Review Article

转移性结直肠癌:预后和预测因素

卷 27, 期 17, 2020

页: [2779 - 2791] 页: 13

弟呕挨: 10.2174/0929867326666190620110732

价格: $65

摘要

结直肠癌是世界上第三大最常见的癌症。在过去十年中,转移性结直肠癌(mCRC)患者的生存率通过生物药物的引入得到了改善。然而,在这种新的和动态的治疗背景下,关于预后和可预测因素的研究对于指导肿瘤医师进行有效的治疗以及提高对结直肠癌生物学的理解是很重要的。它们的识别是一个密集的研究领域,我们未来的目标将是描绘肿瘤特异性的“分子标记”,以预测疾病的临床过程和最佳治疗。在本报告中,我们描述了临床、病理和分子生物标志物,它们可以作为mCRC的预后或预测因素。

关键词: 结直肠癌,转移,预后因素,预测因素,生物治疗,化疗。

[1]
Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(3), 177-193.
[http://dx.doi.org/10.3322/caac.21395] [PMID: 28248415]
[2]
Fiorentini, G.; Sarti, D.; Aliberti, C.; Carandina, R.; Mambrini, A.; Guadagni, S. Multidisciplinary approach of colorectal cancer liver metastases. World J. Clin. Oncol., 2017, 8(3), 190-202.
[http://dx.doi.org/10.5306/wjco.v8.i3.190] [PMID: 28638789]
[3]
Klaver, C.E.; Gietelink, L.; Bemelman, W.A.; Wouters, M.W.; Wiggers, T.; Tollenaar, R.A.; Tanis, P.J. Dutch surgical colorectal audit group. locally advanced colon cancer: evaluation of current clinical practice and treatment outcomes at the population level. J. Natl. Compr. Canc. Netw., 2017, 15(2), 181-190.
[http://dx.doi.org/10.6004/jnccn.2017.0019] [PMID: 28188188]
[4]
Nappi, A.; Berretta, M.; Romano, C.; Tafuto, S.; Cassata, A.; Casaretti, R.; Silvestro, L.; De Divitiis, C.; Alessandrini, L.; Fiorica, F.; Ottaiano, A.; Nasti, G. Metastatic colorectal cancer: role of target therapies and future perspectives. Curr. Cancer Drug Targets, 2018, 18(5), 421-429.
[http://dx.doi.org/10.2174/1568009617666170] [PMID: 28183254]
[5]
Berretta, M.; Nasti, G.; De Diviitis, C. Safety and efficacy of oxaliplatin-based chemotherapy in the first line treatment of elderly patients affected by metastatic colorectal cancer. WCRJ, 2014, 1(2) e235
[6]
Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; Ciardiello, F.; D’Hoore, A.; Diaz-Rubio, E.; Douillard, J.Y.; Ducreux, M.; Falcone, A.; Grothey, A.; Gruenberger, T.; Haustermans, K.; Heinemann, V.; Hoff, P.; Köhne, C.H.; Labianca, R.; Laurent-Puig, P.; Ma, B.; Maughan, T.; Muro, K.; Normanno, N.; Österlund, P.; Oyen, W.J.; Papamichael, D.; Pentheroudakis, G.; Pfeiffer, P.; Price, T.J.; Punt, C.; Ricke, J.; Roth, A.; Salazar, R.; Scheithauer, W.; Schmoll, H.J.; Tabernero, J.; Taïeb, J.; Tejpar, S.; Wasan, H.; Yoshino, T.; Zaanan, A.; Arnold, D. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol., 2016, 27(8), 1386-1422.
[http://dx.doi.org/10.1093/annonc/mdw235] [PMID: 27380959]
[7]
Edler, L.; Heim, M.E.; Quintero, C.; Brummer, T.; Queisser, W. Prognostic factors of advanced colorectal cancer patients. Eur. J. Cancer Clin. Oncol., 1986, 22(10), 1231-1237.
[http://dx.doi.org/10.1016/0277-5379(86)90325-1] [PMID: 3816914]
[8]
Kemeny, N.; Braun, D.W., Jr Prognostic factors in advanced colorectal carcinoma. Importance of lactic dehydrogenase level, performance status, and white blood cell count. Am. J. Med., 1983, 74(5), 786-794.
[http://dx.doi.org/10.1016/0002-9343(83)91066-5] [PMID: 6837602]
[9]
Graf, W.; Glimelius, B.; Påhlman, L.; Bergström, R. Determinants of prognosis in advanced colorectal cancer. Eur. J. Cancer, 1991, 27(9), 1119-1123.
[http://dx.doi.org/10.1016/0277-5379(91)90307-Y] [PMID: 1835620]
[10]
Steinberg, J.; Erlichman, C.; Gadalla, T.; Fine, S.; Wong, A. Prognostic factors in patients with metastatic colorectal cancer receiving 5-fluorouracil and folinic acid. Eur. J. Cancer, 1992, 28A(11), 1817-1820.
[http://dx.doi.org/10.1016/0959-8049(92)90011-P] [PMID: 1389517]
[11]
Webb, A.; Scott-Mackie, P.; Cunningham, D.; Norman, A.; Andreyev, J.; O’Brien, M.; Bensted, J. The prognostic value of CEA, beta HCG, AFP, CA125, CA19-9 and C-erb B-2, beta HCG immunohistochemistry in advanced colorectal cancer. Ann. Oncol., 1995, 6(6), 581-587.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a059248] [PMID: 8573538]
[12]
Ghidini, M.; Petrelli, F.; Tomasello, G. Right versus left colon cancer: resectable and metastatic disease. Curr. Treat. Options Oncol., 2018, 19(6), 31.
[http://dx.doi.org/10.1007/s11864-018-0544-y] [PMID: 29796712]
[13]
Yokoyama, S.; Mitsuoka, M.; Kinugasa, T.; Hashiguchi, T.; Matsumoto, R.; Murakami, D.; Nishi, T.; Yoshiyama, K.; Kashihara, M.; Takamori, S.; Akagi, Y. Survival after initial lung metastasectomy for metastatic colorectal cancer in the modern chemotherapeutic era. BMC Surg., 2017, 17(1), 54.
[http://dx.doi.org/10.1186/s12893-017-0252-8] [PMID: 28486937]
[14]
Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol., 1995, 13(1), 8-10.
[http://dx.doi.org/10.1200/JCO.1995.13.1.8] [PMID: 7799047]
[15]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[16]
Italiano, A.; Saint-Paul, M.C.; Caroli-Bosc, F.X.; François, E.; Bourgeon, A.; Benchimol, D.; Gugenheim, J.; Michiels, J.F. Epidermal growth factor receptor (EGFR) status in primary colorectal tumors correlates with EGFR expression in related metastatic sites: biological and clinical implications. Ann. Oncol., 2005, 16(9), 1503-1507.
[http://dx.doi.org/10.1093/annonc/mdi282] [PMID: 15980160]
[17]
Uhlyarik, A.; Piurko, V.; Vizkeleti, L.; Pápai, Z.; Rásó, E.; Lahm, E.; Kiss, E.; Sikter, M.; Vachaja, J.; Kenessey, I.; Tímár, J. EGFR protein expression of KRAS wild-type colorectal cancer: predictive value of the sidedness for efficacy of anti-EGFR therapy. Pathol. Oncol. Res., 2019.
[http://dx.doi.org/10.1007/s12253-018-00572-2] [PMID: 30612313]
[18]
Vacante, M.; Borzì, A.M.; Basile, F.; Biondi, A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J. Clin. Cases, 2018, 6(15), 869-881.
[http://dx.doi.org/10.12998/wjcc.v6.i15.869] [PMID: 30568941]
[19]
Ålgars, A.; Sundström, J.; Lintunen, M.; Jokilehto, T.; Kytölä, S.; Kaare, M.; Vainionpää, R.; Orpana, A.; Österlund, P.; Ristimäki, A.; Carpen, O.; Ristamäki, R. EGFR gene copy number predicts response to anti-EGFR treatment in RAS wild type and RAS/BRAF/PIK3CA wild type metastatic colorectal cancer. Int. J. Cancer, 2017, 140(4), 922-929.
[http://dx.doi.org/10.1002/ijc.30507] [PMID: 27879995]
[20]
Khelwatty, S.; Essapen, S.; Bagwan, I.; Green, M.; Seddon, A.; Modjtahedi, H. The impact of co-expression of wild-type EGFR and its ligands determined by immunohistochemistry for response to treatment with cetuximab in patients with metastatic colorectal cancer. Oncotarget, 2017, 8(5), 7666-7677.
[http://dx.doi.org/10.18632/oncotarget.13835] [PMID: 28032593]
[21]
Pentheroudakis, G.; Kotoula, V.; De Roock, W.; Kouvatseas, G.; Papakostas, P.; Makatsoris, T.; Papamichael, D.; Xanthakis, I.; Sgouros, J.; Televantou, D.; Kafiri, G.; Tsamandas, A.C.; Razis, E.; Galani, E.; Bafaloukos, D.; Efstratiou, I.; Bompolaki, I.; Pectasides, D.; Pavlidis, N.; Tejpar, S.; Fountzilas, G. Biomarkers of benefit from cetuximab-based therapy in metastatic colorectal cancer: interaction of EGFR ligand expression with RAS/RAF, PIK3CA genotypes. BMC Cancer, 2013, 13, 49.
[http://dx.doi.org/10.1186/1471-2407-13-49] [PMID: 23374602]
[22]
de Reyniès, A.; Boige, V.; Milano, G.; Faivre, J.; Laurent-Puig, P. KRAS mutation signature in colorectal tumors significantly overlaps with the cetuximab response signature. J. Clin. Oncol., 2008, 26(13), 2228-2230.
[http://dx.doi.org/10.1200/JCO.2007.15.9186] [PMID: 18445856]
[23]
Wolff, R.K.; Hoffman, M.D.; Wolff, E.C.; Herrick, J.S.; Sakoda, L.C.; Samowitz, W.S.; Slattery, M.L. Mutation analysis of adenomas and carcinomas of the colon: Early and late drivers. Genes Chromosomes Cancer, 2018, 57(7), 366-376.
[http://dx.doi.org/10.1002/gcc.22539] [PMID: 29575536]
[24]
Fujiyoshi, K.; Yamamoto, G.; Takahashi, A.; Arai, Y.; Yamada, M.; Kakuta, M.; Yamaguchi, K.; Akagi, Y.; Nishimura, Y.; Sakamoto, H.; Akagi, K. High concordance rate of KRAS/BRAF mutations and MSI-H between primary colorectal cancer and corresponding metastases. Oncol. Rep., 2017, 37(2), 785-792.
[http://dx.doi.org/10.3892/or.2016.5323] [PMID: 28000889]
[25]
Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Oliner, K.S.; Wolf, M.; Gansert, J. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol., 2010, 28(31), 4697-4705.
[http://dx.doi.org/10.1200/JCO.2009.27.4860] [PMID: 20921465]
[26]
Van Cutsem, E.; Köhne, C.H.; Hitre, E.; Zaluski, J.; Chang Chien, C.R.; Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; Roh, J.K.; Folprecht, G.; Ruff, P.; Stroh, C.; Tejpar, S.; Schlichting, M.; Nippgen, J.; Rougier, P. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med., 2009, 360(14), 1408-1417.
[http://dx.doi.org/10.1056/NEJMoa0805019] [PMID: 19339720]
[27]
Bokemeyer, C.; Bondarenko, I.; Makhson, A.; Hartmann, J.T.; Aparicio, J.; de Braud, F.; Donea, S.; Ludwig, H.; Schuch, G.; Stroh, C.; Loos, A.H.; Zubel, A.; Koralewski, P. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol., 2009, 27(5), 663-671.
[http://dx.doi.org/10.1200/JCO.2008.20.8397] [PMID: 19114683]
[28]
Bokemeyer, C.; Van Cutsem, E.; Rougier, P.; Ciardiello, F.; Heeger, S.; Schlichting, M.; Celik, I.; Köhne, C.H. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur. J. Cancer, 2012, 48(10), 1466-1475.
[http://dx.doi.org/10.1016/j.ejca.2012.02.057] [PMID: 22446022]
[29]
Modest, D.P.; Reinacher-Schick, A.; Stintzing, S.; Giessen, C.; Tannapfel, A.; Laubender, R.P.; Brodowicz, T.; Knittelfelder, R.; Vrbanec, D.; Schmiegel, W.; Heinemann, V.; Zielinski, C.C. Cetuximab-based or bevacizumab-based first-line treatment in patients with KRAS p.G13D-mutated metastatic colorectal cancer: a pooled analysis. Anticancer Drugs, 2012, 23(6), 666-673.
[http://dx.doi.org/10.1097/CAD.0b013e328352ff1d] [PMID: 22441566]
[30]
Maughan, T.S.; Adams, R.A.; Smith, C.G.; Meade, A.M.; Seymour, M.T.; Wilson, R.H.; Idziaszczyk, S.; Harris, R.; Fisher, D.; Kenny, S.L.; Kay, E.; Mitchell, J.K.; Madi, A.; Jasani, B.; James, M.D.; Bridgewater, J.; Kennedy, M.J.; Claes, B.; Lambrechts, D.; Kaplan, R.; Cheadle, J.P. MRC COIN Trial Investigators. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet, 2011, 377(9783), 2103-2114.
[http://dx.doi.org/10.1016/S0140-6736(11)60613-2] [PMID: 21641636]
[31]
Roth, A.D.; Tejpar, S.; Delorenzi, M.; Yan, P.; Fiocca, R.; Klingbiel, D.; Dietrich, D.; Biesmans, B.; Bodoky, G.; Barone, C.; Aranda, E.; Nordlinger, B.; Cisar, L.; Labianca, R.; Cunningham, D.; Van Cutsem, E.; Bosman, F. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J. Clin. Oncol., 2010, 28(3), 466-474.
[http://dx.doi.org/10.1200/JCO.2009.23.3452] [PMID: 20008640]
[32]
Prahallad, A.; Sun, C.; Huang, S.; Di Nicolantonio, F.; Salazar, R.; Zecchin, D.; Beijersbergen, R.L.; Bardelli, A.; Bernards, R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012, 483(7387), 100-103.
[http://dx.doi.org/10.1038/nature10868] [PMID: 22281684]
[33]
Del Carmen, S.; Sayagués, J.M.; Bengoechea, O.; Anduaga, M.F.; Alcazar, J.A.; Gervas, R.; García, J.; Orfao, A.; Bellvis, L.M.; Sarasquete, M.E.; Del Mar Abad, M. Spatio-temporal tumor heterogeneity in metastatic CRC tumors: a mutational-based approach. Oncotarget, 2018, 9(76), 34279-34288.
[http://dx.doi.org/10.18632/oncotarget.26081] [PMID: 30344942]
[34]
Tol, J.; Koopman, M.; Cats, A.; Rodenburg, C.J.; Creemers, G.J.; Schrama, J.G.; Erdkamp, F.L.; Vos, A.H.; van Groeningen, C.J.; Sinnige, H.A.; Richel, D.J.; Voest, E.E.; Dijkstra, J.R.; Vink-Börger, M.E.; Antonini, N.F.; Mol, L.; van Krieken, J.H.; Dalesio, O.; Punt, C.J. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med., 2009, 360(6), 563-572.
[http://dx.doi.org/10.1056/NEJMoa0808268] [PMID: 19196673]
[35]
Di Nicolantonio, F.; Martini, M.; Molinari, F.; Sartore-Bianchi, A.; Arena, S.; Saletti, P.; De Dosso, S.; Mazzucchelli, L.; Frattini, M.; Siena, S.; Bardelli, A. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(35), 5705-5712.
[http://dx.doi.org/10.1200/JCO.2008.18.0786] [PMID: 19001320]
[36]
Seymour, M.T.; Brown, S.R.; Middleton, G.; Maughan, T.; Richman, S.; Gwyther, S.; Lowe, C.; Seligmann, J.F.; Wadsley, J.; Maisey, N.; Chau, I.; Hill, M.; Dawson, L.; Falk, S.; O’Callaghan, A.; Benstead, K.; Chambers, P.; Oliver, A.; Marshall, H.; Napp, V.; Quirke, P. Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol., 2013, 14(8), 749-759.
[http://dx.doi.org/10.1016/S1470-2045(13)70163-3] [PMID: 23725851]
[37]
Atreya, C.E.; Sangale, Z.; Xu, N.; Matli, M.R.; Tikishvili, E.; Welbourn, W.; Stone, S.; Shokat, K.M.; Warren, R.S. PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival. Cancer Med., 2013, 2(4), 496-506.
[http://dx.doi.org/10.1002/cam4.97] [PMID: 24156022]
[38]
Wang, Z.H.; Gao, Q.Y.; Fang, J.Y. Loss of PTEN expression as a predictor of resistance to anti-EGFR monoclonal therapy in metastatic colorectal cancer: evidence from retrospective studies. Cancer Chemother. Pharmacol., 2012, 69(6), 1647-1655.
[http://dx.doi.org/10.1007/s00280-012-1886-y] [PMID: 22610356]
[39]
Razis, E.; Pentheroudakis, G.; Rigakos, G.; Bobos, M.; Kouvatseas, G.; Tzaida, O.; Makatsoris, T.; Papakostas, P.; Bai, M.; Goussia, A.; Samantas, E.; Papamichael, D.; Romanidou, O.; Efstratiou, I.; Tsolaki, E.; Psyrri, A.; De Roock, W.; Bafaloukos, D.; Klouvas, G.; Tejpar, S.; Kalogeras, K.T.; Pectasides, D.; Fountzilas, G. EGFR gene gain and PTEN protein expression are favorable prognostic factors in patients with KRAS wild-type metastatic colorectal cancer treated with cetuximab. J. Cancer Res. Clin. Oncol., 2014, 140(5), 737-748.
[http://dx.doi.org/10.1007/s00432-014-1626-2] [PMID: 24595598]
[40]
Ogino, S.; Lochhead, P.; Giovannucci, E.; Meyerhardt, J.A.; Fuchs, C.S.; Chan, A.T. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology. Oncogene, 2014, 33(23), 2949-2955.
[http://dx.doi.org/10.1038/onc.2013.244] [PMID: 23792451]
[41]
Vitiello, P.P.; Cardone, C.; Martini, G.; Ciardiello, D.; Belli, V.; Matrone, N.; Barra, G.; Napolitano, S.; Della Corte, C.; Turano, M.; Furia, M.; Troiani, T.; Morgillo, F.; De Vita, F.; Ciardiello, F.; Martinelli, E. Receptor tyrosine kinase-dependent PI3K activation is an escape mechanism to vertical suppression of the EGFR/RAS/MAPK pathway in KRAS-mutated human colorectal cancer cell lines. J. Exp. Clin. Cancer Res., 2019, 38(1), 41.
[http://dx.doi.org/10.1186/s13046-019-1035-0] [PMID: 30691487]
[42]
Wu, S.; Gan, Y.; Wang, X.; Liu, J.; Li, M.; Tang, Y. PIK3CA mutation is associated with poor survival among patients with metastatic colorectal cancer following anti-EGFR monoclonal antibody therapy: a meta-analysis. J. Cancer Res. Clin. Oncol., 2013, 139(5), 891-900.
[http://dx.doi.org/10.1007/s00432-013-1400-x] [PMID: 23435830]
[43]
Cappuzzo, F.; Finocchiaro, G.; Rossi, E.; Jänne, P.A.; Carnaghi, C.; Calandri, C.; Bencardino, K.; Ligorio, C.; Ciardiello, F.; Pressiani, T.; Destro, A.; Roncalli, M.; Crino, L.; Franklin, W.A.; Santoro, A.; Varella-Garcia, M. EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. Ann. Oncol., 2008, 19(4), 717-723.
[http://dx.doi.org/10.1093/annonc/mdm492] [PMID: 17974556]
[44]
Wang, Z.; Erb, B. Receptors and cancer. Methods Mol. Biol., 2017, 1652, 3-35.
[http://dx.doi.org/10.1007/978-1-4939-7219-7_1] [PMID: 28791631]
[45]
Martin, V.; Landi, L.; Molinari, F.; Fountzilas, G.; Geva, R.; Riva, A.; Saletti, P.; De Dosso, S.; Spitale, A.; Tejpar, S.; Kalogeras, K.T.; Mazzucchelli, L.; Frattini, M.; Cappuzzo, F. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br. J. Cancer, 2013, 108(3), 668-675.
[http://dx.doi.org/10.1038/bjc.2013.4] [PMID: 23348520]
[46]
Sartore-Bianchi, A.; Trusolino, L.; Martino, C.; Bencardino, K.; Lonardi, S.; Bergamo, F.; Zagonel, V.; Leone, F.; Depetris, I.; Martinelli, E.; Troiani, T.; Ciardiello, F.; Racca, P.; Bertotti, A.; Siravegna, G.; Torri, V.; Amatu, A.; Ghezzi, S.; Marrapese, G.; Palmeri, L.; Valtorta, E.; Cassingena, A.; Lauricella, C.; Vanzulli, A.; Regge, D.; Veronese, S.; Comoglio, P.M.; Bardelli, A.; Marsoni, S.; Siena, S. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol., 2016, 17(6), 738-746.
[http://dx.doi.org/10.1016/S1470-2045(16)00150-9] [PMID: 27108243]
[47]
Yen, L.C.; Uen, Y.H.; Wu, D.C.; Lu, C.Y.; Yu, F.J.; Wu, I.C.; Lin, S.R.; Wang, J.Y. Activating KRAS mutations and overexpression of epidermal growth factor receptor as independent predictors in metastatic colorectal cancer patients treated with cetuximab. Ann. Surg., 2010, 251(2), 254-260.
[http://dx.doi.org/10.1097/SLA.0b013e3181bc9d96] [PMID: 20010090]
[48]
Douillard, J.Y.; Ostoros, G.; Cobo, M.; Ciuleanu, T.; McCormack, R.; Webster, A.; Milenkova, T. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br. J. Cancer, 2014, 110(1), 55-62.
[http://dx.doi.org/10.1038/bjc.2013.721] [PMID: 24263064]
[49]
Fenizia, F.; De Luca, A.; Pasquale, R.; Sacco, A.; Forgione, L.; Lambiase, M.; Iannaccone, A.; Chicchinelli, N.; Franco, R.; Rossi, A.; Morabito, A.; Rocco, G.; Piccirillo, M.C.; Normanno, N. EGFR mutations in lung cancer: from tissue testing to liquid biopsy. Future Oncol., 2015, 11(11), 1611-1623.
[http://dx.doi.org/10.2217/fon.15.23] [PMID: 26043215]
[50]
Knebel, F.H.; Bettoni, F.; da Fonseca, L.G.; Camargo, A.A.; Sabbaga, J.; Jardim, D.L. Circulating tumor DNA detection in the management of anti-EGFR therapy for advanced colorectal cancer. Front. Oncol., 2019, 9, 170.
[http://dx.doi.org/10.3389/fonc.2019.00170] [PMID: 30967998]
[51]
Vymetalkova, V.; Cervena, K.; Bartu, L.; Vodicka, P. Circulating cell-free DNA and colorectal cancer: a systematic review. Int. J. Mol. Sci., 2018, 19(11) E3356
[http://dx.doi.org/10.3390/ijms19113356] [PMID: 30373199]
[52]
Frattini, M.; Balestra, D.; Verderio, P.; Gallino, G.; Leo, E.; Sozzi, G.; Pierotti, M.A.; Daidone, M.G. Reproducibility of a semiquantitative measurement of circulating DNA in plasma from neoplastic patients. J. Clin. Oncol., 2005, 23(13), 3163-3164.
[http://dx.doi.org/10.1200/JCO.2005.05.430] [PMID: 15860889]
[53]
Diaz, L.A., Jr; Williams, R.T.; Wu, J.; Kinde, I.; Hecht, J.R.; Berlin, J.; Allen, B.; Bozic, I.; Reiter, J.G.; Nowak, M.A.; Kinzler, K.W.; Oliner, K.S.; Vogelstein, B. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature, 2012, 486(7404), 537-540.
[http://dx.doi.org/10.1038/nature11219] [PMID: 22722843]
[54]
Misale, S.; Yaeger, R.; Hobor, S.; Scala, E.; Janakiraman, M.; Liska, D.; Valtorta, E.; Schiavo, R.; Buscarino, M.; Siravegna, G.; Bencardino, K.; Cercek, A.; Chen, C.T.; Veronese, S.; Zanon, C.; Sartore-Bianchi, A.; Gambacorta, M.; Gallicchio, M.; Vakiani, E.; Boscaro, V.; Medico, E.; Weiser, M.; Siena, S.; Di Nicolantonio, F.; Solit, D.; Bardelli, A. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature, 2012, 486(7404), 532-536.
[http://dx.doi.org/10.1038/nature11156] [PMID: 22722830]
[55]
Rachiglio, A.M.; Esposito Abate, R.; Sacco, A.; Pasquale, R.; Fenizia, F.; Lambiase, M.; Morabito, A.; Montanino, A.; Rocco, G.; Romano, C.; Nappi, A.; Iaffaioli, R.V.; Tatangelo, F.; Botti, G.; Ciardiello, F.; Maiello, M.R.; De Luca, A.; Normanno, N. Limits and potential of targeted sequencing analysis of liquid biopsy in patients with lung and colon carcinoma. Oncotarget, 2016, 7(41), 66595-66605.
[http://dx.doi.org/10.18632/oncotarget.10704] [PMID: 27448974]
[56]
Venesio, T.; Siravegna, G.; Bardelli, A. Liquid biopsies for monitoring temporal genomic heterogeneity in breast and colon cancers. Pathobiology, 2018, 85(1-2), 146-154.
[http://dx.doi.org/10.1159/000473882] [PMID: 28614831]
[57]
Kocarnik, J.M.; Shiovitz, S.; Phipps, A.I. Molecular phenotypes of colorectal cancer and potential clinical applications. Gastroenterol. Rep. (Oxf.), 2015, 3(4), 269-276.
[http://dx.doi.org/10.1093/gastro/gov046] [PMID: 26337942]
[58]
Jenkins, M.A.; Hayashi, S.; O’Shea, A.M.; Burgart, L.J.; Smyrk, T.C.; Shimizu, D.; Waring, P.M.; Ruszkiewicz, A.R.; Pollett, A.F.; Redston, M.; Barker, M.A.; Baron, J.A.; Casey, G.R.; Dowty, J.G.; Giles, G.G.; Limburg, P.; Newcomb, P.; Young, J.P.; Walsh, M.D.; Thibodeau, S.N.; Lindor, N.M.; Lemarchand, L.; Gallinger, S.; Haile, R.W.; Potter, J.D.; Hopper, J.L.; Jass, J.R. Colon Cancer Family Registry. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study. Gastroenterology, 2007, 133(1), 48-56.
[http://dx.doi.org/10.1053/j.gastro.2007.04.044] [PMID: 17631130]
[59]
Yurgelun, M.B.; Kulke, M.H.; Fuchs, C.S.; Allen, B.A.; Uno, H.; Hornick, J.L.; Ukaegbu, C.I.; Brais, L.K.; McNamara, P.G.; Mayer, R.J.; Schrag, D.; Meyerhardt, J.A.; Ng, K.; Kidd, J.; Singh, N.; Hartman, A.R.; Wenstrup, R.J.; Syngal, S. Cancer susceptibility gene mutations in individuals with colorectal cancer. J. Clin. Oncol., 2017, 35(10), 1086-1095.
[http://dx.doi.org/10.1200/JCO.2016.71.0012] [PMID: 28135145]
[60]
Poynter, J.N.; Siegmund, K.D.; Weisenberger, D.J.; Long, T.I.; Thibodeau, S.N.; Lindor, N.; Young, J.; Jenkins, M.A.; Hopper, J.L.; Baron, J.A.; Buchanan, D.; Casey, G.; Levine, A.J.; Le Marchand, L.; Gallinger, S.; Bapat, B.; Potter, J.D.; Newcomb, P.A.; Haile, R.W.; Laird, P.W. Colon Cancer Family Registry Investigators. Molecular characterization of MSI-H colorectal cancer by MLHI promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening. Cancer Epidemiol. Biomarkers Prev., 2008, 17(11), 3208-3215.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0512] [PMID: 18990764]
[61]
Popat, S.; Hubner, R.; Houlston, R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol., 2005, 23(3), 609-618.
[http://dx.doi.org/10.1200/JCO.2005.01.086] [PMID: 15659508]
[62]
Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology, 2010, 138(6), 2073-2087. e3
[http://dx.doi.org/10.1053/j.gastro.2009.12.064] [PMID: 20420947]
[63]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A., Jr PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[64]
Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med., 2017, 377(25), 2500-2501.
[http://dx.doi.org/10.1056/NEJMc1713444] [PMID: 29262275]
[65]
George, T.J.; Frampton, G.M.; Sun, J. Tumor mutational burden as a potential biomarker for PD1/PD-L1 therapy in colorectal cancer. J. Clin. Oncol., 2016, 34(Suppl. 15), 3587-3587.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.3587]
[66]
Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; Huang, F.; He, Y.; Sun, J.; Tabori, U.; Kennedy, M.; Lieber, D.S.; Roels, S.; White, J.; Otto, G.A.; Ross, J.S.; Garraway, L.; Miller, V.A.; Stephens, P.J.; Frampton, G.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med., 2017, 9(1), 34.
[http://dx.doi.org/10.1186/s13073-017-0424-2] [PMID: 28420421]
[67]
Giannakis, M.; Mu, X.J.; Shukla, S.A.; Qian, Z.R.; Cohen, O.; Nishihara, R.; Bahl, S.; Cao, Y.; Amin-Mansour, A.; Yamauchi, M.; Sukawa, Y.; Stewart, C.; Rosenberg, M.; Mima, K.; Inamura, K.; Nosho, K.; Nowak, J.A.; Lawrence, M.S.; Giovannucci, E.L.; Chan, A.T.; Ng, K.; Meyerhardt, J.A.; Van Allen, E.M.; Getz, G.; Gabriel, S.B.; Lander, E.S.; Wu, C.J.; Fuchs, C.S.; Ogino, S.; Garraway, L.A. Genomic correlates of immune‐cell infiltrates in colorectal carcinoma. Cell Rep., 2016, 17(4), 1206.
[http://dx.doi.org/10.1016/j.celrep.2016.10.009] [PMID: 27760322]
[68]
Galon, J.; Mlecnik, B.; Bindea, G.; Angell, H.K.; Berger, A.; Lagorce, C.; Lugli, A.; Zlobec, I.; Hartmann, A.; Bifulco, C.; Nagtegaal, I.D.; Palmqvist, R.; Masucci, G.V.; Botti, G.; Tatangelo, F.; Delrio, P.; Maio, M.; Laghi, L.; Grizzi, F.; Asslaber, M.; D’Arrigo, C.; Vidal-Vanaclocha, F.; Zavadova, E.; Chouchane, L.; Ohashi, P.S.; Hafezi-Bakhtiari, S.; Wouters, B.G.; Roehrl, M.; Nguyen, L.; Kawakami, Y.; Hazama, S.; Okuno, K.; Ogino, S.; Gibbs, P.; Waring, P.; Sato, N.; Torigoe, T.; Itoh, K.; Patel, P.S.; Shukla, S.N.; Wang, Y.; Kopetz, S.; Sinicrope, F.A.; Scripcariu, V.; Ascierto, P.A.; Marincola, F.M.; Fox, B.A.; Pagès, F. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol., 2014, 232(2), 199-209.
[http://dx.doi.org/10.1002/path.4287] [PMID: 24122236]
[69]
Galon, J.; Pagès, F.; Marincola, F.M.; Angell, H.K.; Thurin, M.; Lugli, A.; Zlobec, I.; Berger, A.; Bifulco, C.; Botti, G.; Tatangelo, F.; Britten, C.M.; Kreiter, S.; Chouchane, L.; Delrio, P.; Arndt, H.; Asslaber, M.; Maio, M.; Masucci, G.V.; Mihm, M.; Vidal-Vanaclocha, F.; Allison, J.P.; Gnjatic, S.; Hakansson, L.; Huber, C.; Singh-Jasuja, H.; Ottensmeier, C.; Zwierzina, H.; Laghi, L.; Grizzi, F.; Ohashi, P.S.; Shaw, P.A.; Clarke, B.A.; Wouters, B.G.; Kawakami, Y.; Hazama, S.; Okuno, K.; Wang, E.; O’Donnell-Tormey, J.; Lagorce, C.; Pawelec, G.; Nishimura, M.I.; Hawkins, R.; Lapointe, R.; Lundqvist, A.; Khleif, S.N.; Ogino, S.; Gibbs, P.; Waring, P.; Sato, N.; Torigoe, T.; Itoh, K.; Patel, P.S.; Shukla, S.N.; Palmqvist, R.; Nagtegaal, I.D.; Wang, Y.; D’Arrigo, C.; Kopetz, S.; Sinicrope, F.A.; Trinchieri, G.; Gajewski, T.F.; Ascierto, P.A.; Fox, B.A. Cancer classification using the Immunoscore: a worldwide task force. J. Transl. Med., 2012, 10, 205.
[http://dx.doi.org/10.1186/1479-5876-10-205] [PMID: 23034130]
[70]
Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; Zinzindohoué, F.; Bruneval, P.; Cugnenc, P.H.; Trajanoski, Z.; Fridman, W.H.; Pagès, F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 2006, 313(5795), 1960-1964.
[http://dx.doi.org/10.1126/science.1129139] [PMID: 17008531]
[71]
Pagès, F.; Kirilovsky, A.; Mlecnik, B.; Asslaber, M.; Tosolini, M.; Bindea, G.; Lagorce, C.; Wind, P.; Marliot, F.; Bruneval, P.; Zatloukal, K.; Trajanoski, Z.; Berger, A.; Fridman, W.H.; Galon, J. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol., 2009, 27(35), 5944-5951.
[http://dx.doi.org/10.1200/JCO.2008.19.6147] [PMID: 19858404]
[72]
Boland, P.M.; Ma, W.W. Immunotherapy for colorectal cancer. Cancers (Basel), 2017, 9(5) E50
[http://dx.doi.org/10.3390/cancers9050050] [PMID: 28492495]
[73]
Ogino, S.; Chan, A.T.; Fuchs, C.S.; Giovannucci, E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut, 2011, 60(3), 397-411.
[http://dx.doi.org/10.1136/gut.2010.217182] [PMID: 21036793]
[74]
Ogino, S.; Nowak, J.A.; Hamada, T.; Phipps, A.I.; Peters, U.; Milner, D.A., Jr; Giovannucci, E.L.; Nishihara, R.; Giannakis, M.; Garrett, W.S.; Song, M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut, 2018, 67(6), 1168-1180.
[http://dx.doi.org/10.1136/gutjnl-2017-315537] [PMID: 29437869]
[75]
Ogino, S.; Nowak, J.A.; Hamada, T.; Milner, D.A., Jr; Nishihara, R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu. Rev. Pathol., 2019, 14, 83-103.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012818] [PMID: 30125150]
[76]
Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; Bot, B.M.; Morris, J.S.; Simon, I.M.; Gerster, S.; Fessler, E.; De Sousa E Melo, F.; Missiaglia, E.; Ramay, H.; Barras, D.; Homicsko, K.; Maru, D.; Manyam, G.C.; Broom, B.; Boige, V.; Perez-Villamil, B.; Laderas, T.; Salazar, R.; Gray, J.W.; Hanahan, D.; Tabernero, J.; Bernards, R.; Friend, S.H.; Laurent-Puig, P.; Medema, J.P.; Sadanandam, A.; Wessels, L.; Delorenzi, M.; Kopetz, S.; Vermeulen, L.; Tejpar, S. The consensus molecular subtypes of colorectal cancer. Nat. Med., 2015, 21(11), 1350-1356.
[http://dx.doi.org/10.1038/nm.3967] [PMID: 26457759]
[77]
Arnold, M.; Pandeya, N.; Byrnes, G.; Renehan, P.A.G.; Stevens, G.A.; Ezzati, P.M.; Ferlay, J.; Miranda, J.J.; Romieu, I.; Dikshit, R.; Forman, D.; Soerjomataram, I. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol., 2015, 16(1), 36-46.
[http://dx.doi.org/10.1016/S1470-2045(14)71123-4] [PMID: 25467404]
[78]
Morikawa, T.; Kuchiba, A.; Yamauchi, M.; Meyerhardt, J.A.; Shima, K.; Nosho, K.; Chan, A.T.; Giovannucci, E.; Fuchs, C.S.; Ogino, S. Association of CTNNB1 (beta-catenin) alterations, body mass index, and physical activity with survival in patients with colorectal cancer. JAMA, 2011, 305(16), 1685-1694.
[http://dx.doi.org/10.1001/jama.2011.513] [PMID: 21521850]
[79]
Rosty, C.; Young, J.P.; Walsh, M.D.; Clendenning, M.; Sanderson, K.; Walters, R.J.; Parry, S.; Jenkins, M.A.; Win, A.K.; Southey, M.C.; Hopper, J.L.; Giles, G.G.; Williamson, E.J.; English, D.R.; Buchanan, D.D. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival. PLoS One, 2013, 8(6) e65479
[http://dx.doi.org/10.1371/journal.pone.0065479] [PMID: 23785428]
[80]
Ogino, S.; Cantor, M.; Kawasaki, T.; Brahmandam, M.; Kirkner, G.J.; Weisenberger, D.J.; Campan, M.; Laird, P.W.; Loda, M.; Fuchs, C.S. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut, 2006, 55(7), 1000-1006.
[http://dx.doi.org/10.1136/gut.2005.082933] [PMID: 16407376]
[81]
Zhou, Z.; Chen, J.; Yao, H.; Hu, H. Fusobacterium and colorectal cancer. Front. Oncol., 2018, 8, 371.
[http://dx.doi.org/10.3389/fonc.2018.00371] [PMID: 30374420]
[82]
Khotskaya, Y.B.; Mills, G.B.; Mills Shaw, K.R. Next-generation sequencing and result interpretation in clinical oncology: challenges of personalized cancer therapy. Annu. Rev. Med., 2017, 68, 113-125.
[http://dx.doi.org/10.1146/annurev-med-102115-021556] [PMID: 27813876]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy