[1]
Gurjar, P.N.; Chouksey, S.; Patil, G.; Naik, N.; Agrawal, S.S. Carbon nanotubes: Pharmaceutical applications. Asian J. Biomed. Pharmaceut. Sci., 2013, 3(23), 8.
[2]
Mohanraj, V.J.; Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
[3]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133.
[4]
Gillies, E.R.; Frechet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[5]
Cho, K.; Wang, X.U.; Nie, S.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[6]
Salata, O.V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[7]
Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1(5), 482-501.
[8]
Cornell, R.M.; Schwertmann, U. The iron oxides: Structure, properties, reactions, occurrences and uses; John Wiley & Sons: New York, 2003.
[9]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[10]
Carpenter, E.E. Iron nanoparticles as potential magnetic carriers. J. Magn. Magn. Mater., 2001, 225(1-2), 17-20.
[11]
Zaitsev, V.S.; Filimonov, D.S.; Presnyakov, I.A.; Gambino, R.J.; Chu, B. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J. Colloid Interface Sci., 1999, 212(1), 49-57.
[12]
Bolto, B.A. Magnetic particle technology for wastewater treatment. Waste Manag., 1990, 10(1), 11-21.
[13]
Woo, K.; Hong, J.; Choi, S.; Lee, H.W.; Ahn, J.P.; Kim, C.S.; Lee, S.W. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater., 2004, 16(14), 2814-2818.
[14]
He, Y.P.; Miao, Y.M.; Li, C.R.; Wang, S.Q.; Cao, L.; Xie, S.S.; Yang, G.Z.; Zou, B.S.; Burda, C. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B, 2005, 71(12)125411
[15]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397.
[16]
Hariani, L.P.; Faizal, M.; Ridwan, R.; Marsi, M.; Setiabudidaya, D. Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int. J. Environ. Sci. Dev., 2013, 4(3), 336-340.
[17]
Wetterskog, E.; Tai, C.W.; Grins, J.; Bergström, L.; Salazar-Alvarez, G. Anomalous magnetic properties of nanoparticles arising from defect structures: Topotaxial oxidation of Fe1–xO| Fe3− δO4 core shell nanocubes to single-phase particles. ACS Nano, 2013, 7(8), 7132-7144.
[18]
Levy, M.; Quarta, A.; Espinosa, A.; Figuerola, A.; Wilhelm, C.; García-Hernández, M.; Genovese, A.; Falqui, A.; Alloyeau, D.; Buonsanti, R.; Cozzoli, P.D. Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem. Mater., 2011, 23(18), 4170-4180.
[19]
Panchal, V.; Bhandarkar, U.; Neergat, M.; Suresh, K.G. Controlling magnetic properties of iron oxide nanoparticles using post-synthesis thermal treatment. Appl. Phys., A, 2014, 114(2), 537-544.
[20]
Kemp, S.J.; Ferguson, R.M.; Khandhar, A.P.; Krishnan, K.M. Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Advances, 2016, 6(81), 77452-77464.
[21]
Unni, M.; Uhl, A.M.; Savliwala, S.; Savitzky, B.H.; Dhavalikar, R.; Garraud, N.; Arnold, D.P.; Kourkoutis, L.F.; Andrew, J.S.; Rinaldi, C. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano, 2017, 11(2), 2284-2303.
[22]
Tavakoli, A.; Sohrabi, M.; Kargari, A. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap., 2007, 61(3), 151-170.
[23]
De Cuyper, M.; Joniau, M. Magnetoliposomes. Eur. Biophys. J., 1988, 15(5), 311-319.
[24]
Hasany, S.F.; Ahmed, I.; Rajan, J.; Rehman, A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol., 2012, 2(6), 148-158.
[25]
Soenen, S.J.; Brisson, A.R.; De Cuyper, M. Addressing the problem of cationic lipid-mediated toxicity: The magnetoliposome model. Biomaterials, 2009, 30(22), 3691-3701.
[26]
Lam, U.T.; Mammucari, R.; Suzuki, K.; Foster, N.R. Processing of iron oxide nanoparticles by supercritical fluids. Ind. Eng. Chem. Res., 2008, 47(3), 599-614.
[27]
Kojima, K.; Miyazaki, M.; Mizukami, F.; Maeda, K. Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J. Sol-Gel Sci. Technol., 1997, 8(1-3), 77-81.
[28]
Ennas, G.; Musinu, A.N.N.A.; Piccaluga, G.; Zedda, D.; Gatteschi, D.; Sangregorio, C.; Stanger, J.L.; Concas, G.; Spano, G. Characterization of iron oxide nanoparticles in an Fe2O3-SiO2 composite prepared by a sol-gel method. Chem. Mater., 1998, 10(2), 495-502.
[29]
Lu, Y.; Yin, Y.; Mayers, B.T.; Xia, Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol- gel approach. Nano Lett., 2002, 2(3), 183-186.
[30]
Gonzalez-Carreno, T.; Morales, M.P.; Gracia, M.; Serna, C.J. Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Mater. Lett., 1993, 18(3), 151-155.
[31]
Hao, Y.; Teja, A.S. Continuous hydrothermal crystallization of α-Fe2O3 and Co3O4 nanoparticles. J. Mater. Res., 2003, 18(2), 415-422.
[32]
Takami, S.; Sato, T.; Mousavand, T.; Ohara, S.; Umetsu, M.; Adschiri, T. Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater. Lett., 2007, 61(26), 4769-4772.
[33]
Ashokkumar, M.; Lee, J.; Kentish, S.; Grieser, F. Bubbles in an acoustic field: An overview. Ultrason. Sonochem., 2007, 14(4), 470-475.
[34]
Hassanjani-Roshan, A.; Vaezi, M.R.; Shokuhfar, A.; Rajabali, Z. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology, 2012, 9(1), 95-99.
[35]
Cuenya, B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films, 2010, 518(12), 3127-3150.
[36]
Lin, X.M.; Samia, A.C. Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magn. Magn. Mater., 2006, 305(1), 100-109.
[37]
Kim, D.K.; Mikhaylova, M.; Zhang, Y.; Muhammed, M. Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater., 2003, 15(8), 1617-1627.
[38]
Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release, 2006, 114(1), 100-109.
[39]
Yoon, T.J.; Lee, W.; Oh, Y.S.; Lee, J.K. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J. Chem., 2003, 27(2), 227-229.
[40]
Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Xu, W.; Zhang, Q.; Volinsky, A.A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett., 2011, 65(12), 1882-1884.
[41]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145.
[42]
Niu, H.; Wang, Y.; Zhang, X.; Meng, Z.; Cai, Y. Easy synthesis of surface-tunable carbon-encapsulated magnetic nanoparticles: Adsorbents for selective isolation and preconcentration of organic pollutants. ACS Appl. Mater. Interfaces, 2011, 4(1), 286-295.
[43]
Yi, D.K.; Lee, S.S.; Ying, J.Y. Synthesis and applications of magnetic nanocomposite catalysts. Chem. Mater., 2006, 18(10), 2459-2461.
[44]
Ling, D.; Hyeon, T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small, 2013, 9(9-10), 1450-1466.
[45]
Unsoy, G.; Yalcin, S.; Khodadust, R.; Gunduz, G.; Gunduz, U. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res., 2012, 14(11), 964.
[46]
Thorek, D.L.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34(1), 23-38.
[47]
Salazar-Alvarez, G.; Muhammed, M.; Zagorodni, A.A. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci., 2006, 61(14), 4625-4633.
[48]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[49]
Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem., 2006, 34(2-4), 237-247.
[50]
Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Ciupina, V.; Prodan, G.; Voicu, I.; Fleaca, C.; Albu, L.; Savoiu, M.; Sandu, I.; Popovici, E. Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation. Appl. Surf. Sci., 2005, 247(1-4), 25-31.
[51]
Kruis, F.E.; Fissan, H.; Peled, A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci., 1998, 29(5-6), 511-535.
[52]
Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J. Magn. Magn. Mater., 2007, 309(2), 307-311.
[53]
Li, F.; Vipulanandan, C.; Mohanty, K.K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids Surf. A Physicochem. Eng. Asp., 2003, 223(1-3), 103-112.
[54]
Sun, Y.P.; Li, X.Q.; Zhang, W.X.; Wang, H.P. A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2007, 308(1-3), 60-66.
[55]
Xia, T.; Wang, J.; Wu, C.; Meng, F.; Shi, Z.; Lian, J.; Feng, J.; Meng, J. Novel complex-coprecipitation route to form high quality triethanolamine-coated Fe3O4 nanocrystals: their high saturation magnetizations and excellent water treatment properties. CrystEngComm, 2012, 14(18), 5741-5744.
[56]
Jain, T.K.; Reddy, M.K.; Morales, M.A.; Leslie-Pelecky, D.L.; Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm., 2008, 5(2), 316-327.
[57]
Sheng-Nan, S.; Chao, W.; Zan-Zan, Z.; Yang-Long, H.; Venkatraman, S.S.; Zhi-Chuan, X. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chin. Phys. B, 2014, 23(3)037503
[58]
Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B, 2012, 177(5), 421-427.
[59]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[60]
Lasic, D.D. Novel applications of liposomes. Trends Biotechnol., 1998, 16(7), 307-321.
[61]
Dozier, D.; Palchoudhury, S.; Bao, Y. Synthesis of iron oxide nanoparticles with biological coatings. J. Sci. Health Univ. Alabama, 2010, 7, 16-18.
[62]
Soenen, S.J.; Himmelreich, U.; Nuytten, N.; Pisanic, T.R.; Ferrari, A.; De Cuyper, M. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small, 2010, 6(19), 2136-2145.
[63]
Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J.M. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stabil., 2010, 95(11), 2126-2146.
[64]
Soenen, S.J.; De Cuyper, M. Assessing cytotoxicity of (iron oxide‐based) nanoparticles: An overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol. Imaging, 2009, 4(5), 207-219.
[65]
Hamley, I.W. Nanotechnology with soft materials. Angew. Chem. Int. Ed., 2003, 42(15), 1692-1712.
[66]
Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63(1-2), 24-46.
[67]
Ghosh, S.; Jiang, W.; McClements, J.D.; Xing, B. Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir, 2011, 27(13), 8036-8043.
[68]
Liu, H.; Guo, J.; Jin, L.; Yang, W.; Wang, C. Fabrication and functionalization of dendritic poly (amidoamine)-immobilized magnetic polymer composite microspheres. J. Phys. Chem. B, 2008, 112(11), 3315-3321.
[69]
Jain, N.; Wang, Y.; Jones, S.K.; Hawkett, B.S.; Warr, G.G. Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir, 2009, 26(6), 4465-4472.
[70]
Bahadur, K.C.; Lee, S.M.; Yoo, E.S.; Choi, J.H.; Do Ghim, H. Glycoconjugated chitosan stabilized iron oxide nanoparticles as a multifunctional nanoprobe. Mater. Sci. Eng. C, 2009, 29(5), 1668-1673.
[71]
Wang, D.; Su, H.; Liu, Y.; Wu, C.; Xia, C.; Sun, J.; Gao, F.; Gong, Q.; Song, B.; Ai, H. Near-infrared fluorescent amphiphilic polycation wrapped magnetite nanoparticles as multimodality probes. Chin. Sci. Bull., 2012, 57(31), 4012-4018.
[72]
Wang, Z.; Liu, G.; Sun, J.; Wu, B.; Gong, Q.; Song, B.; Ai, H.; Gu, Z. Self-assembly of magnetite nanocrystals with amphiphilic polyethylenimine: Structures and applications in magnetic resonance imaging. J. Nanosci. Nanotechnol., 2009, 9(1), 378-385.
[73]
Riedinger, A.; Pernia Leal, M.; Deka, S.R.; George, C.; Franchini, I.R.; Falqui, A.; Cingolani, R.; Pellegrino, T. “Nanohybrids” based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications. Nano Lett., 2011, 11(8), 3136-3141.
[74]
Mohammadi, Z.; Cole, A.; Berkland, C.J. In situ synthesis of iron oxide within polyvinylamine nanoparticle reactors. J. Phys. Chem. C, 2009, 113(18), 7652-7658.
[75]
Jaiswal, M.K.; Banerjee, R.; Pradhan, P.; Bahadur, D. Thermal behavior of magnetically modalized poly (N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf. B Biointerfaces, 2010, 81(1), 185-194.
[76]
Lin, J.J.; Chen, J.S.; Huang, S.J.; Ko, J.H.; Wang, Y.M.; Chen, T.L.; Wang, L.F. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials, 2009, 30(28), 5114-5124.
[77]
Kaaki, K.; Hervé-Aubert, K.; Chiper, M.; Shkilnyy, A.; Soucé, M.; Benoit, R.; Paillard, A.; Dubois, P.; Saboungi, M.L.; Chourpa, I. Magnetic nanocarriers of doxorubicin coated with poly (ethylene glycol) and folic acid: Relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir, 2011, 28(2), 1496-1505.
[78]
Nuytten, N.; Hakimhashemi, M.; Ysenbaert, T.; Defour, L.; Trekker, J.; Soenen, S.J.H.; Van der Meeren, P.; De Cuyper, M. PEGylated lipids impede the lateral diffusion of adsorbed proteins at the surface of (magneto) liposomes. Colloids Surf. B Biointerfaces, 2010, 80(2), 227-231.
[79]
Tan, Y.F.; Chandrasekharan, P.; Maity, D.; Yong, C.X.; Chuang, K.H.; Zhao, Y.; Wang, S.; Ding, J.; Feng, S.S. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-d-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials, 2011, 32(11), 2969-2978.
[80]
Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules, 2014, 19(8), 11465-11486.
[81]
Sarkar, D.J.; Singh, A.; Mandal, P.; Kumar, A.; Parmar, B.S. Synthesis and characterization of poly (CMC-g-cl-PAam/Zeolite) superabsorbent composites for controlled delivery of zinc micronutrient: Swelling and release behavior. Polymer-Plastics Technol. Eng., 2015, 54(4), 357-367.
[82]
Sosa, I.O.; Noguez, C.; Barrera, R.G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B, 2003, 107(26), 6269-6275.
[83]
Dan, P.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Cervical cancer shot ‘stings a lot,’ patients say. Nat. Nanotechnol., 2007, 2, 751-760.
[84]
Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev., 2015, 44(23), 8576-8607.
[85]
Zhang, W.X.; Elliott, D.W. Applications of iron nanoparticles for groundwater remediation. Remediat. J., 2006, 16(2), 7-21.
[86]
Su, C.; Puls, R.W.; Krug, T.A.; Watling, M.T.; O’Hara, S.K.; Quinn, J.W.; Ruiz, N.E. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res., 2012, 46(16), 5071-5084.
[87]
Dorathi, P.J.; Kandasamy, P. Dechlorination of chlorophenols by zero valent iron impregnated silica. J. Environ. Sci. , 2012, 24(4), 765-773.
[88]
Yin, W.; Wu, J.; Li, P.; Wang, X.; Zhu, N.; Wu, P.; Yang, B. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions. Chem. Eng. J., 2012, 184, 198-204.
[89]
Gu, C.; Jia, H.; Li, H.; Teppen, B.J.; Boyd, S.A. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ. Sci. Technol., 2010, 44(11), 4258-4263.
[90]
Neumann, A.; Kaegi, R.; Voegelin, A.; Hussam, A.; Munir, A.K.; Hug, S.J. Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environ. Sci. Technol., 2015, 47(9), 4544-4554.
[91]
Klas, S.; Kirk, D.W. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron. J. Hazard. Mater., 2013, 252, 77-82.
[92]
Qiu, X.; Fang, Z.; Yan, X.; Gu, F.; Jiang, F. Emergency remediation of simulated chromium (VI)-polluted river by nanoscale zero-valent iron: Laboratory study and numerical simulation. Chem. Eng. J., 2012, 193, 358-365.
[93]
Lv, X.; Xu, J.; Jiang, G.; Tang, J.; Xu, X. Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium (VI) from aqueous solutions. J. Colloid Interface Sci., 2012, 369(1), 460-469.
[94]
Hwang, Y.H.; Kim, D.G.; Shin, H.S. Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater., 2011, 185(2-3), 1513-1521.
[95]
Luo, S.; Qin, P.; Shao, J.; Peng, L.; Zeng, Q.; Gu, J.D. Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for Orange II removal. Chem. Eng. J., 2013, 223, 1-7.
[96]
Shimizu, A.; Tokumura, M.; Nakajima, K.; Kawase, Y. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation. J. Hazard. Mater., 2012, 201, 60-67.
[97]
San Román, I.; Alonso, M.L.; Bartolomé, L.; Galdames, A.; Goiti, E.; Ocejo, M.; Moragues, M.; Alonso, R.M.; Vilas, J.L. Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere, 2013, 93(7), 1324-1332.
[98]
Petersen, E.J.; Pinto, R.A.; Shi, X.; Huang, Q. Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron. J. Hazard. Mater., 2012, 243, 73-79.
[99]
Dong, J.; Zhao, Y.; Zhao, R.; Zhou, R. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron. J. Environ. Sci. , 2010, 22(11), 1741-1747.
[100]
Mak, M.S.; Rao, P.; Lo, I.M. Effects of hardness and alkalinity on the removal of arsenic (V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron. Water Res., 2009, 43(17), 4296-4304.
[101]
Neumann, A.; Kaegi, R.; Voegelin, A.; Hussam, A.; Munir, A.K.; Hug, S.J. Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environ. Sci. Technol., 2013, 47(9), 4544-4554.
[102]
Suzuki, T.; Moribe, M.; Oyama, Y.; Niinae, M. Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies. Chem. Eng. J., 2012, 183, 271-277.
[103]
Chen, B.; Wang, X.; Wang, C.; Jiang, W.; Li, S. Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron. Ultrason. Sonochem., 2011, 18(5), 1091-1096.
[104]
Shimizu, A.; Tokumura, M.; Nakajima, K.; Kawase, Y. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation. J. Hazard. Mater., 2012, 201, 60-67.
[105]
Nishimura, K.; Hasegawa, M.; Ogura, Y.; Nishi, T.; Kataoka, K.; Handa, H.; Abe, M. 4 C preparation of ferrite nanoparticles having protein molecules immobilized on their surfaces. J. Appl. Phys., 2002, 91(10), 8555-8556.
[106]
Chen, M.; Yamamuro, S.; Farrell, D.; Majetich, S.A. Gold-coated iron nanoparticles for biomedical applications. J. Appl. Phys., 2003, 93(10), 7551-7553.
[107]
Xie, J.; Huang, J.; Li, X.; Sun, S.; Chen, X. Iron oxide nanoparticle platform for biomedical applications. Curr. Med. Chem., 2009, 16(10), 1278-1294.
[108]
Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng., 2005, 100(1), 1-11.
[109]
Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem., 2004, 14(14), 2161-2175.
[110]
Xie, J.; Peng, S.; Brower, N.; Pourmand, N.; Wang, S.X.; Sun, S. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl. Chem., 2006, 78(5), 1003-1014.
[111]
Sykova, E.; Jendelova, P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ., 2007, 14(7), 1336.
[112]
Peng, X.H.; Qian, X.; Mao, H.; Wang, A.Y. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomedicine, 2008, 3(3), 311.
[113]
Alexakis, N.; Halloran, C.; Raraty, M.; Ghaneh, P.; Sutton, R.; Neoptolemos, J.P. Current standards of surgery for pancreatic cancer. Br. J. Surg., 2004, 91(11), 1410-1427.
[114]
Malekigorji, M.; Curtis, A.D.M.; Hoskins, C. The use of iron oxide nanoparticles for pancreatic cancer therapy. J. Nanomed. Res., 2014, 1(1), 1-12.
[115]
Jain, T.K.; Morales, M.A.; Sahoo, S.K.; Leslie-Pelecky, D.L.; Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm., 2005, 2(3), 194-205.
[116]
Bull, E.; Madani, S.Y.; Sheth, R.; Seifalian, A.; Green, M.; Seifalian, A.M. Stem cell tracking using iron oxide nanoparticles. Int. J. Nanomedicine, 2014, 9, 1641.
[117]
Korotcenkov, G. Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application; Elsevier, 2017.
[118]
Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 2009, 4(10), 634.
[119]
Durán, N.; Marcato, P.D. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. Int. J. Food Sci. Technol., 2013, 48(6), 1127-1134.
[120]
Bystrzejewska-Piotrowska, G.; Golimowski, J.; Urban, P.L. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag., 2009, 29(9), 2587-2595.
[121]
Wang, D.; Kou, R.; Choi, D.; Yang, Z.; Nie, Z.; Li, J.; Saraf, L.V.; Hu, D.; Zhang, J.; Graff, G.L.; Liu, J. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano, 2010, 4(3), 1587-1595.
[122]
Campos, E.A.; Pinto, D.V.B.S.; Oliveira, J.I.S.D.; Mattos, E.D.C.; Dutra, R.D.C.L. Synthesis, characterization and applications of iron oxide nanoparticles-A short review. J. Aerosp. Technol. Manag., 2015, 7(3), 267-276.
[123]
Smith, D.; Edwards, J.L. Fritz Chemical Co, Concrete admixture device and method of using same. U.S. Patent 4,961,790, October 9, 1990.