Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Iron Oxide Nanoparticles: Tuning to Advanced Nano Drug Delivery

Author(s): Suchi N. Gandhi, Surendra Agrawal*, Saraswathy Nagendran and Pravina Gurjar

Volume 10, Issue 6, 2020

Page: [734 - 747] Pages: 14

DOI: 10.2174/2210681209666190618112412

Price: $65

Abstract

Background: Delivery of drugs in the form of nanoparticles offers several advantages that outweigh the benefits offered by other drug delivery systems. Iron oxide nanoparticles being part of nano drug delivery system tend to offer supremacy over others by providing prominent characteristics that include high superamagnetism property along with the greater surface area that can be easily modified. Also, it helps achieve site-specific drug delivery which helps in solving the complications and issues related with desired bioavailability and further aids the process of killing cancerous cells. The distinctive features and flexible pathways by which such nanoparticles can be prepared have allowed its widespread usage in various fields.

Objective: The main objective of this review is to summarize various methods of preparation, modifications by coating iron oxide surface for easy surface functionalization along with several industrial applications of iron oxide nanoparticles.

Methods: The method involved the collection of the articles from different search engines like Google, Pubmed and ScienceDirect for the literature in order to get appropriate information regarding iron oxide nanoparticles.

Results: Studies revealed that iron oxide nanoparticles have gained attention all over the world and has led to the development of various approaches for treating medical conditions. Iron oxide nanoparticles due to the advantages that it offers are utilized in various industries including biomedical, farming and aerospace industry and fabrication of iron oxide nanoparticles is possible through various ways including methods like co-precipitation, thermal decomposition, sol-gel, hydrothermal to name a few. Further, usage of coating an iron oxide nanoparticle and using biocompatible polymers tend to enlighten the scientific research.

Conclusion: Iron oxide nanoparticles proved to be an efficient drug delivery to serve medical needs. The simple techniques of manufacturing with the additional strategy of modifications have led to more advances in the field of nanotechnology.

Keywords: Iron oxide nanoparticles, iron nanoparticle coating, nanotechnology, drug delivery, co-precipitation, sol-gel.

Graphical Abstract

[1]
Gurjar, P.N.; Chouksey, S.; Patil, G.; Naik, N.; Agrawal, S.S. Carbon nanotubes: Pharmaceutical applications. Asian J. Biomed. Pharmaceut. Sci., 2013, 3(23), 8.
[2]
Mohanraj, V.J.; Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
[3]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133.
[4]
Gillies, E.R.; Frechet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[5]
Cho, K.; Wang, X.U.; Nie, S.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[6]
Salata, O.V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[7]
Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1(5), 482-501.
[8]
Cornell, R.M.; Schwertmann, U. The iron oxides: Structure, properties, reactions, occurrences and uses; John Wiley & Sons: New York, 2003.
[9]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[10]
Carpenter, E.E. Iron nanoparticles as potential magnetic carriers. J. Magn. Magn. Mater., 2001, 225(1-2), 17-20.
[11]
Zaitsev, V.S.; Filimonov, D.S.; Presnyakov, I.A.; Gambino, R.J.; Chu, B. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J. Colloid Interface Sci., 1999, 212(1), 49-57.
[12]
Bolto, B.A. Magnetic particle technology for wastewater treatment. Waste Manag., 1990, 10(1), 11-21.
[13]
Woo, K.; Hong, J.; Choi, S.; Lee, H.W.; Ahn, J.P.; Kim, C.S.; Lee, S.W. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater., 2004, 16(14), 2814-2818.
[14]
He, Y.P.; Miao, Y.M.; Li, C.R.; Wang, S.Q.; Cao, L.; Xie, S.S.; Yang, G.Z.; Zou, B.S.; Burda, C. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B, 2005, 71(12)125411
[15]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397.
[16]
Hariani, L.P.; Faizal, M.; Ridwan, R.; Marsi, M.; Setiabudidaya, D. Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int. J. Environ. Sci. Dev., 2013, 4(3), 336-340.
[17]
Wetterskog, E.; Tai, C.W.; Grins, J.; Bergström, L.; Salazar-Alvarez, G. Anomalous magnetic properties of nanoparticles arising from defect structures: Topotaxial oxidation of Fe1–xO| Fe3− δO4 core shell nanocubes to single-phase particles. ACS Nano, 2013, 7(8), 7132-7144.
[18]
Levy, M.; Quarta, A.; Espinosa, A.; Figuerola, A.; Wilhelm, C.; García-Hernández, M.; Genovese, A.; Falqui, A.; Alloyeau, D.; Buonsanti, R.; Cozzoli, P.D. Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem. Mater., 2011, 23(18), 4170-4180.
[19]
Panchal, V.; Bhandarkar, U.; Neergat, M.; Suresh, K.G. Controlling magnetic properties of iron oxide nanoparticles using post-synthesis thermal treatment. Appl. Phys., A, 2014, 114(2), 537-544.
[20]
Kemp, S.J.; Ferguson, R.M.; Khandhar, A.P.; Krishnan, K.M. Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Advances, 2016, 6(81), 77452-77464.
[21]
Unni, M.; Uhl, A.M.; Savliwala, S.; Savitzky, B.H.; Dhavalikar, R.; Garraud, N.; Arnold, D.P.; Kourkoutis, L.F.; Andrew, J.S.; Rinaldi, C. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano, 2017, 11(2), 2284-2303.
[22]
Tavakoli, A.; Sohrabi, M.; Kargari, A. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Pap., 2007, 61(3), 151-170.
[23]
De Cuyper, M.; Joniau, M. Magnetoliposomes. Eur. Biophys. J., 1988, 15(5), 311-319.
[24]
Hasany, S.F.; Ahmed, I.; Rajan, J.; Rehman, A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol., 2012, 2(6), 148-158.
[25]
Soenen, S.J.; Brisson, A.R.; De Cuyper, M. Addressing the problem of cationic lipid-mediated toxicity: The magnetoliposome model. Biomaterials, 2009, 30(22), 3691-3701.
[26]
Lam, U.T.; Mammucari, R.; Suzuki, K.; Foster, N.R. Processing of iron oxide nanoparticles by supercritical fluids. Ind. Eng. Chem. Res., 2008, 47(3), 599-614.
[27]
Kojima, K.; Miyazaki, M.; Mizukami, F.; Maeda, K. Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J. Sol-Gel Sci. Technol., 1997, 8(1-3), 77-81.
[28]
Ennas, G.; Musinu, A.N.N.A.; Piccaluga, G.; Zedda, D.; Gatteschi, D.; Sangregorio, C.; Stanger, J.L.; Concas, G.; Spano, G. Characterization of iron oxide nanoparticles in an Fe2O3-SiO2 composite prepared by a sol-gel method. Chem. Mater., 1998, 10(2), 495-502.
[29]
Lu, Y.; Yin, Y.; Mayers, B.T.; Xia, Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol- gel approach. Nano Lett., 2002, 2(3), 183-186.
[30]
Gonzalez-Carreno, T.; Morales, M.P.; Gracia, M.; Serna, C.J. Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis. Mater. Lett., 1993, 18(3), 151-155.
[31]
Hao, Y.; Teja, A.S. Continuous hydrothermal crystallization of α-Fe2O3 and Co3O4 nanoparticles. J. Mater. Res., 2003, 18(2), 415-422.
[32]
Takami, S.; Sato, T.; Mousavand, T.; Ohara, S.; Umetsu, M.; Adschiri, T. Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater. Lett., 2007, 61(26), 4769-4772.
[33]
Ashokkumar, M.; Lee, J.; Kentish, S.; Grieser, F. Bubbles in an acoustic field: An overview. Ultrason. Sonochem., 2007, 14(4), 470-475.
[34]
Hassanjani-Roshan, A.; Vaezi, M.R.; Shokuhfar, A.; Rajabali, Z. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology, 2012, 9(1), 95-99.
[35]
Cuenya, B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films, 2010, 518(12), 3127-3150.
[36]
Lin, X.M.; Samia, A.C. Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magn. Magn. Mater., 2006, 305(1), 100-109.
[37]
Kim, D.K.; Mikhaylova, M.; Zhang, Y.; Muhammed, M. Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater., 2003, 15(8), 1617-1627.
[38]
Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release, 2006, 114(1), 100-109.
[39]
Yoon, T.J.; Lee, W.; Oh, Y.S.; Lee, J.K. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J. Chem., 2003, 27(2), 227-229.
[40]
Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Xu, W.; Zhang, Q.; Volinsky, A.A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett., 2011, 65(12), 1882-1884.
[41]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145.
[42]
Niu, H.; Wang, Y.; Zhang, X.; Meng, Z.; Cai, Y. Easy synthesis of surface-tunable carbon-encapsulated magnetic nanoparticles: Adsorbents for selective isolation and preconcentration of organic pollutants. ACS Appl. Mater. Interfaces, 2011, 4(1), 286-295.
[43]
Yi, D.K.; Lee, S.S.; Ying, J.Y. Synthesis and applications of magnetic nanocomposite catalysts. Chem. Mater., 2006, 18(10), 2459-2461.
[44]
Ling, D.; Hyeon, T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small, 2013, 9(9-10), 1450-1466.
[45]
Unsoy, G.; Yalcin, S.; Khodadust, R.; Gunduz, G.; Gunduz, U. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J. Nanopart. Res., 2012, 14(11), 964.
[46]
Thorek, D.L.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34(1), 23-38.
[47]
Salazar-Alvarez, G.; Muhammed, M.; Zagorodni, A.A. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci., 2006, 61(14), 4625-4633.
[48]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[49]
Mornet, S.; Vasseur, S.; Grasset, F.; Veverka, P.; Goglio, G.; Demourgues, A.; Portier, J.; Pollert, E.; Duguet, E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem., 2006, 34(2-4), 237-247.
[50]
Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Ciupina, V.; Prodan, G.; Voicu, I.; Fleaca, C.; Albu, L.; Savoiu, M.; Sandu, I.; Popovici, E. Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation. Appl. Surf. Sci., 2005, 247(1-4), 25-31.
[51]
Kruis, F.E.; Fissan, H.; Peled, A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci., 1998, 29(5-6), 511-535.
[52]
Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J. Magn. Magn. Mater., 2007, 309(2), 307-311.
[53]
Li, F.; Vipulanandan, C.; Mohanty, K.K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids Surf. A Physicochem. Eng. Asp., 2003, 223(1-3), 103-112.
[54]
Sun, Y.P.; Li, X.Q.; Zhang, W.X.; Wang, H.P. A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2007, 308(1-3), 60-66.
[55]
Xia, T.; Wang, J.; Wu, C.; Meng, F.; Shi, Z.; Lian, J.; Feng, J.; Meng, J. Novel complex-coprecipitation route to form high quality triethanolamine-coated Fe3O4 nanocrystals: their high saturation magnetizations and excellent water treatment properties. CrystEngComm, 2012, 14(18), 5741-5744.
[56]
Jain, T.K.; Reddy, M.K.; Morales, M.A.; Leslie-Pelecky, D.L.; Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm., 2008, 5(2), 316-327.
[57]
Sheng-Nan, S.; Chao, W.; Zan-Zan, Z.; Yang-Long, H.; Venkatraman, S.S.; Zhi-Chuan, X. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chin. Phys. B, 2014, 23(3)037503
[58]
Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B, 2012, 177(5), 421-427.
[59]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[60]
Lasic, D.D. Novel applications of liposomes. Trends Biotechnol., 1998, 16(7), 307-321.
[61]
Dozier, D.; Palchoudhury, S.; Bao, Y. Synthesis of iron oxide nanoparticles with biological coatings. J. Sci. Health Univ. Alabama, 2010, 7, 16-18.
[62]
Soenen, S.J.; Himmelreich, U.; Nuytten, N.; Pisanic, T.R.; Ferrari, A.; De Cuyper, M. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small, 2010, 6(19), 2136-2145.
[63]
Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J.M. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stabil., 2010, 95(11), 2126-2146.
[64]
Soenen, S.J.; De Cuyper, M. Assessing cytotoxicity of (iron oxide‐based) nanoparticles: An overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol. Imaging, 2009, 4(5), 207-219.
[65]
Hamley, I.W. Nanotechnology with soft materials. Angew. Chem. Int. Ed., 2003, 42(15), 1692-1712.
[66]
Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63(1-2), 24-46.
[67]
Ghosh, S.; Jiang, W.; McClements, J.D.; Xing, B. Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir, 2011, 27(13), 8036-8043.
[68]
Liu, H.; Guo, J.; Jin, L.; Yang, W.; Wang, C. Fabrication and functionalization of dendritic poly (amidoamine)-immobilized magnetic polymer composite microspheres. J. Phys. Chem. B, 2008, 112(11), 3315-3321.
[69]
Jain, N.; Wang, Y.; Jones, S.K.; Hawkett, B.S.; Warr, G.G. Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir, 2009, 26(6), 4465-4472.
[70]
Bahadur, K.C.; Lee, S.M.; Yoo, E.S.; Choi, J.H.; Do Ghim, H. Glycoconjugated chitosan stabilized iron oxide nanoparticles as a multifunctional nanoprobe. Mater. Sci. Eng. C, 2009, 29(5), 1668-1673.
[71]
Wang, D.; Su, H.; Liu, Y.; Wu, C.; Xia, C.; Sun, J.; Gao, F.; Gong, Q.; Song, B.; Ai, H. Near-infrared fluorescent amphiphilic polycation wrapped magnetite nanoparticles as multimodality probes. Chin. Sci. Bull., 2012, 57(31), 4012-4018.
[72]
Wang, Z.; Liu, G.; Sun, J.; Wu, B.; Gong, Q.; Song, B.; Ai, H.; Gu, Z. Self-assembly of magnetite nanocrystals with amphiphilic polyethylenimine: Structures and applications in magnetic resonance imaging. J. Nanosci. Nanotechnol., 2009, 9(1), 378-385.
[73]
Riedinger, A.; Pernia Leal, M.; Deka, S.R.; George, C.; Franchini, I.R.; Falqui, A.; Cingolani, R.; Pellegrino, T. “Nanohybrids” based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications. Nano Lett., 2011, 11(8), 3136-3141.
[74]
Mohammadi, Z.; Cole, A.; Berkland, C.J. In situ synthesis of iron oxide within polyvinylamine nanoparticle reactors. J. Phys. Chem. C, 2009, 113(18), 7652-7658.
[75]
Jaiswal, M.K.; Banerjee, R.; Pradhan, P.; Bahadur, D. Thermal behavior of magnetically modalized poly (N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf. B Biointerfaces, 2010, 81(1), 185-194.
[76]
Lin, J.J.; Chen, J.S.; Huang, S.J.; Ko, J.H.; Wang, Y.M.; Chen, T.L.; Wang, L.F. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials, 2009, 30(28), 5114-5124.
[77]
Kaaki, K.; Hervé-Aubert, K.; Chiper, M.; Shkilnyy, A.; Soucé, M.; Benoit, R.; Paillard, A.; Dubois, P.; Saboungi, M.L.; Chourpa, I. Magnetic nanocarriers of doxorubicin coated with poly (ethylene glycol) and folic acid: Relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir, 2011, 28(2), 1496-1505.
[78]
Nuytten, N.; Hakimhashemi, M.; Ysenbaert, T.; Defour, L.; Trekker, J.; Soenen, S.J.H.; Van der Meeren, P.; De Cuyper, M. PEGylated lipids impede the lateral diffusion of adsorbed proteins at the surface of (magneto) liposomes. Colloids Surf. B Biointerfaces, 2010, 80(2), 227-231.
[79]
Tan, Y.F.; Chandrasekharan, P.; Maity, D.; Yong, C.X.; Chuang, K.H.; Zhao, Y.; Wang, S.; Ding, J.; Feng, S.S. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-d-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials, 2011, 32(11), 2969-2978.
[80]
Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules, 2014, 19(8), 11465-11486.
[81]
Sarkar, D.J.; Singh, A.; Mandal, P.; Kumar, A.; Parmar, B.S. Synthesis and characterization of poly (CMC-g-cl-PAam/Zeolite) superabsorbent composites for controlled delivery of zinc micronutrient: Swelling and release behavior. Polymer-Plastics Technol. Eng., 2015, 54(4), 357-367.
[82]
Sosa, I.O.; Noguez, C.; Barrera, R.G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B, 2003, 107(26), 6269-6275.
[83]
Dan, P.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Cervical cancer shot ‘stings a lot,’ patients say. Nat. Nanotechnol., 2007, 2, 751-760.
[84]
Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev., 2015, 44(23), 8576-8607.
[85]
Zhang, W.X.; Elliott, D.W. Applications of iron nanoparticles for groundwater remediation. Remediat. J., 2006, 16(2), 7-21.
[86]
Su, C.; Puls, R.W.; Krug, T.A.; Watling, M.T.; O’Hara, S.K.; Quinn, J.W.; Ruiz, N.E. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res., 2012, 46(16), 5071-5084.
[87]
Dorathi, P.J.; Kandasamy, P. Dechlorination of chlorophenols by zero valent iron impregnated silica. J. Environ. Sci. , 2012, 24(4), 765-773.
[88]
Yin, W.; Wu, J.; Li, P.; Wang, X.; Zhu, N.; Wu, P.; Yang, B. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions. Chem. Eng. J., 2012, 184, 198-204.
[89]
Gu, C.; Jia, H.; Li, H.; Teppen, B.J.; Boyd, S.A. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ. Sci. Technol., 2010, 44(11), 4258-4263.
[90]
Neumann, A.; Kaegi, R.; Voegelin, A.; Hussam, A.; Munir, A.K.; Hug, S.J. Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environ. Sci. Technol., 2015, 47(9), 4544-4554.
[91]
Klas, S.; Kirk, D.W. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron. J. Hazard. Mater., 2013, 252, 77-82.
[92]
Qiu, X.; Fang, Z.; Yan, X.; Gu, F.; Jiang, F. Emergency remediation of simulated chromium (VI)-polluted river by nanoscale zero-valent iron: Laboratory study and numerical simulation. Chem. Eng. J., 2012, 193, 358-365.
[93]
Lv, X.; Xu, J.; Jiang, G.; Tang, J.; Xu, X. Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium (VI) from aqueous solutions. J. Colloid Interface Sci., 2012, 369(1), 460-469.
[94]
Hwang, Y.H.; Kim, D.G.; Shin, H.S. Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater., 2011, 185(2-3), 1513-1521.
[95]
Luo, S.; Qin, P.; Shao, J.; Peng, L.; Zeng, Q.; Gu, J.D. Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for Orange II removal. Chem. Eng. J., 2013, 223, 1-7.
[96]
Shimizu, A.; Tokumura, M.; Nakajima, K.; Kawase, Y. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation. J. Hazard. Mater., 2012, 201, 60-67.
[97]
San Román, I.; Alonso, M.L.; Bartolomé, L.; Galdames, A.; Goiti, E.; Ocejo, M.; Moragues, M.; Alonso, R.M.; Vilas, J.L. Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere, 2013, 93(7), 1324-1332.
[98]
Petersen, E.J.; Pinto, R.A.; Shi, X.; Huang, Q. Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron. J. Hazard. Mater., 2012, 243, 73-79.
[99]
Dong, J.; Zhao, Y.; Zhao, R.; Zhou, R. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron. J. Environ. Sci. , 2010, 22(11), 1741-1747.
[100]
Mak, M.S.; Rao, P.; Lo, I.M. Effects of hardness and alkalinity on the removal of arsenic (V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron. Water Res., 2009, 43(17), 4296-4304.
[101]
Neumann, A.; Kaegi, R.; Voegelin, A.; Hussam, A.; Munir, A.K.; Hug, S.J. Arsenic removal with composite iron matrix filters in Bangladesh: A field and laboratory study. Environ. Sci. Technol., 2013, 47(9), 4544-4554.
[102]
Suzuki, T.; Moribe, M.; Oyama, Y.; Niinae, M. Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies. Chem. Eng. J., 2012, 183, 271-277.
[103]
Chen, B.; Wang, X.; Wang, C.; Jiang, W.; Li, S. Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron. Ultrason. Sonochem., 2011, 18(5), 1091-1096.
[104]
Shimizu, A.; Tokumura, M.; Nakajima, K.; Kawase, Y. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation. J. Hazard. Mater., 2012, 201, 60-67.
[105]
Nishimura, K.; Hasegawa, M.; Ogura, Y.; Nishi, T.; Kataoka, K.; Handa, H.; Abe, M. 4 C preparation of ferrite nanoparticles having protein molecules immobilized on their surfaces. J. Appl. Phys., 2002, 91(10), 8555-8556.
[106]
Chen, M.; Yamamuro, S.; Farrell, D.; Majetich, S.A. Gold-coated iron nanoparticles for biomedical applications. J. Appl. Phys., 2003, 93(10), 7551-7553.
[107]
Xie, J.; Huang, J.; Li, X.; Sun, S.; Chen, X. Iron oxide nanoparticle platform for biomedical applications. Curr. Med. Chem., 2009, 16(10), 1278-1294.
[108]
Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng., 2005, 100(1), 1-11.
[109]
Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem., 2004, 14(14), 2161-2175.
[110]
Xie, J.; Peng, S.; Brower, N.; Pourmand, N.; Wang, S.X.; Sun, S. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl. Chem., 2006, 78(5), 1003-1014.
[111]
Sykova, E.; Jendelova, P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ., 2007, 14(7), 1336.
[112]
Peng, X.H.; Qian, X.; Mao, H.; Wang, A.Y. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomedicine, 2008, 3(3), 311.
[113]
Alexakis, N.; Halloran, C.; Raraty, M.; Ghaneh, P.; Sutton, R.; Neoptolemos, J.P. Current standards of surgery for pancreatic cancer. Br. J. Surg., 2004, 91(11), 1410-1427.
[114]
Malekigorji, M.; Curtis, A.D.M.; Hoskins, C. The use of iron oxide nanoparticles for pancreatic cancer therapy. J. Nanomed. Res., 2014, 1(1), 1-12.
[115]
Jain, T.K.; Morales, M.A.; Sahoo, S.K.; Leslie-Pelecky, D.L.; Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm., 2005, 2(3), 194-205.
[116]
Bull, E.; Madani, S.Y.; Sheth, R.; Seifalian, A.; Green, M.; Seifalian, A.M. Stem cell tracking using iron oxide nanoparticles. Int. J. Nanomedicine, 2014, 9, 1641.
[117]
Korotcenkov, G. Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application; Elsevier, 2017.
[118]
Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 2009, 4(10), 634.
[119]
Durán, N.; Marcato, P.D. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. Int. J. Food Sci. Technol., 2013, 48(6), 1127-1134.
[120]
Bystrzejewska-Piotrowska, G.; Golimowski, J.; Urban, P.L. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag., 2009, 29(9), 2587-2595.
[121]
Wang, D.; Kou, R.; Choi, D.; Yang, Z.; Nie, Z.; Li, J.; Saraf, L.V.; Hu, D.; Zhang, J.; Graff, G.L.; Liu, J. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano, 2010, 4(3), 1587-1595.
[122]
Campos, E.A.; Pinto, D.V.B.S.; Oliveira, J.I.S.D.; Mattos, E.D.C.; Dutra, R.D.C.L. Synthesis, characterization and applications of iron oxide nanoparticles-A short review. J. Aerosp. Technol. Manag., 2015, 7(3), 267-276.
[123]
Smith, D.; Edwards, J.L. Fritz Chemical Co, Concrete admixture device and method of using same. U.S. Patent 4,961,790, October 9, 1990.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy