ncomms14500] [PMID: 28220790]
[41]
Hou Z, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitides. Proc Natl Acad Sci USA 2013; 110(39): 15644-9.
[http://dx.doi.org/10.1073/pnas.1313587110] [PMID: 23940360]
[42]
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163(3): 759-71.
[http://dx.doi.org/10.1016/j.cell.2015.09.038] [PMID: 26422227]
[43]
Kim D, Bae S, Park J, et al. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Meth 2015; 12 (3): 237.243, 1, 243.
[http://dx.doi.org/10.1038/nmeth.3284] [PMID: 25664545]
[44]
Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 2014; 32(7): 677-83.
[http://dx.doi.org/10.1038/nbt.2916] [PMID: 24837660]
[45]
Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015; 33(2): 187-97.
[http://dx.doi.org/10.1038/nbt.3117] [PMID: 25513782]
[46]
Chew WL, Tabebordbar M, Cheng JK, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 2016; 13(10): 868-74.
[http://dx.doi.org/10.1038/nmeth.3993] [PMID: 27595405]
[47]
Kouranova E, Forbes K, Zhao G, et al. CRISPRs for optimal targeting: Delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum Gene Ther 2016; 27(6): 464-75.
[http://dx.doi.org/10.1089/hum.2016.009] [PMID: 27094534]
[48]
Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014; 24(6): 1012-9.
[http://dx.doi.org/10.1101/gr.171322.113] [PMID: 24696461]
[49]
Wang H, Xu X, Nguyen CM, et al. CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 2018; 175(5): 1405-17.e14.
[http://dx.doi.org/10.1016/j.cell.2018.09.013] [PMID: 30318144]
[50]
Morgan SL, Mariano NC, Bermudez A, et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun 2017; 8: 159-93.
[http://dx.doi.org/10.1038/ncomms15993] [PMID: 28703221]
[51]
Braun SMG, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun 2017; 8(1): 560.
[http://dx.doi.org/10.1038/s41467-017-00644-y] [PMID: 28916764]
[52]
Chen T, Gao D, Zhang R, et al. Chemically controlled epigenome editing through an inducible dCas9 system. J Am Chem Soc 2017; 139(33): 11337-40.
[http://dx.doi.org/10.1021/jacs.7b06555] [PMID: 28787145]
[53]
Bao Z, Jain S, Jaroenpuntaruk V, Zhao H. Orthogonal genetic regulation in human cells using chemically induced CRISPR/Cas9 activators. ACS Synth Biol 2017; 6(4): 686-93.
[http://dx.doi.org/10.1021/acssynbio.6b00313] [PMID: 28054767]
[54]
Cunningham-Bryant D, Sun J, Fernandez B, Zalatan JG. CRISPR-Cas-mediated chemical control of transcriptional dynamics in yeast. ChemBioChem 2019; 20(12): 1519-23.
[http://dx.doi.org/10.1002/cbic.201800823] [PMID: 30710419]
[55]
Liszczak GP, Brown ZZ, Kim SH, Oslund RC, David Y, Muir TW. Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. Proc Natl Acad Sci USA 2017; 114(4): 681-6.
[http://dx.doi.org/10.1073/pnas.1615723114] [PMID: 28069948]
[56]
Liu KI, Ramli MN, Woo CW, et al. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nat Chem Biol 2016; 12(11): 980-7.
[http://dx.doi.org/10.1038/nchembio.2179] [PMID: 27618190]
[57]
Liu KI, Ramli MNB, Sutrisnoh NB, Tan MH. Rapid control of genome editing in human cells by chemical-inducible CRISPR-Cas systems. Methods Mol Biol 2018; 1772: 267-88.
[http://dx.doi.org/10.1007/978-1-4939-7795-6_15] [PMID: 29754234]
[58]
Zhao C, Zhao Y, Zhang J, et al. HIT-Cas9: A CRISPR/Cas9 genome-editing device under tight and effective drug control. Mol Ther Nucleic Acids 2018; 13: 208-19.
[http://dx.doi.org/10.1016/j.omtn.2018.08.022] [PMID: 30312845]
[59]
Maji B, Moore CL, Zetsche B, et al. Multidimensional chemical control of CRISPR-Cas9. Nat Chem Biol 2017; 13(1): 9-11.
[http://dx.doi.org/10.1038/nchembio.2224] [PMID: 27820801]
[60]
Lu J, Zhao C, Zhao Y, et al. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Res 2018; 46(5)e25
[http://dx.doi.org/10.1093/nar/gkx1222] [PMID: 29237052]
[61]
Kleinjan DA, Wardrope C, Nga Sou S, Rosser SJ. Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nat Commun 2017; 8(1): 1191.
[http://dx.doi.org/10.1038/s41467-017-01222-y] [PMID: 29084946]
[62]
Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Reports 2015; 5(3): 448-59.
[http://dx.doi.org/10.1016/j.stemcr.2015.08.001] [PMID: 26352799]
[63]
Manna D, Maji B, Gangopadhyay SA, et al. A singular system with precise dosing and spatiotemporal control of CRISPR-Cas9. Angew Chem Int Ed Engl 2019; 58(19): 6285-9.
[http://dx.doi.org/10.1002/anie.201900788] [PMID: 30834641]
[64]
Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997; 237(3): 752-7.
[http://dx.doi.org/10.1006/bbrc.1997.7124] [PMID: 9299439]
[65]
Chen H, Li Y, Du C, et al. Aptazyme-mediated direct modulation of post-transcriptional sgRNA level for conditional genome editing and gene expression. J Biotechnol 2018; 288: 23-9.
[http://dx.doi.org/10.1016/j.jbiotec.2018.10.011] [PMID: 30391232]
[66]
Pyle AM. Ribozymes: A distinct class of metalloenzymes. Sci 1993; 261(5122): 709-14.
[http://dx.doi.org/10.1126/science.7688142] [PMID: 7688142]
[67]
Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982; 31(1): 147-57.
[http://dx.doi.org/10.1016/0092-8674(82)90414-7] [PMID: 6297745]
[68]
Koopal B, Kruis AJ, Claassens NJ, Nobrega FL, van der Oost J. Incorporation of a synthetic amino acid into dCas9 improves control of gene silencing. ACS Synth Biol 2019; 8(2): 216-22.
[http://dx.doi.org/10.1021/acssynbio.8b00347] [PMID: 30668910]
[69]
Lee YJ, Hoynes-O’Connor A, Leong MC, Moon TS. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucl Aci Res 2016; 44(5): 2462-73.
[http://dx.doi.org/10.1093/nar/gkw056] [PMID: 26837577]
[70]
Jain PK, Ramanan V, Schepers AG, et al. Development of light-activated CRISPR using guide RNAs with photocleavable protectors. Angew Chem Int Ed Engl 2016; 55(40): 12440-4.
[http://dx.doi.org/10.1002/anie.201606123] [PMID: 27554600]
[71]
Hemphill J, Borchardt EK, Brown K, Asokan A, Deiters A. Optical control of CRISPR/Cas9 gene editing. J Am Chem Soc 2015; 137(17): 5642-5.
[http://dx.doi.org/10.1021/ja512664v] [PMID: 25905628]
[72]
Siu KH, Chen W. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. Nat Chem Biol 2019; 15(3): 217-20.
[http://dx.doi.org/10.1038/s41589-018-0186-1] [PMID: 30531984]
[73]
Li Y, Teng X, Zhang K, Deng R, Li J. RNA strand displacement responsive CRISPR/Cas9 system for mRNA sensing. Anal Chem 2019; 91(6): 3989-96.
[http://dx.doi.org/10.1021/acs.analchem.8b05238] [PMID: 30810036]
[74]
Wang XW, Hu LF, Hao J, et al. A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol 2019; 21(4): 522-30.
[http://dx.doi.org/10.1038/s41556-019-0292-7] [PMID: 30804503]
[75]
Hoffmann MD, Aschenbrenner S, Grosse S, et al. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res in press
[http://dx.doi.org/10.1093/nar/gkz271] [PMID: 30982889]
[76]
Bondy-Denomy J, Garcia B, Strum S, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nat 2015; 526(7571): 136-9.
[http://dx.doi.org/10.1038/nature15254] [PMID: 26416740]
[77]
Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nat 2013; 493(7432): 429-32.
[http://dx.doi.org/10.1038/nature11723] [PMID: 23242138]
[78]
Dong D, Guo M, Wang S, et al. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nat 2017; 546(7658): 436-9.
[http://dx.doi.org/10.1038/nature22377] [PMID: 28448066]
[79]
Jiang F, Liu JJ, Osuna BA, et al. Temperature-responsive competitive inhibition of CRISPR-Cas9. Mol Cell 2019; 73(3): 601-610.e5.
[http://dx.doi.org/10.1016/j.molcel.2018.11.016] [PMID: 30595438]
[80]
Bubeck F, Hoffmann MD, Harteveld Z, et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat Methods 2018; 15(11): 924-7.
[http://dx.doi.org/10.1038/s41592-018-0178-9] [PMID: 30377362]
[81]
Nakamura M, Srinivasan P, Chavez M, et al. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat Commun 2019; 10(1): 194.
[http://dx.doi.org/10.1038/s41467-018-08158-x] [PMID: 30643127]
[82]
Li J, Xu Z, Chupalov A, Marchisio MA. Anti-CRISPR-based biosensors in the yeast S. cerevisiae. J Biol Eng 2018; 12: 11.
[http://dx.doi.org/10.1186/s13036-018-0101-z] [PMID: 30123320]
[83]
Li B, Zeng C, Li W, et al. Synthetic oligonucleotides inhibit CRISPR-Cpf1-mediated genome editing. Cell Rep 2018; 25(12): 3262-72.
[http://dx.doi.org/10.1016/j.celrep.2018.11.079] [PMID: 30566855]
[84]
Savić N, Ringnalda FC, Berk C, et al. In vitro generation of CRISPR-Cas9 complexes with covalently bound repair templates for genome editing in mammalian cells. Bio Protoc 2019; 9(1)e3136
[http://dx.doi.org/10.21769/BioProtoc.3136] [PMID: 30675496]
[85]
Savic N, Ringnalda FC, Lindsay H, et al. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. eLife 2018; 7: 7.
[http://dx.doi.org/10.7554/eLife.33761] [PMID: 29809142]
[86]
Carlson-Stevermer J, Abdeen AA, Kohlenberg L, et al. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun 2017; 8(1): 1711.
[http://dx.doi.org/10.1038/s41467-017-01875-9] [PMID: 29167458]
[87]
Roche PJR, Gytz H, Hussain F, et al. Double-stranded biotinylated donor enhances homology-directed repair in combination with Cas9 monoavidin in mammalian cells. CRISPR J 2018; 1(6): 414-30.
[http://dx.doi.org/10.1089/crispr.2018.0045] [PMID: 31021244]
[88]
Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 2015; 16(2): 142-7.
[http://dx.doi.org/10.1016/j.stem.2015.01.003] [PMID: 25658371]
[89]
Pinder J, Salsman J, Dellaire G. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucl Aci Res 2015; 43(19): 9379-92.
[http://dx.doi.org/10.1093/nar/gkv993] [PMID: 26429972]
[90]
Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 2016; 7: 10548.
[http://dx.doi.org/10.1038/ncomms10548] [PMID: 26817820]
[91]
Zhang JP, Li XL, Li GH, et al. Efficient precise knocking with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 2017; 18(1): 35.
[http://dx.doi.org/10.1186/s13059-017-1164-8] [PMID: 28219395]
[92]
Shrimp JH, Grose C, Widmeyer SRT, Thorpe AL, Jadhav A, Meier JL. Chemical control of a CRISPR-Cas9 acetyltransferase. ACS Chem Biol 2018; 13(2): 455-60.
[http://dx.doi.org/10.1021/acschembio.7b00883] [PMID: 29309117]
[93]
Basila M, Kelley ML, Smith AVB. Minimal 2′-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. PLoS One 2017; 12(11)e0188593
[http://dx.doi.org/10.1371/journal.pone.0188593] [PMID: 29176845]
[94]
Lee K, Mackley VA, Rao A, et al. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. eLife 2017; 6: 6.
[http://dx.doi.org/10.7554/eLife.25312] [PMID: 28462777]
[95]
Cromwell CR, Sung K, Park J, et al. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat Commun 2018; 9(1): 1448.
[http://dx.doi.org/10.1038/s41467-018-03927-0] [PMID: 29654299]
[96]
Schubert MS, Cedrone E, Neun B, Behlke MA, Dobrovolskaia MA. Chemical modification of CRISPR gRNAs eliminate type I interferon responses in human peripheral blood mononuclear cells. J Cytokine Biol 2018; 3(1): 121.
[http://dx.doi.org/10.4172/2576-3881.1000121] [PMID: 30225466]
[97]
Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 2015; 33(9): 985-9.
[http://dx.doi.org/10.1038/nbt.3290] [PMID: 26121415]
[98]
Ryan DE, Taussig D, Steinfeld I, et al. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 2018; 46(2): 792-803.
[http://dx.doi.org/10.1093/nar/gkx1199] [PMID: 29216382]
[99]
Nahar S, Sehgal P, Azhar M, et al. A G-quadruplex motif at the 3′ end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency. Chem Commun (Camb) 2018; 54(19): 2377-80.
[http://dx.doi.org/10.1039/C7CC08893K] [PMID: 29450416]
[100]
Ma H, Tu LC, Naseri A, et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 2018; 15(11): 928-31.
[http://dx.doi.org/10.1038/s41592-018-0174-0] [PMID: 30377374]
[101]
Yin H, Song CQ, Suresh S, et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 2017; 35(12): 1179-87.
[http://dx.doi.org/10.1038/nbt.4005] [PMID: 29131148]
[102]
Kim HY, Kang SJ, Jeon Y, et al. Chimeric crRNAs with 19 DNA residues in the guide region show the retained DNA cleavage activity of Cas9 with potential to improve the specificity. Chem Commun (Camb) 2019; 55(24): 3552-5.
[http://dx.doi.org/10.1039/C8CC08468H] [PMID: 30843540]
[103]
Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Proc Natl Acad Sci USA 2015; 112(51): e7110-7.
[http://dx.doi.org/10.1073/pnas.1520883112] [PMID: 26589814]
[104]
McMahon MA, Prakash TP, Cleveland DW, Bennett CF, Rahdar M. Chemically modified Cpf1-CRISPR RNAs mediate efficient genome editing in mammalian cells. Mol Ther 2018; 26(5): 1228-40.
[http://dx.doi.org/10.1016/j.ymthe.2018.02.031] [PMID: 29650467]
[105]
Mir A, Alterman JF, Hassler MR, et al. Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nat Commun 2018; 9(1): 2641.
[http://dx.doi.org/10.1038/s41467-018-05073-z] [PMID: 29980686]
[106]
O’Reilly D, Kartje ZJ, Ageely EA, et al. Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity. Nucleic Acids Res 2019; 47(2): 546-58.
[PMID: 30517736]
[107]
Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 2019; 37(6): 657-66.
[http://dx.doi.org/10.1038/s41587-019-0095-1] [PMID: 30988504]
[108]
He X, Wang Y, Yang F, et al. Boosting activity of high-fidelity CRISPR/Cas9 variants using a tRNAGln-processing system in human cells. J Biol Chem 2019; 294(23): 9308-15.
[http://dx.doi.org/10.1074/jbc.RA119.007791] [PMID: 31010827]
[109]
Ferdosi SR, Ewaisha R, Moghadam F, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 2019; 10(1): 1842.
[http://dx.doi.org/10.1038/s41467-019-09693-x] [PMID: 31015529]
[110]
Vaidyanathan S, Azizian KT, Haque AKMA, et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol Ther Nucleic Acids 2018; 12: 530-42.
[http://dx.doi.org/10.1016/j.omtn.2018.06.010] [PMID: 30195789]
[111]
Wang M, Zuris JA, Meng F, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 2016; 113(11): 2868-73.
[http://dx.doi.org/10.1073/pnas.1520244113] [PMID: 26929348]
[112]
Finn JD, Smith AR, Patel MC, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 2018; 22(9): 2227-35.
[http://dx.doi.org/10.1016/j.celrep.2018.02.014] [PMID: 29490262]
[113]
Miller JB, Zhang S, Kos P, et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl 2017; 56(4): 1059-63.
[http://dx.doi.org/10.1002/anie.201610209] [PMID: 27981708]
[114]
Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016; 34(3): 328-33.
[http://dx.doi.org/10.1038/nbt.3471] [PMID: 26829318]
[115]
Lainšček D, Kadunc L, Keber MM, Bratkovič IH, Romih R, Jerala R. Delivery of an artificial transcription regulator dCas9-VPR by extracellular vesicles for therapeutic gene activation. ACS Synth Biol 2018; 7(12): 2715-25.
[http://dx.doi.org/10.1021/acssynbio.8b00192] [PMID: 30513193]
[116]
Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 2014; 24(6): 1020-7.
[http://dx.doi.org/10.1101/gr.171264.113] [PMID: 24696462]
[117]
Montagna C, Petris G, Casini A, et al. VSV-G-enveloped vesicles for traceless delivery of CRISPR-Cas9. Mol Ther Nucleic Acids 2018; 12: 453-62.
[http://dx.doi.org/10.1016/j.omtn.2018.05.010] [PMID: 30195783]
[118]
Campbell LA, Coke LM, Richie CT, Fortuno LV, Park AY, Harvey BK. Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus. Mol Ther 2019; 27(1): 151-63.
[http://dx.doi.org/10.1016/j.ymthe.2018.10.002] [PMID: 30389355]
[119]
Alsaiari SK, Patil S, Alyami M, et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J Am Chem Soc 2018; 140(1): 143-6.
[http://dx.doi.org/10.1021/jacs.7b11754] [PMID: 29272114]
[120]
Sun W, Ji W, Hall JM, et al. Self-assembled DNA Nano clews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl 2015; 54(41): 12029-33.
[http://dx.doi.org/10.1002/anie.201506030] [PMID: 26310292]
[121]
Thi EP, Mire CE, Lee AC, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nat 2015; 521(7552): 362-5.
[http://dx.doi.org/10.1038/nature14442] [PMID: 25901685]
[122]
Gilleron J, Querbes W, Zeigerer A, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 2013; 31(7): 638-46.
[http://dx.doi.org/10.1038/nbt.2612] [PMID: 23792630]
[123]
Bogorad RL, Yin H, Zeigerer A, et al. Nanoparticle-formulated siRNA targeting integrin’s inhibits hepatocellular carcinoma progression in mice. Nat Commun 2014; 5: 3869.
[http://dx.doi.org/10.1038/ncomms4869] [PMID: 24844798]
[124]
Robinson E, MacDonald KD, Slaughter K, et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol Ther 2018; 26(8): 2034-46.
[http://dx.doi.org/10.1016/j.ymthe.2018.05.014] [PMID: 29910178]
[125]
Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA. Nano Lett 2018; 18(6): 3814-22.
[http://dx.doi.org/10.1021/acs.nanolett.8b01101] [PMID: 29694050]
[126]
Patel S, Ashwanikumar N, Robinson E, et al. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett 2017; 17(9): 5711-8.
[http://dx.doi.org/10.1021/acs.nanolett.7b02664] [PMID: 28836442]
[127]
Chang J, Chen X, Glass Z, et al. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing. Acc Chem Res 2019; 52(3): 665-75.
[http://dx.doi.org/10.1021/acs.accounts.8b00493] [PMID: 30586281]
[128]
Akinc A, Querbes W, De S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 2010; 18(7): 1357-64.
[http://dx.doi.org/10.1038/mt.2010.85] [PMID: 20461061]
[129]
Cho EY, Ryu JY, Lee HAR, et al. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J Nano biotech 2019; 17(1): 19.
[http://dx.doi.org/10.1186/s12951-019-0452-8] [PMID: 30696428]
[130]
Sago CD, Lokugamage MP, Islam FZ, Krupczak BR, Sato M, Dahlman JE. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J Am Chem Soc 2018; 140(49): 17095-105.
[http://dx.doi.org/10.1021/jacs.8b08976] [PMID: 30394729]
[131]
Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 2017; 1: 889-901.
[http://dx.doi.org/10.1038/s41551-017-0137-2] [PMID: 29805845]
[132]
Shahbazi R, Sghia-Hughes G, Reid JL, et al. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat Mater in press
[http://dx.doi.org/10.1038/s41563-019-0385-5] [PMID: 31133730]
[133]
Lee B, Lee K, Panda S, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng 2018; 2(7): 497-507.
[http://dx.doi.org/10.1038/s41551-018-0252-8] [PMID: 30948824]
[134]
Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21(R1): R125-34.
[http://dx.doi.org/10.1093/hmg/dds317] [PMID: 22872698]
[135]
Van NG, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[136]
Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci USA 2013; 110(18): 7306-11.
[http://dx.doi.org/10.1073/pnas.1214441110] [PMID: 23589850]
[137]
Nikolic J, Belot L, Raux H, Legrand P, Gaudin Y, Albertini A. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat Commun 2018; 9(1): 1029.
[http://dx.doi.org/10.1038/s41467-018-03432-4] [PMID: 29531262]
[138]
Rouet R, Thuma BA, Roy MD, et al. Receptor-mediated delivery of CRISPR-Cas9 endonuclease for cell-type-specific gene editing. J Am Chem Soc 2018; 140(21): 6596-603.
[http://dx.doi.org/10.1021/jacs.8b01551] [PMID: 29668265]
[139]
Rouet R, Christ D. Efficient intracellular delivery of CRISPR-Cas ribonucleoproteins through receptor mediated endocytosis. ACS Chem Biol 2019; 14(3): 554-61.
[http://dx.doi.org/10.1021/acschembio.9b00116] [PMID: 30779874]
[140]
Yin J, Wang Q, Hou S, Bao L, Yao W, Gao X. Potent protein delivery into mammalian cells via a supercharged polypeptide. J Am Chem Soc 2018; 140(49): 17234-40.
[http://dx.doi.org/10.1021/jacs.8b10299] [PMID: 30398334]
[141]
Wang HX, Song Z, Lao YH, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci USA 2018; 115(19): 4903-8.
[http://dx.doi.org/10.1073/pnas.1712963115] [PMID: 29686087]
[142]
Hryhorowicz M, Grześkowiak B, Mazurkiewicz N, Śledziński P, Lipiński D, Słomski R. Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into porcine fibroblast. Mol Biotechnol 2019; 61(3): 173-80.
[http://dx.doi.org/10.1007/s12033-018-0145-9] [PMID: 30560399]
[143]
Zhu H, Zhang L, Tong S, Lee CM, Deshmukh H, Bao G. Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat Biomed Eng 2019; 3(2): 126-36.
[http://dx.doi.org/10.1038/s41551-018-0318-7] [PMID: 30944431]
[144]
Kretzmann JA, Ho D, Evans CW, et al. Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci (Camb) 2017; 8(4): 2923-30.
[http://dx.doi.org/10.1039/C7SC00097A] [PMID: 28451358]
[145]
Qi Y, Song H, Xiao H, Cheng G, Yu B, Xu FJ. Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small 2018; 14(42)e1803061
[http://dx.doi.org/10.1002/smll.201803061] [PMID: 30238691]
[146]
Boyle WS, Twaroski K, Woska EC, Tolar J, Reineke TM. Molecular additives significantly enhance glycopolymer-mediated transfection of large plasmids and functional CRISPR-Cas9 transcription activation ex vivo in primary human fibroblasts and induced pluripotent stem cells. Bioconjug Chem 2019; 30(2): 418-31.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00760] [PMID: 30525482]
[147]
Liu BY, He XY, Zhuo RX, Cheng SX. Reversal of tumor malignization and modulation of cell behaviors through genome editing mediated by a multi-functional nanovector. Nanoscale 2018; 10(45): 21209-18.
[http://dx.doi.org/10.1039/C8NR07321J] [PMID: 30417194]
[148]
He XY, Liu BY, Peng Y, Zhuo RX, Cheng SX. Multifunctional vector for delivery of genome editing plasmid targeting beta-catenin to re-modulate cancer cell properties. ACS Appl Mater Interfaces 2019; 11(1): 226-37.
[http://dx.doi.org/10.1021/acsami.8b17481] [PMID: 30540162]
[149]
Sun D, Sun Z, Jiang H, et al. Synthesis and evaluation of pH-sensitive multifunctional lipids for efficient delivery of CRISPR/Cas9 in gene editing. Bioconjug Chem 2019; 30(3): 667-78.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00856] [PMID: 30582790]
[150]
Kastrup L, Oberleithner H, Ludwig Y, Schafer C, Shahin V. Nuclear envelope barrier leak induced by dexamethasone. J Cell Physiol 2006; 206(2): 428-34.
[http://dx.doi.org/10.1002/jcp.20479] [PMID: 16110478]
[151]
Killian T, Buntz A, Herlet T, et al. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res 2019; 47(10)e55
[http://dx.doi.org/10.1093/nar/gkz137] [PMID: 30809660]
[152]
Kaushik A, Yndart A, Atluri V, et al. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep 2019; 9(1): 3928.
[http://dx.doi.org/10.1038/s41598-019-40222-4] [PMID: 30850620]
[153]
Hindriksen S, Bramer AJ, Truong MA, et al. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells. PLoS One 2017; 12(6)e0179514
[http://dx.doi.org/10.1371/journal.pone.0179514] [PMID: 28640891]
[154]
Kwang TW, Zeng X, Wang S. Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials. Mol Ther Methods Clin Dev 2016; 3: 15050.
[http://dx.doi.org/10.1038/mtm.2015.50] [PMID: 26858963]
[155]
Mansouri M, Bellon-Echeverria I, Rizk A, et al. Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat Commun 2016; 7: 11529.
[http://dx.doi.org/10.1038/ncomms11529] [PMID: 27143231]
[156]
Phang RZ, Tay FC, Goh SL, et al. Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells. Stem Cells Transl Med 2013; 2(12): 935-45.
[http://dx.doi.org/10.5966/sctm.2013-0043] [PMID: 24167318]
[157]
Tay FC, Tan WK, Goh SL, et al. Targeted transgene insertion into the AAVS1 locus driven by baculoviral vector-mediated zinc finger nuclease expression in human-induced pluripotent stem cells. J Gene Med 2013; 15(10): 384-95.
[http://dx.doi.org/10.1002/jgm.2745] [PMID: 24105820]
[158]
Zhu H, Lau CH, Goh SL, et al. Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells. Nucleic Acids Res 2013; 41(19)e180
[http://dx.doi.org/10.1093/nar/gkt721] [PMID: 23945944]
[159]
Liu Q, Zhao K, Wang C, et al. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo Adv Sci (Weinh) 2018; 6(1)1801423
[http://dx.doi.org/10.1002/advs.201801423] [PMID: 30643726]
[160]
Hao N, Shearwin KE, Dodd IB. Programmable DNA looping using engineered bivalent dCas9 complexes. Nat Commun 2017; 8(1): 1628.
[http://dx.doi.org/10.1038/s41467-017-01873-x] [PMID: 29158476]
[161]
Pan Y, Yang J, Luan X, et al. Near-infrared upconversion-activated CRISPR-Cas9 system: A remote-controlled gene editing platform. Sci Adv 2019; 5(4)eaav7199
[http://dx.doi.org/10.1126/sciadv.aav7199] [PMID: 30949579]
[162]
Li L, Yang Z, Zhu S, et al. A rationally designed semiconducting polymer brush for NIR-II imaging-guided light-triggered remote control of CRISPR/Cas9 genome editing. Adv Mater 2019; 31(21)e1901187
[http://dx.doi.org/10.1002/adma.201901187] [PMID: 30957918]
[163]
Nguyen DP, Miyaoka Y, Gilbert LA, et al. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat Commun 2016; 7: 12009.
[http://dx.doi.org/10.1038/ncomms12009] [PMID: 27363581]
[164]
Maji B, Gangopadhyay SA, Lee M, et al. A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9. Cell 2019; 177(4): 1067-1079.e19.
[http://dx.doi.org/10.1016/j.cell.2019.04.009] [PMID: 31051099]
[165]
Kundert K, Lucas JE, Watters KE, et al. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. Nat Commun 2019; 10(1): 2127.
[http://dx.doi.org/10.1038/s41467-019-09985-2] [PMID: 31073154]
[166]
Oesinghaus L, Simmel FC. Switching the activity of Cas12a using guide RNA strand displacement circuits. Nat Commun 2019; 10(1): 2092.
[http://dx.doi.org/10.1038/s41467-019-09953-w] [PMID: 31064995]
[167]
Wu X, Mao S, Yang Y, Rushdi MN, Krueger CJ, Chen AKA. CRISPR/molecular beacon hybrid system for live-cell genomic imaging. Nucleic Acids Res 2018; 46(13)e80
[http://dx.doi.org/10.1093/nar/gky304] [PMID: 29718399]
[168]
Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2019; 3(6): 427-37.
[http://dx.doi.org/10.1038/s41551-019-0371-x] [PMID: 31097816]
[169]
He K, Chou ET, Begay S, Anderson EM, Van B, Smith A. Conjugation and evaluation of triazole-linked single guide RNA for CRISPR-Cas9 gene editing. ChemBioChem 2016; 17(19): 1809-12.
[http://dx.doi.org/10.1002/cbic.201600320] [PMID: 27441384]
[170]
Kartje ZJ, Barkau CL, Rohilla KJ, Ageely EA, Gagnon KT. Chimeric guides probe and enhance Cas9 biochemical activity. Biochemistry 2018; 57(21): 3027-31.
[http://dx.doi.org/10.1021/acs.biochem.8b00107] [PMID: 29746102]
[171]
Taemaitree L, Shivalingam A, El-Sagheer AH, Brown T. An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA. Nat Commun 2019; 10(1): 1610.
[http://dx.doi.org/10.1038/s41467-019-09600-4] [PMID: 30962447]
[172]
Gao X, Tao Y, Lamas V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nat 2018; 553(7687): 217-21.
[http://dx.doi.org/10.1038/nature25164] [PMID: 29258297]
[173]
Ho YK, Zhou LH, Tam KC, Too HP. Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of β-tubulin deactylase. Nucleic Acids Res 2017; 45(6)e38
[http://dx.doi.org/10.1093/nar/gkw1143] [PMID: 27899629]
[174]
Shen Y, Cohen JL, Nicoloro SM, et al. CRISPR-delivery particles targeting nuclear receptor-interacting protein 1 (Nrip1) in adipose cells to enhance energy expenditure. J Biol Chem 2018; 293(44): 17291-305.
[http://dx.doi.org/10.1074/jbc.RA118.004554] [PMID: 30190322]
[175]
Li X, Aghaamoo M, Liu S, Lee DH, Lee AP. Lipoplex-mediated single-cell transfection via droplet microfluidics. Small 2018; 14(40)e1802055
[http://dx.doi.org/10.1002/smll.201802055] [PMID: 30199137]
[176]
Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem 2017; 28(4): 957-67.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00676] [PMID: 28215090]
[177]
Cheng WJ, Chen LC, Ho HO, Lin HL, Sheu MT. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy. Int J Nanomedicine 2018; 13: 7079-94.
[http://dx.doi.org/10.2147/IJN.S181440] [PMID: 30464460]
[178]
Li Y, Li AC, Xu Q. Intracellular delivery of His-tagged genome-editing proteins enabled by nitrilotriacetic acid-containing lipidoid nanoparticles. Adv Healthc Mater 2019; 8(6)e1800996
[http://dx.doi.org/10.1002/adhm.201800996] [PMID: 30565897]
[179]
Rui Y, Wilson DR, Sanders K, Green JJ. Reducible branched ester-amine quadpolymers (rBEAQs) codelivering plasmid DNA and RNA oligonucleotides enable CRISPR/Cas9 genome editing. ACS Appl Mater Interfaces 2019; 11(11): 10472-80.
[http://dx.doi.org/10.1021/acsami.8b20206] [PMID: 30794383]
[180]
Chin JS, Chooi WH, Wang H, Ong W, Leong KW, Chew SY. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing. Acta Biomater 2019; 90: 60-70.
[http://dx.doi.org/10.1016/j.actbio.2019.04.020] [PMID: 30978509]
[181]
Lu B, Javidi-Parsijani P, Makani V, et al. Delivering SaCas9 mRNA by lentivirus-like bio Nano particles for transient expression and efficient genome editing Nucleic Acids Res 2019; 7. 47 (8): 44.
[http://dx.doi.org/10.1093/nar/gkz093] [PMID: 30759231]
[182]
Li J, Røise JJ, Zhang J, et al. A novel fluorescent surfactant enhances the delivery of the Cas9 ribonucleoprotein and enables the identification of edited cells. Chem Commun (Camb) 2019; 55(31): 4562-5.
[http://dx.doi.org/10.1039/C9CC00261H] [PMID: 30931453]
[183]
Sun D, Wang L, Mao X, et al. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli. Biotechnol Lett 2019; 41(2): 293-303.
[http://dx.doi.org/10.1007/s10529-018-02639-1] [PMID: 30547274]
[184]
Qiao J, Sun W, Lin S, Jin R, Ma L, Liu Y. Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan-coated red fluorescent protein. Chem Commun (Camb) 2019; 55(32): 4707-10.
[http://dx.doi.org/10.1039/C9CC00010K] [PMID: 30942216]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy