Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Design, Synthesis and Biopharmacological Profile Evaluation of New 2-((4- Chlorophenoxy)Methyl)-N-(Arylcarbamothioyl)Benzamides with Broad Spectrum Antifungal Activity

Author(s): Carmen Limban, Lia M. Diţu*, Luminița Măruțescu, Alexandru V. Missir, Mariana C. Chifiriuc, Miron T. Căproiu, Laurenţiu Morusciag, Cornel Chiriţă, Ana-Maria Udrea, Diana C. Nuţă and Speranta Avram

Volume 23, Issue 12, 2019

Page: [1365 - 1377] Pages: 13

DOI: 10.2174/1385272823666190621162950

Price: $65

Abstract

The emerging antifungal resistance represents a major challenge for the treatment of severe fungal infections, highlighting the need to develop novel and efficient antifungal compounds. This study aimed to synthesize new title compounds and screen them for their antifungal activity in order to generate highly accurate structure - activity relationships of 2-((4-chlorophenoxy)methyl)-N-(arylcarbamothioyl)benzamides and their de novo derivatives and to unveil some of their mechanisms of action by flow cytometry and fluorescence microscopy. The presence of functional groups was confirmed for nine new 2-((4- chlorophenoxy) methyl)-N-(arylcarbamothioyl)benzamides, using experimental and in silico methods. The antifungal activity was assessed against a broad spectrum of 26 yeast and filamentous fungal strains, using qualitative and quantitative assays. The results showed that Candida kefyr has been the most susceptible to all tested compounds, while 1b and 1f induced a strong inhibitory effect on the filamentous fungi Alternaria rubi, Aspergillus ochraceus and A. niger strains growth. The derivative 1c in subinhibitory concentrations alsoincreased the susceptibility of Candida albicans clinical strains to azoles. Predicted drug likeness and pharmacokinetics profiles of most active compounds were compared with the standard antifungal ketoconazole. Furthermore, the potentially more potent 1c and 1f derivatives were designed and studied regarding the chemical structure-biological activity relationship and pharmacokinetics profiles versus ketoconazole. The study confirms that the new benzamide derivatives exhibited an improved pharmacokinetics profile and a good antifungal activity, acting at least by increasing membrane permeability of fungal cells. Our results are recommending them as promising candidates for the development of novel therapeutic alternatives.

Keywords: New benzamides, NMR spectra, yeasts, filamentous fungi, minimal inhibitory concentration, SAR, predicted ADMET.

« Previous
Graphical Abstract

[1]
Saeed, A.; Zaib, S.; Pervez, A.; Mumtaz, A.; Shahid, M.; Iqbal, J. Synthesis, molecular docking studies, and in vitro screening of sulfanilamide-thiourea hybrids as antimicrobial and urease inhibitors. Med. Chem. Res., 2012, 22, 3653-3662.
[http://dx.doi.org/10.1007/s00044-012-0376-4]
[2]
Küçükgüzel, I.; Tatar, E.; Küçükgüzel, S.G.; Rollas, S.; De Clercq, E. Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur. J. Med. Chem., 2008, 43(2), 381-392.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.010] [PMID: 17583388]
[3]
Saeed, S.; Rashid, N.; Jones, P.; Hussain, R.; Bhatti, M. Synthesis, spectroscopic characterization, crystal structure and antifungal activity of thiourea derivatives containing a thiazole moiety. Open Chem., 2010, 8, 550-558.
[http://dx.doi.org/10.2478/s11532-010-0014-2]
[4]
Liu, J.; Yang, S.; Li, X.; Fan, H.; Bhadury, P.; Xu, W.; Wu, J.; Wang, Z. Synthesis and antiviral bioactivity of chiral thioureas containing leucine and phosphonate moieties. Molecules, 2010, 15(8), 5112-5123.
[http://dx.doi.org/10.3390/molecules15085112] [PMID: 20714289]
[5]
Chen, M.H.; Chen, Z.; Song, B.A.; Bhadury, P.S.; Yang, S.; Cai, X.J.; Hu, D.Y.; Xue, W.; Zeng, S. Synthesis and antiviral activities of chiral thiourea derivatives containing an α-aminophosphonate moiety. J. Agric. Food Chem., 2009, 57(4), 1383-1388.
[http://dx.doi.org/10.1021/jf803215t] [PMID: 19199594]
[6]
Duan, L.P.; Xue, J.; Xu, L.L.; Zhang, H.B. Synthesis 1-acyl-3-(2′-aminophenyl) thioureas as anti-intestinal nematode prodrugs. Molecules, 2010, 15(10), 6941-6947.
[http://dx.doi.org/10.3390/molecules15106941] [PMID: 20938404]
[7]
Sunduru, N.; Srivastava, K.; Rajakumar, S.; Puri, S.K.; Saxena, J.K.; Chauhan, P.M. Synthesis of novel thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-aminoquinoline as potent antimalarials. Bioorg. Med. Chem. Lett., 2009, 19(9), 2570-2573.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.026] [PMID: 19339178]
[8]
Alagarsamy, V.; Murugesan, S. Synthesis and pharmacological evaluation of some 3-(4-methoxyphenyl)-2-substitutedamino-quinazolin-4(3H)-ones as analgesic and anti-inflammatory agents. Chem. Pharm. Bull. (Tokyo), 2007, 55(1), 76-80.
[http://dx.doi.org/10.1248/cpb.55.76] [PMID: 17202705]
[9]
Lee, Y.R.; Hwang, J.K.; Lee, H.S.; Cheon, Y.J.; Ryu, J.H.; Lee, S.I.; Kwak, H.B.; Lee, S.M.; Kim, J.S.; Park, J.W.; Jeon, R.; Park, B.H. SPA0355, a thiourea analogue, inhibits inflammatory responses and joint destruction in fibroblast-like synoviocytes and mice with collagen-induced arthritis. Br. J. Pharmacol., 2011, 164(2b), 794-806.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01441.x] [PMID: 21501144]
[10]
Çelen, A.Ö.; Kaymakçioğlu, B.; Gümrü, S.; Toklu, H.Z.; Aricioğlu, F. Synthesis and anticonvulsant activity of substituted thiourea derivatives. Marmara Pharm. J., 2011, 15, 43-47.
[http://dx.doi.org/10.12991/201115430]
[11]
Chalina, E.; Chakarova, L. Synthesis, hypotensive and antiarrhythmic activities of 3-alkyl-1-(2-hydroxy-5,8-dimethoxy-1,2,3,4-tetrahydro-3-naphthalenyl)ureas or thioureas and their guanidine analogues. Eur. J. Med. Chem., 1998, 33, 975-983.
[http://dx.doi.org/10.1016/S0223-5234(99)80022-1]
[12]
Mahato, A.K.; Bhattacharya, S.; Shanthi, N. Design synthesis and glucose-6-phosphatase inhibitory activity of diaminoguanidine analogues of 3-guanidinopropionic acid and amino substituted (pyridin-2-yl)thiourea derivatives. J. Pharm. Sci. Res., 2011, 31, 896-902.
[13]
Yonova, P.A.; Stoilkova, G.M. Synthesis and biological activity of urea and thiourea derivatives from 2-aminoheterocyclic compounds. J. Plant Growth Regul., 2005, 23, 280-291.
[http://dx.doi.org/10.1007/s00344-003-0054-3]
[14]
Saturnino, C.; D’Auria, M.; Paesano, N.; Saponiero, D.; Cioffi, G.; Buonerba, M.; De Martino, G. Antioxidant activity of thioureidic derivatives I. Farmaco, 2003, 58(9), 823-828.
[http://dx.doi.org/10.1016/S0014-827X(03)00139-3] [PMID: 13679175]
[15]
Venkatesh, P.; Pandeya, S.N. Synthesis and anti-oxidant activity of some N-(anilinocarbonothioyl)benzamide and heterocyclic based thiourea derivatives. Int. J. Chem Tech Res., 2009, 1, 733-741.
[16]
Liu, G.H.; Xue, Y.N.; Yao, M.; Fang, H.B.; Yu, H. Synthesis crystal structure and herbicidal activity of N-(7-chloro-5-ethoxy-2H-[124]-thiadiazolo[23-a]pyrimidin-2-ylidene)-2-(24-dichlorophenoxy)propenamide. Chinese J. Struct. Chem., 2007, 26, 450-456.
[17]
Patel, A.G.; Raval, K.N.; Patel, S.P.; Patel, K.S.; Patel, S.V. Review on benzothiazole including synthetic and pharmacological activity. J. Pharm. Res., 2012, 1, 1-4.
[18]
Kachhadia, V.V.; Patel, M.R.; Joshi, H.S. Heterocyclic systems containing S/N regioselective nucleophilic competition: Facile synthesis antitubercular and antimicrobial activity of thiohydantoins and iminothiazolidinones containing the benzo[b]thiophene moiety. J. Serb. Chem. Soc., 2005, 70, 153-161.
[http://dx.doi.org/10.2298/JSC0502153K]
[19]
Thakar, K.M.; Paghdar, D.J.; Chovatia, P.T.; Joshi, H.S. Synthesis of thiourea derivatives bearing the benzo[b]thiophene nucleus as potential antimicrobial agents. J. Serb. Chem. Soc., 2005, 70, 807-815.
[http://dx.doi.org/10.2298/JSC0506807T]
[20]
Saeed, A.; Zaman, S.; Jamil, M.; Mirza, B. Synthesis and antifungal activity of some novel N-(4-phenyl-3-aroylthiazol-2(3H)-ylidene) substituted benzamides. Turk. J. Chem., 2008, 32, 585-592.
[21]
Arslan, H.; Duran, N.; Borekci, G.; Koray Ozer, C.; Akbay, C. Antimicrobial activity of some thiourea derivatives and their nickel and copper complexes. Molecules, 2009, 14(1), 519-527.
[http://dx.doi.org/10.3390/molecules14010519] [PMID: 19169199]
[22]
Avram, S.; Mernea, M.; Borcan, F.; Mihailescu, D. Evaluation of the therapeutic properties of Mastoparan- and Sifuvirtide- Derivative Antimicrobial Peptides using chemical structure-function relationship - in vivo and in silico Approaches. Curr. Drug Deliv., 2016, 13(2), 202-210.
[http://dx.doi.org/10.2174/1567201813666151113122139] [PMID: 26563942]
[23]
Avram, S.; Duda-Seiman, D.; Borcan, F.; Radu, B.; Duda-Seiman, C.; Mihailescu, D. Evaluation of antimicrobial activity of new mastoparan derivatives using QSAR and computational mutagenesis. Int. J. Pept. Res. Ther., 2011, 17, 7-17.
[http://dx.doi.org/10.1007/s10989-010-9235-7]
[24]
Avram, S.; Buiu, C.; Borcan, F.; Milac, A.L. More effective antimicrobial mastoparan derivatives, generated by 3D-QSAR-Almond and computational mutagenesis. Mol. Biosyst., 2012, 8(2), 587-594.
[http://dx.doi.org/10.1039/C1MB05297G] [PMID: 22086548]
[25]
Kemegne, G.A.; Mkounga, P.; Essia Ngang, J.J.; Sado Kamdem, S.L.; Nkengfack, A.E. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii. BMC Microbiol., 2017, 17(1), 41.
[http://dx.doi.org/10.1186/s12866-017-0954-1] [PMID: 28228111]
[26]
Montes, R.C.; Perez, A.L.; Medeiros, C.I.; Araújo, M.O.; Lima, E.O.; Scotti, M.T.; Sousa, D.P. Synthesis, antifungal evaluation and in silico study of N-(4-Halobenzyl)amides. Molecules, 2016, 21(12), 14418-14433.
[http://dx.doi.org/10.3390/molecules21121716] [PMID: 27983602]
[27]
Gallucci, M.N.; Carezzano, M.E.; Oliva, M.M.; Demo, M.S.; Pizzolitto, R.P.; Zunino, M.P.; Zygadlo, J.A.; Dambolena, J.S.J. In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: A quantitative structure-activity relationship analysis. J. Appl. Microbiol., 2014, 116(4), 795-804.
[http://dx.doi.org/10.1111/jam.12432] [PMID: 24387763]
[28]
Reddy, G.M.; Garcia, J.R.; Reddy, V.H.; de Andrade, A.M.; Camilo, A., Jr; Pontes Ribeiro, R.A.; de Lazaro, S.R. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives. Eur. J. Med. Chem., 2016, 123, 508-513.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.062] [PMID: 27494167]
[29]
Migahed, M.A.; Al-Sabagh, A.M.; Khamis, E.A.; Abd-EL-Raouf, M.; Zaki, E.G. Antimicrobial activity and quantum chemical calculations of Pyrazol-2,3-Dihydrothiazole sugar derivatives. Chem. Mater. Res., 2014, 6, 46-54.
[30]
Limban, C.; Chifiriuc, M.C.; Missir, A.V.; Chiriţă, I.C.; Bleotu, C. Antimicrobial activity of some new thioureides derived from 2-(4-chlorophenoxymethyl)benzoic acid. Molecules, 2008, 13(3), 567-580.
[http://dx.doi.org/10.3390/molecules13030567] [PMID: 18463566]
[31]
Limban, C.; Măruţescu, L.; Chifiriuc, M.C. Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives. Molecules, 2011, 16(9), 7593-7607.
[http://dx.doi.org/10.3390/molecules16097593] [PMID: 21900862]
[32]
Limban, C.; Missir, A.V.; Chiriță, I.C.; Nițulescu, G.M.; Căproiu, M.T.; Chifiriuc, M.C.; Israil, A.M. Synthesis and antimicrobial properties of new 2-((4-ethylphenoxy)methyl)benzoylthioureas. Chem. Pap., 2011, 65, 60-69.
[http://dx.doi.org/10.2478/s11696-010-0092-9]
[33]
Limban, C.; Missir, A.V.; Fahelelbom, K.M.; Al-Tabakha, M.M.; Caproiu, M.T.; Sadek, B.; Sadek, B. Novel N-phenylcarbamothioylbenzamides with anti-inflammatory activity and prostaglandin E2 inhibitory properties. Drug Des. Devel. Ther., 2013, 7, 883-892.
[PMID: 24039398]
[34]
Wiederhold, N.P. Antifungal resistance: Current trends and future strategies to combat. Infect. Drug Resist., 2017, 10, 249-259.
[http://dx.doi.org/10.2147/IDR.S124918] [PMID: 28919789]
[35]
Lee, H.; Lee, D.G. Novel approaches for efficient antifungal drug action. J. Microbiol. Biotechnol., 2018, 28(11), 1771-1781.
[PMID: 30178649]
[36]
Prasad, R.; Shah, A.H.; Rawal, M.K. Antifungals: Mechanism of action and drug resistance. Adv. Exp. Med. Biol., 2016, 892, 327-349.
[http://dx.doi.org/10.1007/978-3-319-25304-6_14] [PMID: 26721281]
[37]
Revie, N.M.; Iyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol., 2018, 45, 70-76.
[http://dx.doi.org/10.1016/j.mib.2018.02.005] [PMID: 29547801]
[38]
Scorzoni, L.; de Paula, E. Silva, A.C.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M. Antifungal Therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8, 36.
[http://dx.doi.org/10.3389/fmicb.2017.00036] [PMID: 28167935]
[39]
Lee, W.; Lee, D.G. A novel mechanism of fluconazole: Fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Microbiology, 2018, 164(2), 194-204.
[http://dx.doi.org/10.1099/mic.0.000589] [PMID: 29393017]
[40]
Ahmad, A.; Ahmad, A.; Sudhakar, R.; Varshney, H.; Subbarao, N.; Ansari, S.; Rauf, A.; Khan, A.U. Designing, synthesis, and antimicrobial action of oxazoline and thiazoline derivatives of fatty acid esters. J. Biomol. Struct. Dyn., 2017, 35(15), 3412-3431.
[http://dx.doi.org/10.1080/07391102.2016.1255260] [PMID: 27801287]
[41]
Leonard, M. Molinspiration Cheminformatics [Internet Molinspiration.com, 2018 http://www.molinspiration.com [Accessed January 8, 2018] .
[42]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[43]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[44]
Yosa, J.; Blanco, M.; Acevedo, O.; Lareo, L.R. Molecular orbital differentiation of agonist and antagonist activity in the GlycineB-iGluR-NMDA receptor. Eur. J. Med. Chem., 2009, 44(7), 2960-2966.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.013] [PMID: 19243863]
[45]
Stana, A.; Enache, A.; Vodnar, D.C.; Nastasă, C.; Benedec, D.; Ionuț, I.; Login, C.; Marc, G.; Oniga, O.; Tiperciuc, B. New Thiazolyl-triazole Schiff Bases: Synthesis and evaluation of the anti-candida potential. Molecules, 2016, 21(11), 1595.
[http://dx.doi.org/10.3390/molecules21111595] [PMID: 27879678]
[46]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19(10), 1446-1457.
[http://dx.doi.org/10.1023/A:1020444330011] [PMID: 12425461]
[47]
Ketoconazole, Livertox.nih.govhttps:// livertox.nih.gov/Ketoconazole.htm [Accessed January 8, 2018.
[48]
Stecoza, C.E.; Caproiu, M.T.; Draghici, C.; Chifiriuc, M.C.; Dracea, N.O. Synthesis, characterization and antimicrobial activity evaluation of some new derivatives of 6,11-dihydrodibenzo[b,e]thiepin 5,5-dioxide. REVISTA DE CHIMIE, 2009, 60(2), 137-141.
[49]
Liao, R.S.; Rennie, R.P.; Talbot, J.A. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother 199, 43(5), 1034-1041.
[http://dx.doi.org/10.1128/AAC.43.5.1034] ]
[50]
Shirazi, F.; Kontoyiannis, D.P. Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates. Virulence, 2015, 6(4), 385-394.
[http://dx.doi.org/10.1080/21505594.2015.1027479] [PMID: 26065323]
[51]
Pires, D. pkCSM, unimelb.edu.auhttp:// biosig.unimelb.edu.au/pkcsm [Accessed January 8, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy