Research Article

活性二氮烯基支架作为抗微生物药物发现必需靶标抑制剂的分子对接研究

卷 20, 期 15, 2019

页: [1587 - 1602] 页: 16

弟呕挨: 10.2174/1389450120666190618122359

价格: $65

摘要

背景:据报道,二氮烯基化合物(-N = N-键)具有抗菌活性。在现代药物发现中,通常通过分子对接研究来探索药物-受体的相互作用。 材料与方法:筛选了三类二氮烯基支架进行对接研究,以探索与各种微生物靶标相互作用的结合机制。二氮烯基席夫碱(SBN-20,SBN-21,SBN-25,SBN-33,SBN-39,SBN-40和SBN-42),萘酚药效基二氮烯基席夫碱(NS-2,NS-8,NS -12,NS-15,NS-21和NS-23),基于吗啉的二氮烯基查耳酮(MD-6,MD-9,MD-14,MD-16,MD-20和MD-21)对接与不同标准药物相比,各种细菌和真菌蛋白。此外,通过Schrodinger软件的QikProp模块预测了这些分子的药物相似性和ADME性质。 结果:与之相比,大多数衍生物对细菌蛋白的对接得分和结合能更低,例如二氢蝶呤合酶(PDB:2VEG),氨基葡萄糖6-磷酸合酶(PDB:2VF5),二氢叶酸还原酶(PDB:3SRW)。标准药物。预测基于萘酚的二氮烯基席夫碱NS-21和NS-23对参与固醇生物合成的细胞色素P450固醇14-α-脱甲基酶(CYP51)(PDB:5FSA)起作用,抗真菌药物是必需的靶标。与标准药物环丙沙星相比,衍生物MD-6,NS-2,NS-21和NS-23对细菌DNA拓扑异构酶(PDB:3TTZ)表现出较高的对接分数。此外,大多数合成衍生物已显示出类似药物的特征。 结论:因此,这些化合物可作为有效的DNA拓扑异构酶抑制剂开发为新型抗菌剂,并作为CYP51抑制剂开发为抗真菌剂。

关键词: 二氮烯基,吗啉,萘酚,席夫碱,对接分数,二氢蝶呤合酶。

« Previous
图形摘要

[1]
Adedeji WA. The treasure called antibiotics. Ann Ib Postgrad Med 2016; 14(2): 56-7.
[PMID: 28337088]
[2]
Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 2009; 62(1): 5-16.
[http://dx.doi.org/10.1038/ja.2008.16] [PMID: 19132062]
[3]
Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 2005; 3(6)e176
[http://dx.doi.org/10.1371/journal.pbio.0030176] [PMID: 15869329]
[4]
Livermore DM. The need for new antibiotics. Clin Microbiol Infect 2004; 10(Suppl. 4): 1-9.
[http://dx.doi.org/10.1111/j.1465-0691.2004.1004.x] [PMID: 15522034]
[5]
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[6]
Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13(1): 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[7]
Dever LA, Dermody TS. Mechanisms of bacterial resistance to antibiotics. Arch Intern Med 1991; 151(5): 886-95.
[http://dx.doi.org/10.1001/archinte.1991.00400050040010] [PMID: 2025137]
[8]
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 2014; 6: 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[9]
Zinner SH. The search for new antimicrobials: why we need new options. Expert Rev Anti Infect Ther 2005; 3(6): 907-13.
[http://dx.doi.org/10.1586/14787210.3.6.907] [PMID: 16307503]
[10]
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011; 7(2): 146-57.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[11]
Shoichet BK, McGovern SL, Wei B, Irwin JJ. Lead discovery using molecular docking. Curr Opin Chem Biol 2002; 6(4): 439-46.
[http://dx.doi.org/10.1016/S1367-5931(02)00339-3] [PMID: 12133718]
[12]
Schulz-Gasch T, Stahl M. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J Mol Model 2003; 9(1): 47-57.
[http://dx.doi.org/10.1007/s00894-002-0112-y] [PMID: 12638011]
[13]
Dixit BC, Patel H, Desai DJ. Synthesis and application of new mordent and disperse azo dyes based on 2, 4-dihydroxybenzophenone. J Serb Chem Soc 2007; 72(2): 119-27.
[http://dx.doi.org/10.2298/JSC0702119D]
[14]
Chung KT. Azo dyes and human health: A review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2016; 34(4): 233-61.
[http://dx.doi.org/10.1080/10590501.2016.1236602] [PMID: 27635691]
[15]
Chung KT, Stevens SE Jr, Cerniglia CE. The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 1992; 18(3): 175-90.
[http://dx.doi.org/10.3109/10408419209114557] [PMID: 1554423]
[16]
Kaur H, Narasimhan B. Synthesis, Characterization, antimicrobial and antioxidant potential of diazenyl chalcones. Curr Top Med Chem 2018; 18(10): 844-56.
[http://dx.doi.org/10.2174/1568026618666180626095714] [PMID: 29943703]
[17]
Kaur H, Yadav S, Narasimhan B. Diazenyl derivatives and their complexes as anticancer agents. Anticancer Agents Med Chem 2016; 16(10): 1240-65.
[http://dx.doi.org/10.2174/1871520616666160607012042] [PMID: 27281366]
[18]
Kaur H, Narasimhan B. Antimicrobial activity of diazenyl derivatives: an update. Curr Top Med Chem 2018; 18(1): 3-21.
[http://dx.doi.org/10.2174/1568026618666180206093107] [PMID: 29412106]
[19]
Kaur H, Lim SM, Ramasamy K, Vasudevan M, Shah SA, Narasimhan B. Diazenyl schiff bases: synthesis, spectral analysis, antimicrobial studies and cytotoxic activity on human colorectal carcinoma cell line (HCT-116). Arab J Chem 2017.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.004]
[20]
Kaur H, Desai SD, Singh J, Narasimhan B. Morpholine based diazenyl chalcones: Synthesis, antimicrobial screening and cytotoxicity study. Anticancer Agents Med Chem 2018; 18(15): 2193-205.
[http://dx.doi.org/10.2174/1871520618666180830152701] [PMID: 30173651]
[21]
Kaur H, Singh J, Narasimhan B. Synthesis of novel naphthol diazenyl scaffold based Schiff bases as potential antimicrobial and cytotoxic agents against human colorectal carcinoma cell line (HT-29). BMC Chemistry In Press
[http://dx.doi.org/10.1186/s13065-019-0558-y]
[22]
Alves MJ, Froufe HJ, Costa AF, et al. Docking studies in target proteins involved in antibacterial action mechanisms: extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules 2014; 19(2): 1672-84.
[http://dx.doi.org/10.3390/molecules19021672] [PMID: 24481116]
[23]
Shaikh MH, Subhedar DD, Shingate BB, et al. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med Chem Res 2016; 25(4): 790-804.
[http://dx.doi.org/10.1007/s00044-016-1519-9]
[24]
O’Shea R, Moser HE. Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 2008; 51(10): 2871-8.
[http://dx.doi.org/10.1021/jm700967e] [PMID: 18260614]
[25]
Pawar VS, Lokwani DK, Bhandari SV, et al. Design, docking study and ADME prediction of Isatin derivatives as anti-HIV agents. Med Chem Res 2011; 20(3): 370-80.
[http://dx.doi.org/10.1007/s00044-010-9329-y]
[26]
Mouilleron S, Badet-Denisot MA, Golinelli-Pimpaneau B. Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. J Mol Biol 2008; 377(4): 1174-85.
[http://dx.doi.org/10.1016/j.jmb.2008.01.077] [PMID: 18295797]
[27]
Sherer BA, Hull K, Green O, et al. Pyrrolamide DNA gyrase inhibitors: optimization of antibacterial activity and efficacy. Bioorg Med Chem Lett 2011; 21(24): 7416-20.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.010] [PMID: 22041057]
[28]
Levy C, Minnis D, Derrick JP. Dihydropteroate synthase from Streptococcus pneumoniae: structure, ligand recognition and mechanism of sulfonamide resistance. Biochem J 2008; 412(2): 379-88.
[http://dx.doi.org/10.1042/BJ20071598] [PMID: 18321242]
[29]
Li X, Hilgers M, Cunningham M, et al. Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquina- zolines. Bioorg Med Chem Lett 2011; 21(18): 5171-6.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.059] [PMID: 21831637]
[30]
Bertrand JA, Auger G, Fanchon E, et al. Crystal structure of UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase from Escherichia coli. EMBO J 1997; 16(12): 3416-25.
[http://dx.doi.org/10.1093/emboj/16.12.3416] [PMID: 9218784]
[31]
Brvar M, Perdih A, Renko M, Anderluh G, Turk D, Solmajer T. Structure-based discovery of substituted 4,5′-bithiazoles as novel DNA gyrase inhibitors. J Med Chem 2012; 55(14): 6413-26.
[http://dx.doi.org/10.1021/jm300395d] [PMID: 22731783]
[32]
Hargrove TY, Friggeri L, Wawrzak Z, et al. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem 2017; 292(16): 6728-43.
[http://dx.doi.org/10.1074/jbc.M117.778308] [PMID: 28258218]
[33]
Podust LM, Poulos TL, Waterman MR. Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci USA 2001; 98(6): 3068-73.
[http://dx.doi.org/10.1073/pnas.061562898] [PMID: 11248033]
[34]
Fang W, Robinson DA, Raimi OG, et al. N-myristoyltransferase is a cell wall target in Aspergillus fumigatus. ACS Chem Biol 2015; 10(6): 1425-34.
[http://dx.doi.org/10.1021/cb5008647] [PMID: 25706802]
[35]
Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000; 44(1): 235-49.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[36]
Tsopelas F, Giaginis C, Tsantili-Kakoulidou A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin Drug Discov 2017; 12(9): 885-96.
[http://dx.doi.org/10.1080/17460441.2017.1344210] [PMID: 28644732]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy