Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Drug Delivery Using Theranostics: An Overview of its Use, Advantages and Safety Assessment

Author(s): Bruna Galdorfini Chiari-Andréo, Marina Paiva Abuçafy, Eloísa Berbel Manaia, Bruna Lallo da Silva, Nathalia Cristina Rissi, João Augusto Oshiro-Júnior and Leila Aparecida Chiavacci*

Volume 16, Issue 1, 2020

Page: [3 - 14] Pages: 12

DOI: 10.2174/1573413715666190618162321

Price: $65

Abstract

Following progress in modern medicine, advances have been made in diagnosis and treatment tools. Multifunctional nanomaterials that combine therapeutic and diagnostic functions in a single nanostructured complex are known as ‘theranostics’. To obtain a theranostic, a single particle, usually a nanoparticle, is manufactured to contain a therapeutic element (such as a drug) coupled with an imaging element. There are many kinds of nanoparticles available today that can be used to obtain theranostics, such as liposomes, cyclodextrin, conjugates and complexes, dendrimers, vesicles, micelles, core-shell particles, microbubbles, and carbon nanotubes. Because these materials interact with and should have effects on biological systems, their use may overcome health challenges. Considering the novelty and importance of this subject, this review aims to present general information about theranostics and discuss the safety and presumable toxicity of these constructs. In addition, we describe the methodologies that can be used to assess the safety of theranostics. This review is based on a literature search on theranostics, using the Web of Science, PubMed and Science Direct as the main sources of information. The period of publication was not delimited due to the scarcity of information and publications on this topic. Although many promising theranostic systems have been investigated and may revolutionise therapy, when designing new tools, researchers need to find alternatives to minimise their toxicity. The study of the toxicology and biocompatibility of theranostics needs to be continued, including clinical studies, with the aim of benefitting many patients in the future.

Keywords: Theranostic, therapeutics, diagnosis, targeting, safety, toxicity.

Graphical Abstract

[1]
Funkhouser, J. Reinventing pharma: the theranostic revolution. Curr. Drug Discov, 2002, 2, 17-19.
[2]
Gilham, I. Theranostics: An emerging tool in drug discovery and commercialisation. Drug Discov. World, 2002, 6, 24-32.
[3]
Mura, S.; Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev., 2012, 64, 1394-1416.
[4]
Butterworth, K.T.; Nicol, J.R.; Ghita, M.; Rosa, S.; Chaudhary, P.; McGarry, C.K.; McCarthy, H.O.; Jimenez-Sanchez, G.; Bazzi, R.; Roux, S.; Tillement, O.; Coulter, J.A.; Prise, K.M. Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy. Nanomedicine, 2016, 11, 2035-2047.
[5]
Limaye, N. Pharmacogenomics, theranostics and personalized medicine-the complexities of clinical trials: Challenges in the developing world. Appl. Transl. Genomics, 2013, 2, 17-21.
[6]
Venegas, K.R.; Gómez, M.A.; Garre, M.C.; Sánchez, A.G.; Contreras-Ortega, C.; Hernández, M.A.C. Pharmacogenetics of osteoporosis: Towards novel theranostics for personalized medicine? OMICS, 2012, 16, 638-651.
[8]
Ding, H.; Wu, F. Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics, 2012, 2, 1040-1053.
[9]
Vert, F.T. Nanociencia y Medicina. An. R. Acad. Med. Comunitat. Valenciana, 2012, 13, 6-19.
[10]
Ray, P.C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev., 2010, 110, 5332-5365.
[11]
Gossuin, Y.; Gillis, P.; Hocq, A.; Vuong, Q.L.; Roch, A. Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1, 299-310.
[12]
Idris, N.M.; Gnanasammandhan, M.K.; Zhang, J.; Ho, P.C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 2012, 18, 1580-1585.
[13]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64, 24-36.
[14]
Jonas, V.Z.; Kozlovszky, M.; Molnar, B. In: Nucleus detection on propidium iodide stained digital slides,; Proceedings of the Applied Computational Intelligence and Informatics (SACI), 2014 IEEE 9th International Symposium on. IEEE;, 2014; pp. 139-143.
[15]
Ribeiro, T.; Raja, S.; Rodrigues, A.S.; Fernandes, F.; Baleizão, C.; Farinha, J.P.S. NIR and visible perylenediimide-silica nanoparticles for laser scanning bioimaging. Dye Pigm, 2014, 110, 227-234.
[16]
Alby, K.; Popowitch, E.B.; Miller, M.B. Comparative evaluation of the Nanosphere Verigene RV+ assay with the Simplexa Flu A/B & RSV Kit for the detection of influenza and respiratory syncytial viruses. J. Clin. Microbiol., 2012, 51, 352-353.
[17]
Haes, A.J.; Zou, S.; Schatz, G.C.; Van Duyne, R.P. Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B, 2004, 108, 6961-6968.
[18]
Pendry, J.B.; Martin-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science, 2004, 305, 847-848.
[19]
Sperling, R.A.; Gil, P.R.; Zhang, F.; Zanella, M.; Parak, W.J. Biological applications of gold nanoparticles. Chem. Soc. Rev., 2008, 37, 1896-1908.
[20]
Oldenburg, S.J.; Averitt, R.D.; Westcott, S.L.; Halas, N.J. Nanoengineering of optical resonances. Chem. Phys. Lett., 1998, 288, 243-247.
[21]
Janib, S.M.; Moses, A.S.; MacKay, J. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev., 2010, 62, 1052-1063.
[22]
Lian, T.; Ho, R.J.Y. Trends and developments in liposome drug delivery systems. J. Pharm. Sci., 2001, 90, 667-680.
[23]
Muthu, M.S.; Feng, S-S. Nanopharmacology of liposomes developed for cancer therapy. Nanomedicine (Lond.), 2010, 5, 1017-1019.
[24]
Muthu, M.S.; Kulkarni, S.A.; Raju, A.; Feng, S-S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials, 2012, 33, 3494-3501.
[25]
Dimer, F.A.; Friedrich, R.B.; Beck, R.C.R.; Guterres, S.S.; Pohlmann, A.R. Impactos da nanotecnologia na saúde: produção de medicamentos. Quim. Nova, 2013, 36, 1520-1526.
[26]
Al-Jamal, W.; Kostarelos, K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 2011, 44, 1094-1104.
[27]
Allen, T.M.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young, A. Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta Biomembr., 1991, 1066, 29-36.
[28]
Li, S.; Goins, B.; Zhang, L.; Bao, A. Novel multifunctional theranostic liposome drug delivery system: Construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug. Chem., 2012, 23, 1322-1332.
[29]
Gaucher, G.; Dufresne, M-H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J-C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release, 2005, 109, 169-188.
[30]
Qiu, L.Y.; Bae, Y.H. Polymer architecture and drug delivery. Pharm. Res., 2006, 23, 1-30.
[31]
Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev., 2012, 64, 37-48.
[32]
Matsumura, Y.; Hamaguchi, T.; Ura, T.; Muro, K.; Yamada, Y.; Shimada, Y.; Shirao, K.; Okusaka, T.; Ueno, H.; Ikeda, M.; Watanabe, N. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer, 2004, 91, 1775-1781.
[33]
Hamaguchi, T.; Matsumura, Y.; Suzuki, M.; Shimizu, K.; Goda, R.; Nakamura, I.; Nakatomi, I.; Yokoyama, M.; Kataoka, K.; Kakizoe, T. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer, 2005, 92, 1240-1246.
[34]
Sudimack, J.; Lee, R.J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev., 2000, 41, 147-162.
[35]
Bae, Y.; Jang, W-D.; Nishiyama, N.; Fukushima, S.; Kataoka, K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst., 2005, 1, 242-250.
[36]
Mi, Y.; Liu, Y.; Feng, S-S. Formulation of docetaxel by folic acid-conjugated D-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials, 2011, 32, 4058-4066.
[37]
Kumar, R.; Kulkarni, A.; Nagesha, D.K.; Sridhar, S. In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics, 2012, 2, 714-722.
[38]
Howell, M.; Mallela, J.; Wang, C.; Ravi, S.; Dixit, S.; Garapati, U.; Mohapatra, S. Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. J. Control. Release, 2013, 167, 210-218.
[39]
Yang, H.; Mao, H.; Wan, Z.; Zhu, A.; Guo, M.; Li, Y.; Li, X.; Wan, J.; Yang, X.; Shuai, X.; Chen, H. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials, 2013, 34, 9124-9133.
[40]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8, 1112-1120.
[41]
Chon, H.; Lee, S.; Son, S.W.; Oh, C.H.; Choo, J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal. Chem., 2009, 81, 3029-3034.
[42]
Qian, K.; Wu, J.; Zhang, E.; Zhang, Y.; Fu, A. Biodegradable double nanocapsule as a novel multifunctional carrier for drug delivery and cell imaging. Int. J. Nanomedicine, 2015, 10, 4149-4157.
[43]
Ornelas, C.; Pennell, R.; Liebes, L.F.; Weck, M. Construction of a well-defined multifunctional dendrimer for theranostics. Org. Lett., 2011, 13, 976-979.
[44]
Zhu, J.; Zheng, L.; Wen, S.; Tang, Y.; Shen, M.; Zhang, G.; Liu, C.; Tan, W. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials, 2014, 35, 7635-7646.
[45]
Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 2010, 62, 1064-1079.
[46]
Oshiro, Junior , J.A.; Mortari, G.R.; de Freitas, R.M.; Marcantonio-Junior, E.; Lopes, L.; Spolidorio, L.C.; Marcantonio, R.A.; Chiavacci, L.A. Assessment of biocompatibility of ureasil-polyether hybrid membranes for future use in implantodontology. Int. J. Polym. Mater. Polym. Biomater, 2016, 65, 647-652.
[47]
Oshiro, Junior, J.; Shiota, L.; Chiavacci, L. Desenvolvimento de formadores de filmes poliméricos orgânico-inorgânico para liberação controlada de fármacos e tratamento de feridas. Matéria, 2014, 19, 24-32.
[48]
Smith, A.M.; Duan, H.; Mohs, A.M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev., 2008, 60, 1226-1240.
[49]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307, 538-544.
[50]
Han, M.; Gao, X.; Su, J.Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol., 2001, 19, 631-635.
[51]
Zhang, L.W.; Monteiro-Riviere, N.A. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci., 2009, 110, 138-155.
[52]
Ding, M.; Zhao, J.; Bowman, L.; Lu, Y.; Shi, X. Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin. Int. J. Oncol., 2010, 36, 59-67.
[53]
Liu, L.; Law, W-C.; Yong, K-T.; Roy, I.; Ding, H.; Erogbogbo, F.; Zhang, X.; Prasad, P.N. Multimodal imaging probes based on Gd-DOTA conjugated quantum dot nanomicelles. Analyst, 2011, 136, 1881-1886.
[54]
Mahamuni, S.; Borgohain, K.; Bendre, B.S.; Leppert, V.J.; Risbud, S.H. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J. Appl. Phys., 1999, 85, 2861-2865.
[55]
Iskandar, M.F.; Okuyama, K.; Shi, F.G. Stable photoluminescence of zinc oxide quantum dots in silica nanoparticles matrix prepared by the combined sol–gel and spray drying method. J. Appl. Phys., 2001, 89, 6431-6434.
[56]
Mädler, L.; Stark, W.J.; Pratsinis, S.E. Rapid synthesis of stable ZnO quantum dots. J. Appl. Phys., 2002, 92, 6537-6540.
[57]
FDA – Food and Drugs Administration [homepage on the Internet]. CFR - Code of Federal Regulations Title 21, Sec. 182.8991 Zinc oxide. Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.8991 (Accessed on: Jun 18, 2018).
[58]
Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine, 2011, 7(2), 184-192.
[59]
Kang, E.B.; Lee, J.E.; Jeong, J.H.; Lee, G.; In, I.; Park, S.Y. Theranostics dye integrated zwitterionic polymer for in vitro and in vivo photothermal cancer therapy. J. Ind. Eng. Chem., 2016, 33, 336-344.
[60]
Tan, A.; Yildirimer, L.; Rajadas, J.; De La Peña, H.; Pastorin, G.; Seifalian, A. Quantum dots and carbon nanotubes in oncology: A review on emerging theranostic applications in nanomedicine. Nanomedicine, 2011, 6, 1101-1114.
[61]
Ajayan, P.; Zhou, O. Applications of Carbon Nanotubes. In: Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P., Eds.; Springer Berlin: Heidelberg, 2001.
[62]
Puvvada, N.; Rajput, S.; Kumar, B.N.P.; Sarkar, S.; Konar, S.; Brunt, K.R.; Rao, R.R.; Mazumdar, A.; Das, S.K.; Basu, R.; Fisher, P.B.; Mandal, M.; Pathak, A. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression. Sci. Rep., 2015, 5, 11760-11785.
[63]
Yang, D.; Kang, X.; Dai, Y.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Hollow structured upconversion luminescent NaYF4: Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials, 2013, 34, 1601-1612.
[64]
Arami, H.; Mazloumi, M.; Khalifehzadeh, R.; Sadrnezhaad, S.K. Self-assembled nanostructured ZnO hollow spheres with UVA luminescence. Adv. Appl. Ceram, 2009, 108, 73-77.
[65]
Wu, H.; Wu, G.; Ren, Y.; Li, X.; Wang, L. Multishelled metal oxide hollow spheres: Easy synthesis and formation mechanism. Chem. Eur. J., 2016, 22, 8864-8871.
[66]
Wu, H.; Wu, G.; Wang, L. Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol., 2015, 269, 443-451.
[67]
Zhang, M.; Wang, Q.; Chen, H.; Gu, Y. Synthesis of biocompatible SiO2 coated ZnO quantum dots for cell imaging. Proceedings of 12th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2014), Wuhan, China2014, pp. 92300B-9230–7.
[68]
Ehlerding, E.B.; Goel, S.; Cai, W. Cancer theranostics with 64Cu/177Lu-loaded liposomes. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43, 938-940.
[69]
Beeran, A.E.; Fernandez, F.B.; Nazeer, S.S.; Jayasree, R.S.; John, A.; Anil, S.; Vellappally, S.; Al Kheraif, A.A.; Varma, P.R. Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application. Colloids Surf. B Biointerfaces, 2015, 136, 1089-1097.
[70]
Zhao, N.; Pan, Y.; Cheng, Z.; Liu, H. Gold nanoparticles for cancer theranostics-A brief update. J. Innov. Opt. Health Sci., 2016, 9(4) 1630004
[71]
Tinkle, S.S. Maximizing safe design of engineered nanomaterials: the NIH and NIEHS research perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2, 88-98.
[72]
Cancino, J.; Paino, I.M.M.; Micocci, K.C.; Selistre-de-Araujo, H.S.; Zucolotto, V. In vitro nanotoxicity of single-walled carbon nanotube–dendrimer nanocomplexes against murine myoblast cells. Toxicol. Lett., 2013, 219, 18-25.
[73]
Deng, H.; Dai, F.; Ma, G.; Zhang, X. Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance. Adv. Mater., 2015, 1, 3645-3653.
[74]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[75]
Sassa, S.; Sugita, O.; Galbraith, R.A.; Kappas, A. Drug metabolism by the human hepatoma cell, Hep G2. Biochem. Biophys. Res. Commun., 1987, 143, 52-57.
[76]
Natarajan, A.T.; Darroudi, F. Use of human hepatoma cells for in vitro metabolic activation of chemical mutagens/carcinogens. Mutagenesis, 1991, 6(5), 399-403.
[77]
Chiari, B.G.; Martini, P.C.; Moraes, J.D.D.; Andréo, R.; Corrêa, M.A.; Cicarelli, R.M.B.; Isaac, V.L.B. Use of HepG2 to assay the safety of cosmetic active substances. Int. J. Res. Cosmet. Sci, 2012, 2, 8-14.
[78]
Park, Y.; Kim, H.M.; Kim, J.H.; Moon, K.C.; Yoo, B.; Lee, K.T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; Na, K.; Moon, W.K.; Choi, S.H.; Park, H.S.; Yoon, S.Y.; Suh, Y.D.; Lee, S.H.; Hyeon, T. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater., 2012, 24, 5755-5761.
[79]
Xu, X.; Lü, S.; Gao, C.; Feng, C.; Wu, C.; Bai, X.; Gao, N.; Wang, Z.; Liu, M. Self-fluorescent and stimuli-responsive mesoporous silica nanoparticles using a double-role curcumin gatekeeper for drug delivery. Chem. Eng. J., 2016, 300, 185-192.
[80]
Zhu, G.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K.; Liu, C.; Tan, W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci., 2013, 110, 7998-8003.
[81]
Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res., 1983, 113, 173-215.
[82]
Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc., 2007, 2, 1084.
[83]
Goo, S.; Choi, Y.J.; Lee, Y.; Lee, S.; Chung, H.W. Selective effects of curcumin on CdSe/ZnS quantum-dot-induced phototoxicity using UVA irradiation in normal human lymphocytes and leukemia cells. Toxicol. Res., 2013, 29, 35-42.
[84]
Mostaghasi, E.; Zarepour, A.; Zarrabi, A. Folic acid armed Fe3O4-HPG nanoparticles as a safe nano vehicle for biomedical theranostics. J. Taiwan Inst. Chem. Eng, 2018, 82, 33-41.
[85]
Choi, K.Y.; Jeon, E.J.; Yoon, H.Y.; Lee, B.S.; Na, J.H.; Min, K.H.; Kim, S.Y.; Myung, S.J.; Lee, S.; Chen, X.; Kwon, I.C.; Choi, K.; Jeong, S.Y.; Kim, K.; Park, J.H. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials, 2012, 33, 6186-6193.
[86]
Heo, D.N.; Yang, D.H.; Moon, H-J.; Lee, J.B.; Bae, M.S.; Lee, S.C.; Lee, W.J.; Sun, I.C.; Kwon, I.K. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 2012, 33, 856-866.
[87]
Cheng, S-H.; Lee, C-H.; Chen, M-C.; Souris, J.S.; Tseng, F-G.; Yang, C-S.; Mou, C.; Chen, C.; Lo, L. Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. J. Mater. Chem., 2010, 20, 6149-6157.
[88]
Santra, S.; Kaittanis, C.; Santiesteban, O.J.; Perez, J.M. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J. Am. Chem. Soc., 2011, 133, 16680-16688.
[89]
Cole, A.J.; Yang, V.C.; David, A.E. Cancer theranostics: The rise of targeted magnetic nanoparticles. Trends Biotechnol., 2011, 29, 323-332.
[90]
Russel, W.M.S.; Burch, R.C. The Principles of Humane Experimental Technique; Methuen: London, 1959.
[91]
Aboulaich, A.; Tilmaciu, C.M.; Merlin, C.; Mercier, C.; Guilloteau, H.; Medjahdi, G.; Schneider, R. Physicochemical properties and cellular toxicity of (poly)aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnology, 2012, 23, 335101-335110.
[92]
Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chem. Soc. Rev., 2015, 44, 8410-8423.
[93]
Sharma, H.; Mishra, P.K.; Talegaonkar, S.; Vaidya, B. Metal nanoparticles: A theranostic nanotool against cancer. Drug Discov. Today, 2015, 20, 1143-1151.
[94]
Patel, N.R.; Piroyan, A.; Ganta, S.; Morse, A.B.; Candiloro, K.M.; Solon, A.L.; Nack, A.H.; Galati, C.A.; Bora, C.; Maglaty, M.A.; O’Brien, S.W.; Litwin, S.; Davis, B.; Connolly, D.C.; Coleman, T.P. In vitro and in vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers. Cancer Biol. Ther., 2018, 19, 554-564.
[95]
Tao, W.; Ji, X.; Zhu, X.; Li, L.; Wang, J.; Zhang, Y.; Saw, P.E.; Li, W.; Kong, N.; Islam, M.A.; Gan, T.; Zeng, X.; Zhang, H.; Mahmoudi, M.; Tearney, G.J.; Farokhzad, O.C. Two‐dimensional antimonene‐based photonic nanomedicine for cancer theranostics. Adv. Mater., 2018, 30, 1802061-1802072.
[96]
Klingler, M.; Summer, D.; Rangger, C.; Haubner, R.; Foster, J.; Sosabowski, J.; Virgolini, I.; Decristoforo, C.; von Guggenberg, E. DOTA-MGS5, a new cholecystokinin-2 receptor targeting peptide analog with optimized targeting profile for theranostic use. J. Nucl. Med., 2018. pii: jnumed.118.221283.
[http://dx.doi.org/10.2967/jnumed.118.221283]
[97]
Hofman, M.S.; Sandhu, S.; Eu, P.; Price, J.; Akhurst, T.; Iravani, A.; Kong, G.; Ravi-Kumar, A.; Williams, S.; Thang, S-P.; Murphy, D.; Scalzo, M.; Hicks, R.J.; Violet, J. 785OLutetium-177 PSMA (LuPSMA) theranostics phase II trial: Efficacy, safety and QoL in patients with castrate-resistant prostate cancer treated with LuPSMA. Ann. Oncol., 2017, 28(Suppl. 5)
[http://dx.doi.org/10.1093/annonc/mdx370.002]
[98]
Hofman, M.; Violet, J.; Sandhu, S.; Ferdinandus, J.; Thang, S.P.; Iravani, A.; Kong, G.; Kumar, A.R.; Akhurst, T.; Jackson, P.; Scalzo, M.; Williams, S.; Hicks, R. High activity, pain reduction and low toxicity with Lutetium-177 PSMA617 theranostics in metastatic castrate-resistant prostate cancer (mCRPC): Results of a phase II prospective trial. J. Nucl. Med., 2018, 59, 531-531.
[99]
Turner, J.H. Recent advances in theranostics and challenges for the future. Br. J. Radiol., 2018, 91 20170893
[100]
Lux, F.; Tran, V.L.; Thomas, E.; Dufort, S.; Rossetti, F.; Martini, M.; Truillet, C.; Doussineau, T.; Bort, G.; Denat, F.; Boschetti, F.; Angelovski, G.; Detappe, A.; Crémillieux, Y.; Mignet, N.; Doan, B.; Larrat, B.; Meriaux, S.; Barbier, E.; Roux, S.; Fries, P.; Müller, A.; Abadjian, M.; Anderson, C.; Canet-Soulas, E.; Bouziotis, P.; Barberi-Heyob, M.; Frochot, C.; Verry, C.; Balosso, J.; Evans, M.; Sidi-Boumedine, J.; Janier, M.; Butterworth, K.; McMahon, S.; Prise, K.; Aloy, M.; Ardail, D.; Rodriguez-Lafrasse, C.; Porcel, E.; Lacombe, S.; Berbeco, R.; Allouch, A.; Perfettini, J.; Chargari, C.; Deutsch, E.; Le Duc, G.; Tillement, O. AGuIX® from bench to bedside-transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br. J. Radiol., 2019, 92, 20180365-20180384.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy