Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Solid Dispersion Technology for Efficient Delivery of Poorly Water-Soluble Drugs

Author(s): Gourav Paudwal, Neha Rawat, Rahul Gupta, Ashish Baldi*, Gurdarshan Singh and Prem N. Gupta*

Volume 25, Issue 13, 2019

Page: [1524 - 1535] Pages: 12

DOI: 10.2174/1381612825666190618121553

Price: $65

Abstract

Drug discovery is generally considered as a costly affair and it takes approximately 15 years to reach a new chemical entity into the market. Among the recent potent drug molecules with most effective pharmacological properties, very few reached for Phase I clinical trial in humans. Unfortunately, the historical average reveals an almost 90% overall attrition rate in clinical trials. The solubility and permeability of a drug are the critical factors influencing the success of a drug. Oral drug delivery systems still continue to exist as the most favored, simplest and easiest administration route. A huge number of potential clinical candidates won’t make it to the market or accomplish their maximum capacity except if their solubility and oral bioavailability are enhanced by formulation. The solubility of drugs will continue to exist as important aspects of formulation development. With the emergence of synthetic methods for new molecule synthesis in chemistry and better screening methods, the number of poorly water soluble compounds has dramatically expanded in the last few years. Solid dispersion is one of the most important techniques as it can be prepared by several methods. It is mostly prepared with a drug having poor water solubility and it explores hydrophilic polymers either individually or in combination for the enhancement of solubility. In comparison to the conventional formulations such as tablets or capsules, there are different methods with which solid dispersions can be prepared and also have many benefits over conventional drug delivery approaches. Solid dispersion systems are potential for increasing the solubility, oral absorption and bioavailability of drugs and the significance of the solid dispersion technology is constantly increasing. The main focus of this review is to present recent advancements in the area of solid dispersion. This review also includes an account of recent patents on solid dispersion and clinical status of solid dispersion based formulations.

Keywords: Solid dispersion, polymers, poorly soluble drug, oral delivery, bioavailability, hydrophilic polymers.

[1]
Jain NK. Mucoadhesive drug delivery. In: Ahuja A, Ali J, Khar RK, eds Progress in controlled and novel drug delivery systems. New Delhi: CBS publishers and distributors 2004; pp. 245-47.
[2]
Arunachalam A, Ashutosh KS, Karthikeyan M, et al. Solid dispersions: A review. Int J Curr Pharm Res 2010; 1: 82-90.
[http://dx.doi.org/10.33786/JCPR.2010.v01i01.016]
[3]
Huda N, Saffoon N, Sutradhar KB, Uddin R. Enhancement of oral bioavailability and solid dispersion: A Review. J Anim Plant Sci 2011; 1: 13-20.
[4]
Baghel RS, Singh S, Yadav L. A review on solid dispersion. IJPLS 2011; 2: 1078-95.
[5]
Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50(1): 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[6]
Jinno J, Kamada N, Miyake M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 2006; 111(1-2): 56-64.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.013] [PMID: 16410029]
[7]
Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004; 3(9): 785-96.
[http://dx.doi.org/10.1038/nrd1494] [PMID: 15340388]
[8]
Yalkowsky SH, Rubino JT. Solubilization by cosolvents I: Organic solutes in propylene glycol-water mixtures. J Pharm Sci 1985; 74(4): 416-21.
[http://dx.doi.org/10.1002/jps.2600740410] [PMID: 3999002]
[9]
Smith AJ, Kavuru P, Wojtas L, Zaworotko MJ, Shytle RD. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol Pharm 2011; 8(5): 1867-76.
[http://dx.doi.org/10.1021/mp200209j] [PMID: 21846121]
[10]
Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm 2007; 329(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[11]
Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: Design and clinical applications. Nat Rev Drug Discov 2008; 7(3): 255-70.
[http://dx.doi.org/10.1038/nrd2468] [PMID: 18219308]
[12]
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005] [PMID: 18061887]
[13]
Potta SG, Minemi S, Nukala RK, et al. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs. J Biomed Nanotechnol 2010; 6(6): 634-40.
[http://dx.doi.org/10.1166/jbn.2010.1169] [PMID: 21361127]
[14]
Pinnamaneni S, Das NG, Das SK. Formulation approaches for orally administered poorly soluble drugs. Pharmazie 2002; 57(5): 291-300.
[PMID: 12061250]
[15]
Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci 1971; 60(9): 1281-302.
[http://dx.doi.org/10.1002/jps.2600600902] [PMID: 4935981]
[16]
Sekiguchi K, Obi N. Studies on absorption of eutectic mixtures. A comparison of the behavior of eutectic mixtures of sulphathiazole and that of ordinary sulphathiazole in man. Chem Pharm Bull (Tokyo) 1961; 9: 866-72.
[http://dx.doi.org/10.1248/cpb.9.866]
[17]
Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 1997; 86(1): 1-12.
[http://dx.doi.org/10.1021/js9601896] [PMID: 9002452]
[18]
Sekiguchi K, Obi N. Studies on absorption of eutectic mixtures. A comparison of the behavior of eutectic mixtures of sulphathiazole and that of ordinary sulphathiazole in man. Chem Pharm Bull (Tokyo) 1961; 9: 866-72.
[http://dx.doi.org/10.1248/cpb.9.866]
[19]
Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897; 19: 930-4.
[http://dx.doi.org/10.1021/ja02086a003]
[20]
Das SK, Roy S, Kalimuthu Y, Khanam J, Nanda A. Solid Dispersions: An approach to enhance the bioavailability of poorly water-soluble drugs. IJJPT 2011; 1: 37-46.
[21]
Kumar S, Malviya R, Sharma PK. Solid dispersion: Pharmaceutical technology for the improvement of various characteristics of active pharmaceutical ingredients. AJBAS 2011; 3(4): 116-25.
[22]
Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 2014; 4(1): 18-25.
[http://dx.doi.org/10.1016/j.apsb.2013.11.001] [PMID: 26579360]
[23]
Bashiri-Shahroodi A, Nassab PR, Szabó-Révész P, Rajkó R. Preparation of a solid dispersion by a dropping method to improve the rate of dissolution of meloxicam. Drug Dev Ind Pharm 2008; 34(7): 781-8.
[http://dx.doi.org/10.1080/03639040801925735] [PMID: 18612916]
[24]
Bhatnagar P, Dhote V, Mahajan SC, Mishra PK, Mishra DK. Solid dispersion in pharmaceutical drug development: From basics to clinical applications. Curr Drug Deliv 2014; 11(2): 155-71.
[http://dx.doi.org/10.2174/15672018113109990044] [PMID: 23859356]
[25]
Vo CL, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 2013; 85(3 Pt B): 799-813.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.007] [PMID: 24056053]
[26]
Sekiguchi K, Obi N, Ueda Y. Studies on absorption of eutectic mixture and absorption of used conglomerates of chloramphenicol and urea in rabbits. Chem Pharm Bull 1964; 12: 134-44.
[http://dx.doi.org/10.1248/cpb.12.134] [PMID: 14126741]
[27]
Levy G. Effect of particle size on dissolution and gastrointestinal absorption rates of pharmaceuticals. Am J Pharm Sci Support Public Health 1963; 135: 78-92.
[PMID: 13930259]
[28]
Kanig JL. Properties of fused mannitol in compressed tablets. J Pharm Sci 1964; 53: 188-92.
[http://dx.doi.org/10.1002/jps.2600530217] [PMID: 14123962]
[29]
Simonelli AP, Mehta SC, Higuchi WI. Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J Pharm Sci 1969; 58(5): 538-49.
[http://dx.doi.org/10.1002/jps.2600580503] [PMID: 5796439]
[30]
Chiou WL, Riegelman S. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J Pharm Sci 1969; 58(12): 1505-10.
[http://dx.doi.org/10.1002/jps.2600581218] [PMID: 5353269]
[31]
Urbanetz NA. Stabilization of solid dispersions of nimodipine and polyethylene glycol 2000. Eur J Pharm Sci 2006; 28(1-2): 67-76.
[http://dx.doi.org/10.1016/j.ejps.2005.12.009] [PMID: 16472995]
[32]
Vilhelmsen T, Eliasen H, Schaefer T. Effect of a melt agglomeration process on agglomerates containing solid dispersions. Int J Pharm 2005; 303(1-2): 132-42.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.012] [PMID: 16139973]
[33]
Karavas E, Georgarakis E, Bikiaris D. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur J Pharm Biopharm 2006; 64(1): 115-26.
[http://dx.doi.org/10.1016/j.ejpb.2005.12.013] [PMID: 16675210]
[34]
Drooge JV, Braeckmans K, Hinrichs WLJ, et al. Characterization of the mode of incorporation of lipophilic compounds in solid dispersions at the nanoscale using fluorescence resonance energy transfer (FRET). Macromol Rapid Commun 2006; 27: 1149-55.
[http://dx.doi.org/10.1002/marc.200600177]
[35]
Pokharkar VB, Mandpe LP, Padamwar MN, et al. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol 2006; 167: 20-5.
[http://dx.doi.org/10.1016/j.powtec.2006.05.012]
[36]
Hasegawa S, Hamaura T, Furuyama N, Kusai A, Yonemochi E, Terada K. Effects of water content in physical mixture and heating temperature on crystallinity of troglitazone-PVP K30 solid dispersions prepared by closed melting method. Int J Pharm 2005; 302(1-2): 103-12.
[http://dx.doi.org/10.1016/j.ijpharm.2005.06.021] [PMID: 16102926]
[37]
Lloyd GR, Craig DQ, Smith A. A calorimetric investigation into the interaction between paracetamol and polyethlene glycol 4000 in physical mixes and solid dispersions. Eur J Pharm Biopharm 1999; 48(1): 59-65.
[http://dx.doi.org/10.1016/S0939-6411(99)00022-3] [PMID: 10477330]
[38]
Yoshihashi Y, Iijima H, Yonemochi E, Terada K. Estimation of physical stability of amorphous solid dispersion using differential scanning calorimetry. J Therm Anal Calorim 2006; 85: 689-92.
[http://dx.doi.org/10.1007/s10973-006-7653-8]
[39]
Guyot M, Fawaz F, Bildet J, Bonini F, Lagueny AM. Physicochemical characterization and dissolution of PEG solid dispersions. Int J Pharm 1995; 123: 53-63.
[http://dx.doi.org/10.1016/0378-5173(95)00039-L]
[40]
Yao WW, Bai TC, Sun JP, et al. Thermodynamic properties for the system of silybin and poly(ethylene glycol) 6000. Thermochim Acta 2005; 437: 17-20.
[http://dx.doi.org/10.1016/j.tca.2005.06.012]
[41]
Chiou WL, Riegelman S. Oral absorption of griseofulvin in dogs: Increased absorption via solid dispersion in polyethylene glycol 6000. J Pharm Sci 1970; 59(7): 937-42.
[http://dx.doi.org/10.1002/jps.2600590703] [PMID: 5428085]
[42]
Ceballos A, Cirri M, Maestrelli F, Corti G, Mura P. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco 2005; 60(11-12): 913-8.
[http://dx.doi.org/10.1016/j.farmac.2005.07.002] [PMID: 16129436]
[43]
Huang J, Wigent RJ, Bentzley CM, Schwartz JB. Nifedipine solid dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blend for controlled drug delivery. Effect of drug loading on release kinetics. Int J Pharm 2006; 319(1-2): 44-54.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.035] [PMID: 16678366]
[44]
Tanaka N, Imai K, Okimoto K, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): In vivo evaluation. J Control Release 2006; 112(1): 51-6.
[http://dx.doi.org/10.1016/j.jconrel.2006.01.020] [PMID: 16545477]
[45]
Won DH, Kim MS, Lee S, Park JS, Hwang SJ. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int J Pharm 2005; 301(1-2): 199-208.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.017] [PMID: 16024189]
[46]
Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 2006; 95(12): 2692-705.
[http://dx.doi.org/10.1002/jps.20697] [PMID: 16892209]
[47]
Verreck G, Decorte A, Heymans K, et al. Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm 2006; 327(1-2): 45-50.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.024] [PMID: 16930886]
[48]
Rodier E, Lochard H, Sauceau M, Letourneau JJ, Freiss B, Fages J. A three step supercritical process to improve the dissolution rate of eflucimibe. Eur J Pharm Sci 2005; 26(2): 184-93.
[http://dx.doi.org/10.1016/j.ejps.2005.05.011] [PMID: 16081259]
[49]
Garcia ZIX. GaitanoJosé GG, Isasi JR. Thermal stability of solid dispersions of naphthalene derivatives with [beta]-cyclodextrin and [beta]-cyclodextrin polymers. Thermochim Acta 2006; 444: 57-64.
[http://dx.doi.org/10.1016/j.tca.2006.02.024]
[50]
van Drooge DJ, Hinrichs WL, Visser MR, Frijlink HW. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int J Pharm 2006; 310(1-2): 220-9.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.007] [PMID: 16427226]
[51]
Van den Mooter G, Weuts I, De Ridder T, Blaton N. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int J Pharm 2006; 316(1-2): 1-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.025] [PMID: 16563676]
[52]
Goldberg AH, Gibaldi M, Kanig JL, Mayersohn M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. IV. Chloramphenicol--urea system. J Pharm Sci 1966; 55(6): 581-3.
[http://dx.doi.org/10.1002/jps.2600550610] [PMID: 5924122]
[53]
Karataş A, Yüksel N, Baykara T. Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco 2005; 60(9): 777-82.
[http://dx.doi.org/10.1016/j.farmac.2005.04.014] [PMID: 16084514]
[54]
Damian F, Blaton N, Naesens L, et al. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci 2000; 10(4): 311-22.
[http://dx.doi.org/10.1016/S0928-0987(00)00084-1] [PMID: 10838021]
[55]
Li FQ, Hu JH, Deng JX, Su H, Xu S, Liu JY. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int J Pharm 2006; 324(2): 152-7.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.006] [PMID: 16837152]
[56]
Yüksel N, Karataş A, Ozkan Y, Savaşer A, Ozkan SA, Baykara T. Enhanced bioavailability of piroxicam using Gelucire 44/14 and labrasol: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2003; 56(3): 453-9.
[http://dx.doi.org/10.1016/S0939-6411(03)00142-5] [PMID: 14602190]
[57]
Chauhan B, Shimpi S, Paradkar A. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur J Pharm Sci 2005; 26(2): 219-30.
[http://dx.doi.org/10.1016/j.ejps.2005.06.005] [PMID: 16087324]
[58]
Dannenfelser RM, He H, Joshi Y, Bateman S, Serajuddin AT. Development of clinical dosage forms for a poorly water soluble drug I: Application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J Pharm Sci 2004; 93(5): 1165-75.
[http://dx.doi.org/10.1002/jps.20044] [PMID: 15067693]
[59]
Hoerter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 1994; 25-14.
[60]
Huang J, Wigent RJ, Schwartz JB. Nifedipine molecular dispersion in microparticles of ammonio methacrylate copolymer and ethylcellulose binary blends for controlled drug delivery: Effect of matrix composition. Drug Dev Ind Pharm 2006; 32(10): 1185-97.
[http://dx.doi.org/10.1080/03639040600832827] [PMID: 17090441]
[61]
Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 2002; 231(2): 131-44.
[http://dx.doi.org/10.1016/S0378-5173(01)00891-2] [PMID: 11755266]
[62]
Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 2008; 70(2): 493-9.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.023] [PMID: 18577451]
[63]
Esfandyari-Manesh M, Mostafavi SH, Majidi RF, et al. Improved anticancer delivery of paclitaxel by albumin surface modification of PLGA nanoparticles. Daru 2015; 23(1): 28.
[http://dx.doi.org/10.1186/s40199-015-0107-8] [PMID: 25903677]
[64]
Shah MK, Madan P, Lin S. Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration. Pharm Dev Technol 2014; 19(4): 475-85.
[http://dx.doi.org/10.3109/10837450.2013.795169] [PMID: 23697916]
[65]
Lin C-W, Cham T-M. Effect of particle size on the available surface area of nifedipine from nifedipine-polyethylene glycol 6000 solid dispersions. Int J Pharm 1996; 127(2): 261-72.
[http://dx.doi.org/10.1016/0378-5173(95)04245-8]
[66]
Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 2016; 105(9): 2527-44.
[http://dx.doi.org/10.1016/j.xphs.2015.10.008] [PMID: 26886314]
[67]
Hallouard F, Mehenni L, Lahiani-Skiba M, Anouar Y, Skiba M. Solid dispersions for oral administration: An overview of the methods for their preparation. Curr Pharm Des 2016; 22(32): 4942-58.
[http://dx.doi.org/10.2174/1381612822666160726095916] [PMID: 27464728]
[68]
Okonogi S, Oguchi T, Yonemochi E, Puttipipatkhachorn S, Yamamoto K. Improved dissolution of ofloxacin via solid dispersion. Int J Pharm 1997; 156: 175-80.
[http://dx.doi.org/10.1016/S0378-5173(97)00196-8]
[69]
Kolašinac N, Kachrimanis K, Homšek I, Grujić B, Ðurić Z, Ibrić S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. Int J Pharm 2012; 436(1-2): 161-70.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.060] [PMID: 22772487]
[70]
Smikalla MM, Urbanetz NA. The influence of povidone K17 on the storage stability of solid dispersions of nimodipine and polyethylene glycol. Eur J Pharm Biopharm 2007; 66(1): 106-12.
[http://dx.doi.org/10.1016/j.ejpb.2006.08.018] [PMID: 17055711]
[71]
Yoshioka M, Hancock BC, Zografi G. Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates. J Pharm Sci 1995; 84(8): 983-6.
[http://dx.doi.org/10.1002/jps.2600840814] [PMID: 7500284]
[72]
Ambike AA, Mahadik KR, Paradkar A. Stability study of amorphous valdecoxib. Int J Pharm 2004; 282(1-2): 151-62.
[http://dx.doi.org/10.1016/j.ijpharm.2004.06.009] [PMID: 15336390]
[73]
Sertsou G, Butler J, Scott A, Hempenstall J, Rades T. Factors affecting incorporation of drug into solid solution with HPMCP during solvent change co-precipitation. Int J Pharm 2002; 245(1-2): 99-108.
[http://dx.doi.org/10.1016/S0378-5173(02)00331-9] [PMID: 12270247]
[74]
Gunawan L, Johari GP, Shanker RM. Structural relaxation of acetaminophen glass. Pharm Res 2006; 23(5): 967-79.
[http://dx.doi.org/10.1007/s11095-006-9898-0] [PMID: 16715387]
[75]
Miyazaki T, Yoshioka S, Aso Y, Kojima S. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci 2004; 93(11): 2710-7.
[http://dx.doi.org/10.1002/jps.20182] [PMID: 15389669]
[76]
Six K, Verreck G, Peeters J, Brewster M, Van Den Mooter G. Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers. J Pharm Sci 2004; 93(1): 124-31.
[http://dx.doi.org/10.1002/jps.10522] [PMID: 14648642]
[77]
Shibata Y, Fuji M, Kokuda M, Noda S, et al. Preparation, characterization, and tableting of a solid dispersion of indomethacin with crospovidone. J Pharm Sci 2005; 96: 1537-47.
[http://dx.doi.org/10.1002/jps.20794] [PMID: 17136760]
[78]
Dhumal RS, Shimpi SL, Paradkar AR. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers. Acta Pharm 2007; 57(3): 287-300.
[http://dx.doi.org/10.2478/v10007-007-0023-7] [PMID: 17878109]
[79]
Adley AN, Jose LS, Roberto AC, Pedro JR. Alternative technology to improve solubility of poorly water soluble drug. Lat Am J Pharm 2008; 27: 789-97.
[80]
Modi A, Tayade P. Enhancement of dissolution profile by solid dispersion (kneading) technique. AAPS PharmSciTech 2006; 7(3): 68.
[http://dx.doi.org/10.1208/pt070368] [PMID: 17025249]
[81]
Mann AKP, Schenck L, Koynov A, et al. Producing amorphous solid dispersions via co-precipitation and spray drying: Impact to physicochemical and biopharmaceutical properties. J Pharm Sci 2018; 107(1): 183-91.
[http://dx.doi.org/10.1016/j.xphs.2017.07.001] [PMID: 28711592]
[82]
Yamamoto K, Nakamo M, Arita T, Nakai Y. Preparation and thermal characterization of poly (ethyl oxide)/griseofulvin solid dispersions for biomedical application. J Pharm Biopharm 1974; 2: 487-95.
[http://dx.doi.org/10.1007/BF01070943]
[83]
Dos Santos KM, Barbosa RM, Vargas FGA, et al. Development of solid dispersions of β-lapachone in PEG and PVP by solvent evaporation method. Drug Dev Ind Pharm 2018; 44(5): 750-6.
[http://dx.doi.org/10.1080/03639045.2017.1411942] [PMID: 29206496]
[84]
Dhirendra K, Lewis S, Udupa N, Atin K. Solid dispersions: A review. Pak J Pharm Sci 2009; 22(2): 234-46.
[PMID: 19339238]
[85]
Nagy ZK, Balogh A, Démuth B, et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int J Pharm 2015; 480(1-2): 137-42.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.025] [PMID: 25596415]
[86]
Choksi R, Zia H. Hot-melt extrusion technique: A review. J Pharm Res 2004; 3: 107-17.
[87]
Gao N, Guo M, Fu Q, He Z. Application of hot melt extrusion to enhance the dissolution and oral bioavailability of oleanolic acid. Asian J Pharm 2017; 12: 66-72.
[http://dx.doi.org/10.1016/j.ajps.2016.06.006]
[88]
Subramaniam B, Rajewski RA, Snavely K. Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci 1997; 86(8): 885-90.
[http://dx.doi.org/10.1021/js9700661] [PMID: 9269864]
[89]
Sethia S, Squillante E. Physicochemical characterization of solid dispersions of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J Pharm Sci 2002; 91(9): 1948-57.
[http://dx.doi.org/10.1002/jps.10186] [PMID: 12210042]
[90]
Yin X, Daintree LS, Ding S, et al. Itraconazole solid dispersion prepared by a supercritical fluid technique: Preparation, in vitro characterization, and bioavailability in beagle dogs. Drug Des Devel Ther 2015; 9: 2801-10.
[PMID: 26060397]
[91]
Giri KT, Kumar K. Bull Fac Pharm Cairo Univ 2012; 7(2): 1-7.
[92]
Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res 1998; 15(8): 1202-6.
[http://dx.doi.org/10.1023/A:1011983606606] [PMID: 9706050]
[93]
Liu J, Cao F, Zhang C, Ping Q. Use of polymer combinations in the preparation of solid dispersions of athermally unstable drug by hot-melt extrusion. Acta Pharm Sin B 2013; 3: 263-372.
[http://dx.doi.org/10.1016/j.apsb.2013.06.007]
[94]
Verhoeven E, De Beer TRM, Van den Mooter G, Remon JP, Vervaet C. Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion. Eur J Pharm Biopharm 2008; 69(1): 312-9.
[http://dx.doi.org/10.1016/j.ejpb.2007.10.007] [PMID: 18036793]
[95]
Qi S, Gryczke A, Belton P, Craig DQM. Characterisation of solid dispersions of paracetamol and EUDRAGIT E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis. Int J Pharm 2008; 354(1-2): 158-67.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.048] [PMID: 18242020]
[96]
Paradkar A, Ambike AA, Jadhav BK, Mahadik KR. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int J Pharm 2004; 271(1-2): 281-6.
[http://dx.doi.org/10.1016/j.ijpharm.2003.11.014] [PMID: 15129995]
[97]
Patidar K, Soni M, Sharma KD, Jain KS. Solid dispersions: Approaches tehnology involved, Unmet need and challenges. Drug Invent Today 2010; 2(7): 349-57.
[98]
Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci 2012; 101(4): 1355-77.
[http://dx.doi.org/10.1002/jps.23031] [PMID: 22213468]
[99]
Mididoddi PK, Repka MA. Characterization of hot-melt extruded drug delivery systems for onychomycosis. Eur J Pharm Biopharm 2007; 66(1): 95-105.
[http://dx.doi.org/10.1016/j.ejpb.2006.08.013] [PMID: 17045468]
[100]
Ozkan S, Kalyon DM, Yu X, McKelvey CA, Lowinger M. Multifunctional protein-encapsulated polycaprolactone scaffolds: Fabrication and in vitro assessment for tissue engineering. Biomaterials 2009; 30(26): 4336-47.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.050] [PMID: 19481253]
[101]
Peddy V, Boge R, Madivada LR. Enzalutamide polymorphic forms and its preparation US Patent 20150239848A1 2015.
[102]
Cheekoori S. Novel amorphous solid dispersions of valganciclovir hydrochloride USPatent 20140179719A1 2014.
[103]
Devarakonda SN. Preparation of Lenalidomide USPatent 20140179719A1 2016.
[104]
Catron N, Lindley D, Miller JM, Schmitt EA, Tong P. Solid dispersions containing an apoptosis-inducing agent US Patent 20150157639A1, 1994.
[105]
Kelm GR, Dobrozsi DJ. Solid dispersion compositions of tebufelone US Patent 20150157639A1 1992.
[106]
Engers DA, Yang Y, Parent S, Houston S, Friedman BC. Solid dispersions of amorphous paroxetine mesylate USPatent 20140187582A1 2012.
[107]
Selbo J, Teng J, Kabir MA, Golden P. Formulations of rifaximin and uses thereof USPatent 20150133482A1 2010.
[108]
Iqbal J, Oruganti S, Rapolu RK, et al. Crystalline forms of vilazodone hydrochloride and vilazodone free base USPatent20150126525A1 2012.
[109]
Stupak E, Cho WP. Controlled release flutamide composition USPatent5162117A 1991.
[117]
Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 1998; 15(5): 698-705.
[http://dx.doi.org/10.1023/A:1011910801212] [PMID: 9619777]
[118]
Anupama K, Mayur P. Solid dispersions: An approach towards enhancing dissolution rate. Int J Pharma Sci 2011; 3(4): 9-19.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy