Review Article

纳米乳在营养药品和植物化学制品的研究和应用

卷 27, 期 18, 2020

页: [3079 - 3095] 页: 17

弟呕挨: 10.2174/0929867326666190620102820

价格: $65

摘要

近年来纳米乳基产品的研究和调查趋势是全球关注的食品安全问题、对高效食品和农产品的需求不断增加以及对具有操纵和优化性能的产品的技术需求等诸多原因造成的。纳米乳的定义是:由分散在另一种不可混溶液体中的纳米液滴组成的乳状液,这种乳状液表现出与常规乳状液不同的特性,适合于在包括药物、食品和农业在内的不同领域对生物活性成分进行包封、传递和配制。本文综述了纳米乳剂的定义、制备方法、性能及其在食品和农业领域的应用。由于纳米乳组成物的物理化学性质,制造纳米液滴需要高/低能量的方法,可以通过特殊设备或技术提供。本文还对制备纳米乳的常用方法的机理进行了综述。本文最后一节讨论了近年来关于纳米乳液在食品和农业领域应用的一些工作以及限制其应用的挑战和立法。

关键词: 纳米乳,高能量法,低能量法,应用,保健品,食品工业,农业工业,农药。

« Previous
[1]
Moraru, C.; Huang, Q.; Takhistov, P.; Dogan, H.; Kokini, J. Food nanotechnology: current developments and future prospects in: Global issues in food science and technology; Elsevier, 2009, pp. 369-399.
[http://dx.doi.org/10.1016/B978-0-12-374124-0.00021-1]
[2]
Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol., 2012, 5, 854-867.
[http://dx.doi.org/10.1007/s11947-011-0683-7]
[3]
Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci., 2010, 75(1), R50-R57.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01457.x] [PMID: 20492195]
[4]
Srilatha, B. Nanotechnology in agriculture. J. Nanomed. Nanotechnol., 2011, 2, 5.
[5]
Jafari, S.M.; McClements, D.J. Nanotechnology approaches for increasing nutrient bioavailability. Adv. Food Nutr. Res., 2017, 81, 1-30.
[http://dx.doi.org/10.1016/bs.afnr.2016.12.008] [PMID: 28317602]
[6]
Komaiko, J.S.; McClements, D.J. Formation of food-‐grade nanoemulsions using low-‐energy preparation methods: a review of available methods. Compr. Rev. Food Sci. Food Saf., 2016, 15, 331-352.
[http://dx.doi.org/10.1111/1541-4337.12189]
[7]
Neoh, T.L.; Adachi, S.; Furuta, T. Introduction to Food Manufacturing Engineering; Springer, 2016.
[http://dx.doi.org/10.1007/978-981-10-0442-1]
[8]
Jafari, S.M.; He, Y.; Bhandari, B. Nano-emulsion production by sonication and microfluidization - A comparison. Int. J. Food Prop., 2006, 9, 475-485.
[http://dx.doi.org/10.1080/10942910600596464]
[9]
Shamsara, O.; Jafari, S.M.; Muhidinov, Z.K. Development of double layered emulsion droplets with pectin/βlactoglobulin complex for bioactive delivery purposes. J. Mol. Liq., 2017, 243, 144-150.
[http://dx.doi.org/10.1016/j.molliq.2017.08.036]
[10]
Hosseini, A.; Jafari, S.M.; Mirzaei, H.; Asghari, A.; Akhavan, S. Application of image processing to assess emulsion stability and emulsification properties of Arabic gum. Carbohydr. Polym., 2015, 126, 1-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.020] [PMID: 25933515]
[11]
Bibette, J.; Calderon, F.L.; Poulin, P. Emulsions: basic principles. Rep. Prog. Phys., 1999, 62, 969.
[http://dx.doi.org/10.1088/0034-4885/62/6/203]
[12]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[13]
Schuster, D. Encyclopedia of emulsion technology; CRC Press, 1996.
[14]
McClements, D.J.; Jafari, S.M. General aspects of nanoemulsions and their formulation In: Nanoemulsions; Jafari,S.M.; McClements, D.J. (Eds.); Academic Press,; , 2018; pp. 3-20.
[http://dx.doi.org/10.1016/C2016-0-01985-X]
[15]
Meleson, K.; Graves, S.; Mason, T.G. Formation of concentrated nanoemulsions by extreme shear. Soft Mater., 2004, 2, 109-123.
[http://dx.doi.org/10.1081/SMTS-200056102]
[16]
Fryd, M.M.; Mason, T.G. Advanced nanoemulsions. Annu. Rev. Phys. Chem., 2012, 63, 493-518.
[http://dx.doi.org/10.1146/annurev-physchem-032210-103436] [PMID: 22475339]
[17]
Chavda, V.P.; Shah, D. A review on novel emulsification technique: a nanoemulsion. J. Pharma. Toxicol. Studies, 2017, 5, 9.
[18]
Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Recoalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll., 2008, 22, 1191-1202.
[http://dx.doi.org/10.1016/j.foodhyd.2007.09.006]
[19]
Mehrnia, M.A.; Jafari, S.M.; Makhmal-Zadeh, B.S.; Maghsoudlou, Y. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification. Int. J. Biol. Macromol., 2016, 84, 261-267.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.029] [PMID: 26708427]
[20]
McClements, D.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8, 1719-1729.
[http://dx.doi.org/10.1039/C2SM06903B]
[21]
Sagalowicz, L.; Leser, M.E. Delivery systems for liquid food products. Curr. Opin. Colloid Interface Sci., 2010, 15, 61-72.
[http://dx.doi.org/10.1016/j.cocis.2009.12.003]
[22]
Shamsara, O.; Muhidinov, Z.K.; Jafari, S.M.; Bobokalonov, J.; Jonmurodov, A.; Taghvaei, M.; Kumpugdee-Vollrath, M. Effect of ultrasonication, pH and heating on stability of apricot gum-lactoglobuline two layer nanoemulsions. Int. J. Biol. Macromol., 2015, 81, 1019-1025.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.056] [PMID: 26432369]
[23]
McClements, D.J. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 2011, 7, 2297-2316.
[http://dx.doi.org/10.1039/C0SM00549E]
[24]
Jafari, S.M.; Paximada, P.; Mandala, I.; Assadpour, E.; Mehrnia, M.A. Encapsulation by nanoemulsions in: Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Jafari, S.M., Ed.; Academic Press, 2017, pp. 36-73.
[http://dx.doi.org/10.1016/B978-0-12-809436-5.00002-1]
[25]
Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioactive-loaded nanocarriers for functional foods: from designing to bioavailability. Curr. Opin. Food Sci., 2020, 33, 21-29.
[http://dx.doi.org/10.1016/j.cofs.2019.11.006]
[26]
Erfanian, A.; Mirhosseini, H.; Rasti, B.; Hair-Bejo, M.; Bin Mustafa, S.; Abd Manap, M.Y. Absorption and bioavailability of nano-size reduced calcium citrate fortified milk powder in ovariectomized and ovariectomized-osteoporosis rats. J. Agric. Food Chem., 2015, 63(24), 5795-5804.
[http://dx.doi.org/10.1021/acs.jafc.5b01468] [PMID: 26022498]
[27]
Bouwmeester, H.; Marvin, H.J. Potential risks of nanofood to consumers; Nanotechnologies in Food, 2010, pp. 134-149.
[http://dx.doi.org/10.1039/9781847559883-00134]
[28]
Teo, A.; Goh, K.K.; Lee, S.J. Nanoparticles and nanoemulsions.Functional Foods and Dietary Supplements. 2014, 405-435.
[http://dx.doi.org/10.1002/9781118227800.ch15]
[29]
Salvia-Trujillo, L.; Martín-Belloso, O.; McClements, D.J. Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials (Basel), 2016, 6(1), 17.
[http://dx.doi.org/10.3390/nano6010017] [PMID: 28344274]
[30]
Hu, L.; Mao, Z.; Gao, C. Colloidal particles for cellular uptake and delivery. J. Mater. Chem., 2009, 19, 3108-3115.
[http://dx.doi.org/10.1039/b815958k]
[31]
Wani, T.A.; Masoodi, F.A.; Jafari, S.M.; McClements, D.J. Safety of Nanoemulsions and Their Regulatory Status in: Nanoemulsions; Jafari, S.M., Ed.; Academic Press, 2018, pp. 613-628.
[http://dx.doi.org/10.1016/C2015-0-04253-8]
[32]
Guttoff, M.; Saberi, A.H.; McClements, D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chem., 2015, 171, 117-122.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.087] [PMID: 25308650]
[33]
Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci., 2004, 108-109, 303-318.
[http://dx.doi.org/10.1016/j.cis.2003.10.023] [PMID: 15072948]
[34]
Mason, T.; Wilking, J.; Meleson, K.; Chang, C.; Graves, S. Nanoemulsions: formation, structure, and physical properties. J. Phys. Condens. Matter, 2006, 18, R635.
[http://dx.doi.org/10.1088/0953-8984/18/41/R01]
[35]
Mohos, F.Á. Introduction to food colloids in: Confectionery and Chocolate Engineering: Principles and Applications; Mohos, F.A. (Ed.); John Wiley & Sons, Inc.,. 176-233.
[http://dx.doi.org/10.1002/9781444320527.ch5]
[36]
Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N. GarciaCelma, M. Nano-emulsions. Curr. Opin. Colloid Interface Sci., 2005, 10, 102-110.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[37]
McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci., 2018, 251, 55-79.
[http://dx.doi.org/10.1016/j.cis.2017.12.001] [PMID: 29248154]
[38]
McClements, D.J.; Rao, J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr., 2011, 51(4), 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[39]
Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir, 2008, 24(22), 12758-12765.
[http://dx.doi.org/10.1021/la801685v] [PMID: 18850732]
[40]
Yu, H.; Huang, Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem., 2012, 60(21), 5373-5379.
[http://dx.doi.org/10.1021/jf300609p] [PMID: 22506728]
[41]
Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral bioavailability of curcumin: problems and advancements. J. Drug Target., 2016, 24(8), 694-702.
[http://dx.doi.org/10.3109/1061186X.2016.1157883] [PMID: 26942997]
[42]
Feng, J.; Chen, Q.; Wu, X.; Jafari, S.M.; McClements, D.J. Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. Environ. Sci. Pollut. Res. Int., 2018, 25(22), 21742-21751.
[http://dx.doi.org/10.1007/s11356-018-2183-z] [PMID: 29790050]
[43]
Feng, J.; Yang, G.; Zhang, S.; Liu, Q.; Jafari, S.M.; McClements, D.J. Fabrication and characterization of β-cypermethrin-loaded PLA microcapsules prepared by emulsion-solvent evaporation: loading and release properties. Environ. Sci. Pollut. Res. Int., 2018, 25(14), 13525-13535.
[http://dx.doi.org/10.1007/s11356-018-1557-6] [PMID: 29492820]
[44]
Sood, S.; Jain, K.; Gowthamarajan, K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf. B Biointerfaces, 2014, 113, 330-337.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.030] [PMID: 24121076]
[45]
Tabibiazar, M.; Hamishehkar, H. Formulation of a food grade water-in-oil nanoemulsion: Factors affecting on stability. Pharm. Sci., 2015, 21, 220.
[http://dx.doi.org/10.15171/PS.2015.40]
[46]
Abbas, S.; Bashari, M.; Akhtar, W.; Li, W.W.; Zhang, X. Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrason. Sonochem., 2014, 21(4), 1265-1274.
[http://dx.doi.org/10.1016/j.ultsonch.2013.12.017] [PMID: 24439913]
[47]
Dasgupta, N.; Ranjan, S. Fabrication of Nanoemulsion: A Brief Review in: An Introduction to Food Grade Nanoemulsions; Springer, 2018, pp. 49-62.
[http://dx.doi.org/10.1007/978-981-10-6986-4_3]
[48]
Koroleva, M.Y.; Yurtov, E.V.e. Nanoemulsions: the properties, methods of preparation and promising applications. Russ. Chem. Rev., 2012, 81, 21-43.
[http://dx.doi.org/10.1070/RC2012v081n01ABEH004219]
[49]
Gharibzahedi, S.M.T.; Jafari, S.M. Fabrication of nanoemulsions by ultrasonication in: Nanoemulsions; Jafari, S.M., Ed.; Academic Press, 2018, pp. 233-285.
[50]
Villalobos-Castillejos, F.; Granillo-Guerrero, V.G. LeyvaDaniel, D.E.; Alamilla-Beltrán, L.; Gutiérrez-López, G.F.; Monroy-Villagrana, A.; Jafari, S.M. Fabrication of Nanoemulsions by Microfluidization in: Nanoemulsions; Jafari, S.M., Ed.; Academic Press, 2018, pp. 207-232.
[51]
Jafari, S.M.; Beheshti, P.; Assadpoor, E. Rheological behavior and stability of d-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum. J. Food Eng., 2017, 109, 1-8.
[52]
Jasmina, H. Preparation of nanoemulsions by high-energy and lowenergy emulsification methods in: CMBEBIH; Badnjevic, A., Ed.; Springer, 1993, pp. 317-322.
[http://dx.doi.org/10.1016/0009-2509(93)80021-H]
[53]
Walstra, P. Principles of emulsion formation. Chem. Eng. Sci., 1993, 48, 333-349.
[http://dx.doi.org/10.1016/0009-2509(93)80021-H]
[54]
Floury, J.; Desrumaux, A.; Lardieres, J. Effect of highpressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov. Food Sci. Emerg. Technol., 2000, 1, 127-134.
[http://dx.doi.org/10.1016/S1466-8564(00)00012-6]
[55]
Jafari, S.M.; He, Y.; Bhandari, B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng., 2007, 82, 478-488.
[http://dx.doi.org/10.1016/j.jfoodeng.2007.03.007]
[56]
Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using highpressure homogenization: factors affecting particle size. Food Hydrocoll., 2011, 25, 1000-1008.
[http://dx.doi.org/10.1016/j.foodhyd.2010.09.017]
[57]
Bai, L.; McClements, D.J. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. J. Colloid Interface Sci., 2016, 466, 206-212.
[http://dx.doi.org/10.1016/j.jcis.2015.12.039] [PMID: 26724703]
[58]
Setya, S.; Talegaonkar, S.; Razdan, B. Nanoemulsions: formulation methods and stability aspects. World J. Pharm. Pharm. Sci., 2014, 3, 2214-2228.
[59]
Maali, A.; Mosavian, M.H. Preparation and application of nanoemulsions in the last decade (2000-2010). J. Dispers. Sci. Technol., 2013, 34, 92-105.
[http://dx.doi.org/10.1080/01932691.2011.648498]
[60]
Jafari, S.M.; He, Y.; Bhandari, B. Optimization of nanoemulsions production by microfluidization. Eur. Food Res. Technol., 2007, 225, 733-741.
[http://dx.doi.org/10.1007/s00217-006-0476-9]
[61]
Yang, Y.; Marshall-Breton, C.; Leser, M.E.; Sher, A.A.; McClements, D.J. Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods. Food Hydrocoll., 2012, 29, 398-406.
[http://dx.doi.org/10.1016/j.foodhyd.2012.04.009]
[62]
Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll., 2013, 30, 401-407.
[http://dx.doi.org/10.1016/j.foodhyd.2012.07.004]
[63]
Lee, L.; Norton, I.T. Comparing droplet breakup for a highpressure valve homogeniser and a microfluidizer for the potential production of food-grade nanoemulsions. J. Food Eng., 2013, 114, 158-163.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.08.009]
[64]
Jo, Y-J.; Kwon, Y-J. Characterization of β-carotene nanoemulsions prepared by microfluidization technique. Food Sci. Biotechnol., 2014, 23, 107-113.
[http://dx.doi.org/10.1007/s10068-014-0014-7]
[65]
Tang, S.Y.; Shridharan, P.; Sivakumar, M. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer. Ultrason. Sonochem., 2013, 20(1), 485-497.
[http://dx.doi.org/10.1016/j.ultsonch.2012.04.005] [PMID: 22633626]
[66]
Kentish, S.; Wooster, T.; Ashokkumar, M.; Balachandran, S.; Mawson, R.; Simons, L. The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol., 2008, 9, 170-175.
[http://dx.doi.org/10.1016/j.ifset.2007.07.005]
[67]
Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J. Nanosci. Nanotechnol., 2013, 13(1), 114-122.
[http://dx.doi.org/10.1166/jnn.2013.6701] [PMID: 23646705]
[68]
Ahmad, N.; Ahmad, R.; Alam, M.A.; Ahmad, F.J.; Amir, M. Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif. Cells Nanomed. Biotechnol.,, 2018, 46(sup3), S192.
[http://dx.doi.org/10.1080/21691401.2018.1489826]
[69]
Abbasi, F.; Samadi, F.; Jafari, S.M.; Ramezanpour, S.; Shams Shargh, M. Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat. Ultrason. Sonochem., 2019, 50, 208-217.
[http://dx.doi.org/10.1016/j.ultsonch.2018.09.014] [PMID: 30249371]
[70]
Homayoonfal, M.; Khodaiyan, F.; Mousavi, S.M. Optimization of walnut oil nanoemulsions prepared using ultrasonic emulsification: A response surface method. J. Dispers. Sci. Technol., 2014, 35, 685-694.
[http://dx.doi.org/10.1080/01932691.2013.805302]
[71]
Rebolleda, S.; Sanz, M.T.; Benito, J.M.; Beltrán, S.; Escudero, I.; González San-José, M.L. Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chem., 2015, 167, 16-23.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.097] [PMID: 25148953]
[72]
Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem., 2014, 21(3), 1044-1049.
[http://dx.doi.org/10.1016/j.ultsonch.2013.10.021] [PMID: 24262758]
[73]
Saberi, A.H.; Fang, Y.; McClements, D.J. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. J. Colloid Interface Sci., 2013, 411, 105-113.
[http://dx.doi.org/10.1016/j.jcis.2013.08.041] [PMID: 24050638]
[74]
Chang, Y.; McClements, D.J. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature. J. Agric. Food Chem., 2014, 62(10), 2306-2312.
[http://dx.doi.org/10.1021/jf500160y] [PMID: 24564878]
[75]
Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int. J. Pharm., 2004, 280(1-2), 241-251.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.016] [PMID: 15265563]
[76]
Anton, N.; Vandamme, T.F. The universality of low-energy nano-emulsification. Int. J. Pharm., 2009, 377(1-2), 142-147.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.014] [PMID: 19454306]
[77]
Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci., 2013, 391, 95-102.
[http://dx.doi.org/10.1016/j.jcis.2012.08.069] [PMID: 23116862]
[78]
Walker, R.M.; Decker, E.A.; McClements, D.J. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: effect of surfactant concentration and particle size. J. Food Eng., 2015, 164, 10-20.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.04.028]
[79]
François, G.; Katz, J.L. Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulisification as an alternative to ultrasonic and high-shear devices. ChemPhysChem, 2005, 6(2), 209-216.
[http://dx.doi.org/10.1002/cphc.200400527] [PMID: 15751338]
[80]
Gulotta, A.; Saberi, A.H.; Nicoli, M.C.; McClements, D.J. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method. J. Agric. Food Chem., 2014, 62(7), 1720-1725.
[http://dx.doi.org/10.1021/jf4054808] [PMID: 24475908]
[81]
Maestro, A.; Solè, I.; González, C.; Solans, C.; Gutiérrez, J.M. Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. J. Colloid Interface Sci., 2008, 327(2), 433-439.
[http://dx.doi.org/10.1016/j.jcis.2008.07.059] [PMID: 18799164]
[82]
Anton, N.; Gayet, P.; Benoit, J-P.; Saulnier, P. Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int. J. Pharm., 2007, 344(1-2), 44-52.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.027] [PMID: 17592746]
[83]
Anton, N.; Benoit, J-P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates-a review. J. Control. Release, 2008, 128(3), 185-199.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.007] [PMID: 18374443]
[84]
Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. A new method for liposome preparation using a membrane contactor. J. Liposome Res., 2011, 21(3), 213-220.
[http://dx.doi.org/10.3109/08982104.2010.517537] [PMID: 20860451]
[85]
Piacentini, E.; Drioli, E.; Giorno, L. Membrane emulsification technology: Twenty-five years of inventions and research through patent survey. J. Membr. Sci., 2014, 468, 410-422.
[http://dx.doi.org/10.1016/j.memsci.2014.05.059]
[86]
Laouini, A.; Fessi, H.; Charcosset, C. Membrane emulsification: A promising alternative for vitamin E encapsulation within nano-emulsion. J. Membr. Sci., 2012, 423, 85-96.
[http://dx.doi.org/10.1016/j.memsci.2012.07.031]
[87]
Wagdare, N.A.; Marcelis, A.T.; Ho, O.B.; Boom, R.M.; van Rijn, C.J. High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane. J. Membr. Sci., 2010, 347, 1-7.
[http://dx.doi.org/10.1016/j.memsci.2009.09.057]
[88]
Souilem, I.; Muller, R.; Holl, Y.; Bouquey, M.; Serra, C.A.; Vandamme, T.; Anton, N. A novel low-‐pressure device for production of nanoemulsions. Chem. Eng. Technol., 2012, 35, 1692-1698.
[http://dx.doi.org/10.1002/ceat.201100676]
[89]
Souilem, I.; Serra, C.A.; Muller, R.; Holl, Y.; Bouquey, M.; Sutter, C. Dimensional analysis of a novel low-‐pressure device for the production of size-‐tunable nanoemulsions. AIChE J., 2015, 61, 23-30.
[http://dx.doi.org/10.1002/aic.14690]
[90]
Yu, W.; Serra, C.A.; Khan, I.U. Er-‐Rafik, M.; Schmutz, M.; Kraus, I.; Ding, S.; Zhang, L.; Bouquey, M.; Muller, R. Development of an elongational-‐flow microprocess for the production of size-‐controlled nanoemulsions: application to the preparation of monodispersed polymer nanoparticles and composite polymeric microparticles. Macromol. React. Eng., 2017, 11(1)1600025
[http://dx.doi.org/10.1002/mren.201600025]
[91]
Lee, K.P.; Mattia, D. Manufacturing of nanoemulsions using nanoporous anodized alumina membranes: experimental investigation and process modeling. Ind. Eng. Chem. Res., 2013, 52, 14866-14874.
[http://dx.doi.org/10.1021/ie401960n]
[92]
Gutiérrez, J.; González, C.; Maestro, A.; Solè, I.; Pey, C.; Nolla, J. Nano-emulsions: New applications and optimization of their preparation. Curr. Opin. Colloid Interface Sci., 2008, 13, 245-251.
[http://dx.doi.org/10.1016/j.cocis.2008.01.005]
[93]
Dias, D.O.; Colombo, M.; Kelmann, R.G.; Kaiser, S.; Lucca, L.G.; Teixeira, H.F.; Limberger, R.P.; Veiga, V.F. Jr.; Koester, L.S. Optimization of Copaiba oil-based nanoemulsions obtained by different preparation methods. Ind. Crops Prod., 2014, 59, 154-162.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.007]
[94]
Jadhav, A.J.; Holkar, C.R.; Karekar, S.E.; Pinjari, D.V.; Pandit, A.B. Ultrasound assisted manufacturing of paraffin wax nanoemulsions: process optimization. Ultrason. Sonochem., 2015, 23, 201-207.
[http://dx.doi.org/10.1016/j.ultsonch.2014.10.024] [PMID: 25465097]
[95]
Uluata, S.; Decker, E.A.; McClements, D.J. Optimization of nanoemulsion fabrication using microfluidization: role of surfactant concentration on formation and stability. Food Biophys., 2016, 11, 52-59.
[http://dx.doi.org/10.1007/s11483-015-9416-1]
[96]
Carpenter, J.; Saharan, V.K. Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. Ultrason. Sonochem.,, 2017, 35(Pt A), 422.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.021]
[97]
Assadpour, E.; Maghsoudlou, Y.; Jafari, S-M.; Ghorbani, M.; Aalami, M. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. Int. J. Biol. Macromol., 2016, 86, 197-207.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.064] [PMID: 26806649]
[98]
Zhang, S.; Zhang, M.; Fang, Z.; Liu, Y. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. Lebensm. Wiss. Technol., 2017, 75316322
[http://dx.doi.org/10.1016/j.lwt.2016.08.046]
[99]
Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McLandsborough, L.; Julian McClements, D. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. J. Colloid Interface Sci., 2018, 514, 208-216.
[http://dx.doi.org/10.1016/j.jcis.2017.11.084] [PMID: 29257975]
[100]
Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion. J. Food Sci., 2016, 81(3), N745-N753.
[http://dx.doi.org/10.1111/1750-3841.13224] [PMID: 26807662]
[101]
Mohammadi, A.; Jafari, S.M.; Assadpour, E.; Faridi Esfanjani, A. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate. Int. J. Biol. Macromol., 2016, 82, 816-822.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.025] [PMID: 26459167]
[102]
Mohammadi, A.; Jafari, S.M.; Esfanjani, A.F.; Akhavan, S. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chem., 2016, 190, 513-519.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.115] [PMID: 26213004]
[103]
Wu, X.; Guy, R.H. Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug Deliv. Sci. Technol., 2009, 19, 371-384.
[http://dx.doi.org/10.1016/S1773-2247(09)50080-9]
[104]
Salvia-Trujillo, L.; Soliva-Fortuny, R.; Rojas-Graü, M.A.; McClements, D.J.; Martín-Belloso, O. Edible nanoemulsions as carriers of active ingredients: a review. Annu. Rev. Food Sci. Technol., 2017, 8, 439-466.
[http://dx.doi.org/10.1146/annurev-food-030216-025908] [PMID: 28125342]
[105]
Assadpour, E.; Jafari, S.M. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr., 2019, 59(19), 3129-3151.
[http://dx.doi.org/10.1080/10408398.2018.1484687] [PMID: 29883187]
[106]
Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S.M. Application of different nanocarriers for encapsulation of curcumin. Crit. Rev. Food Sci. Nutr., 2019, 59(21), 3468-3497.
[http://dx.doi.org/10.1080/10408398.2018.1495174] [PMID: 30001150]
[107]
McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr., 2009, 49(6), 577-606.
[http://dx.doi.org/10.1080/10408390902841529] [PMID: 19484636]
[108]
Gökmen, V.; Mogol, B.A.; Lumaga, R.B.; Fogliano, V.; Kaplun, Z.; Shimoni, E. Development of functional bread containing nanoencapsulated omega-3 fatty acids. J. Food Eng., 2011, 105, 585-591.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.03.021]
[109]
Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Kumar, V.; Singh, B.; Chaudhary, A.; Yadav, S.C. Nanoencapsulation and characterization of Albizia chinensis isolated antioxidant quercitrin on PLA nanoparticles. Colloids Surf. B Biointerfaces, 2011, 82(1), 224-232.
[http://dx.doi.org/10.1016/j.colsurfb.2010.08.046] [PMID: 20870396]
[110]
Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S.M. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci. Technol., 2018, 74, 132-146.
[http://dx.doi.org/10.1016/j.tifs.2018.02.001]
[111]
Esfanjani, A.F.; Jafari, S.M.; Assadpoor, E.; Mohammadi, A. Nano-encapsulation of saffron extract through doublelayered multiple emulsions of pectin and whey protein concentrate. J. Food Eng., 2015, 165, 149-155.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.06.022]
[112]
Faridi Esfanjani, A.; Assadpour, E.; Jafari, S.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci. Technol., 2018, 76, 56-66.
[http://dx.doi.org/10.1016/j.tifs.2018.04.002]
[113]
Katouzian, I.; Jafari, S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol., 2016, 53, 34-48.
[http://dx.doi.org/10.1016/j.tifs.2016.05.002]
[114]
Prakash, A.; Rao, J. Botanical pesticides in agriculture; CRC press, 1996.
[115]
Feng, Z.; Shan, L.; Ying, X.H.; Ling, H.J. Formula design of pesticide microemulsion formulation. Tenside Surfactants Deterg., 2010, 47, 113-118.
[http://dx.doi.org/10.3139/113.110060]
[116]
Pant, M.; Dubey, S.; Patanjali, P.; Naik, S.; Sharma, S. Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int. Biodeterior. Biodegradation, 2014, 91, 119-127.
[http://dx.doi.org/10.1016/j.ibiod.2013.11.019]
[117]
Sarwar, M. Commonly available commercial insecticide formulations and their applications in the field. Int. J. Mat. Chem. Phy., 2015, 1, 116-123.
[118]
Du, Z.; Wang, C.; Tai, X.; Wang, G.; Liu, X. Optimization and characterization of biocompatible oil-in-water nanoemulsion for pesticide delivery. ACS Sustain. Chem.& Eng., 2016, 4, 983-991.
[http://dx.doi.org/10.1021/acssuschemeng.5b01058]
[119]
Ditta, A. How helpful is nanotechnology in agriculture? Adv. Nat. Sci.: Nanosci. Nanotech., 2012, 3(3)3033002
[120]
Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. (Amst.), 2017, 15, 11-23.
[http://dx.doi.org/10.1016/j.btre.2017.03.002] [PMID: 28603692]
[121]
Wang, L.; Li, X.; Zhang, G.; Dong, J.; Eastoe, J. Oil-in-water nanoemulsions for pesticide formulations. J. Colloid Interface Sci., 2007, 314(1), 230-235.
[http://dx.doi.org/10.1016/j.jcis.2007.04.079] [PMID: 17612555]
[122]
Díaz-Blancas, V.; Medina, D.I.; Padilla-Ortega, E.; Bortolini-Zavala, R.; Olvera-Romero, M.; Luna-Bárcenas, G. Nanoemulsion formulations of fungicide tebuconazole for agricultural applications. Molecules, 2016, 21(10), 1271.
[http://dx.doi.org/10.3390/molecules21101271] [PMID: 27681721]
[123]
Zhang, C.; Guanming, S.; Shen, J.; Jian, S. HU, R.F. Productivity effect and overuse of pesticide in crop production in China. J. Integr. Agric., 2015, 14, 1903-1910.
[http://dx.doi.org/10.1016/S2095-3119(15)61056-5]
[124]
Cooper, J.; Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot., 2007, 2613371348
[http://dx.doi.org/10.1016/j.cropro.2007.03.022]
[125]
Nenaah, G.E. Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst). Ind. Crops Prod., 2014, 53, 252-260.
[http://dx.doi.org/10.1016/j.indcrop.2013.12.042]
[126]
Zahid, N.; Ali, A.; Manickam, S.; Siddiqui, Y.; Maqbool, M. Potential of chitosan-loaded nanoemulsions to control different Colletotrichum spp. and maintain quality of tropical fruits during cold storage. J. Appl. Microbiol., 2012, 113(4), 925-939.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05398.x] [PMID: 22805053]
[127]
Wang, C.; Zhang, J.; Chen, H.; Fan, Y.; Shi, Z. Antifungal activity of eugenol against Botrytis cinerea. Trop. Plant Pathol., 2010, 35, 137-143.
[http://dx.doi.org/10.1590/S1982-56762010000300001]
[128]
Morcia, C.; Malnati, M.; Terzi, V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2012, 29(3), 415-422.
[PMID: 22257275]
[129]
Abd-Elsalam, K.A.; Khokhlov, A.R. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl. Nanosci., 2015, 5, 255-265.
[http://dx.doi.org/10.1007/s13204-014-0398-y]
[130]
Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop Prot., 2015, 72, 57-65.
[http://dx.doi.org/10.1016/j.cropro.2015.03.004]
[131]
Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf., 2017, 142, 423-430.
[http://dx.doi.org/10.1016/j.ecoenv.2017.04.041] [PMID: 28456128]
[132]
Kah, M.; Hofmann, T. Nanopesticide research: current trends and future priorities. Environ. Int., 2014, 63, 224-235.
[http://dx.doi.org/10.1016/j.envint.2013.11.015] [PMID: 24333990]
[133]
Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ., 2015, 514, 131-139.
[http://dx.doi.org/10.1016/j.scitotenv.2015.01.104] [PMID: 25659311]
[134]
Mala, R.; Selvaraj, R.C.A.; Sundaram, V.B.; Rajan, R.B.S.S.; Gurusamy, U.M. Evaluation of nano structured slow release fertilizer on the soil fertility, yield and nutritional profile of vigna radiata. Recent Pat. Nanotechnol., 2017, 11(1), 50-62.
[http://dx.doi.org/10.2174/1872210510666160727093554] [PMID: 27465293]
[135]
Maynard, A.D.; Aitken, R.J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdörster, G.; Philbert, M.A.; Ryan, J.; Seaton, A.; Stone, V.; Tinkle, S.S.; Tran, L.; Walker, N.J.; Warheit, D.B. Safe handling of nanotechnology. Nature, 2006, 444(7117), 267-269.
[http://dx.doi.org/10.1038/444267a] [PMID: 17108940]
[136]
Magnuson, B.A.; Jonaitis, T.S.; Card, J.W. A brief review of the occurrence, use, and safety of food-related nanomaterials. J. Food Sci., 2011, 76(6), R126-R133.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02170.x] [PMID: 22417518]
[137]
McClements, D.J. Edible lipid nanoparticles: digestion, absorption, and potential toxicity. Prog. Lipid Res., 2013, 52(4), 409-423.
[http://dx.doi.org/10.1016/j.plipres.2013.04.008] [PMID: 23664907]
[138]
Card, J.W.; Magnuson, B.A. A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int. J. Toxicol., 2010, 29(4), 402-410.
[http://dx.doi.org/10.1177/1091581810370720] [PMID: 20634541]
[139]
Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C. SandínEspaña, P.; Alonso-Prados, J.L. An overview of nanopesticides in the framework of European legislation in: New Pesticides and Soil Sensors; Grumezescu, A.M., Ed.; Elsevier, 2017, pp. 227-271.
[140]
Peng, Y.; Meng, Q.; Zhou, J.; Chen, B.; Xi, J.; Long, P.; Zhang, L.; Hou, R. Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem., 2018, 242, 527-532.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.094] [PMID: 29037724]
[141]
Sari, T.; Mann, B.; Kumar, R.; Singh, R.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll., 2015, 43, 540-546.
[http://dx.doi.org/10.1016/j.foodhyd.2014.07.011]
[142]
Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem., 2012, 132(3), 1221-1229.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.091] [PMID: 29243604]
[143]
Assadpour, E.; Jafari, S-M. Spray drying of folic acid within nano-emulsions: optimization by Taguchi approach. Dry. Technol., 2017, 35, 1152-1160.
[http://dx.doi.org/10.1080/07373937.2016.1242016]
[144]
Assadpour, E.; Jafari, S-M.; Maghsoudlou, Y. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. Int. J. Biol. Macromol., 2017, 95, 238-247.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.023] [PMID: 27840216]
[145]
Assadpour, E.; Maghsoudlou, Y.; Jafari, S-M.; Ghorbani, M.; Aalami, M. Evaluation of folic acid nanoencapsulation by double emulsions. Food Bioprocess Technol., 2016, 9, 2024-2032.
[http://dx.doi.org/10.1007/s11947-016-1786-y]
[146]
Mehrnia, M-A.; Jafari, S-M.; Makhmal-Zadeh, B.S.; Maghsoudlou, Y. Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein. Food Hydrocoll., 2017, 66, 259-267.
[http://dx.doi.org/10.1016/j.foodhyd.2016.11.033]
[147]
Faridi Esfanjani, A.; Jafari, S.M.; Assadpour, E. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem., 2017, 221, 1962-1969.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.149] [PMID: 27979187]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy