Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

Non-Conventional Desulfurization of Fuels and Biofuels: A Review

Author(s): Debarpita Ghosal* and Sankhajit Pal

Volume 13, Issue 2, 2020

Page: [123 - 137] Pages: 15

DOI: 10.2174/2405520412666190618103137

Price: $65

Abstract

Sulphur compounds in fuel cause major environmental pollution. Hence, the desulphurization of fuel has become a tremendous concern. Aside from the standard hydrodesulphurization method, many new processes have gained attention. Our present work discusses varied non-conventional desulphurization techniques likeaerobic desulphurization, adsorbent desulphurization, membrane desulphurization, extractive desulphurization, etc. These strategies in conjunction with their pros and cons are mentioned well.

Keywords: Desulfurization, fuel, biofuel, non-conventional processes, aromatics, microfibrous material.

Graphical Abstract

[1]
Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 2003; 86(1-4): 211-63.
[http://dx.doi.org/10.1016/S0920-5861(03)00412-7]
[2]
Song C, Ma X. Newdesign approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl Catal B 2003; 41(1/2): 207-38.
[http://dx.doi.org/10.1016/S0926-3373(02)00212-6]
[3]
Zhang C, Song LF, Hu JY, et al. Investigation on gasoline deep desulfurization for fuel cell applications. Energy Convers Manage 2005; 46(1): 1-9.
[http://dx.doi.org/10.1016/j.enconman.2004.02.005]
[4]
Nie Y, Li ChX, Wang ZH. Extractive desulfurization of fuel oil using alkylimidazole and its mixture with dialkylphosphate ionic liquids. Ind Eng Chem Res 2007; 46(15): 5108-12.
[http://dx.doi.org/10.1021/ie070385v]
[5]
AsgharMolaeiDehkordi, Zahra Kiaei, Mohammad Amin Sobati, Oxidative desulfurization of simulated light fuel oil and untreated kerosene. Fuel Process Technol 2009; 90: 435-45.
[http://dx.doi.org/10.1016/j.fuproc.2008.11.006]
[6]
Zhang C, Pan X, Wang F, Liu X. Extraction–oxidation desulfurization bypyridinium-based task-specific ionic liquids. Fuel 2012; 102: 580-4.
[http://dx.doi.org/10.1016/j.fuel.2012.07.040]
[7]
Guo W, Wang C, Lin P, Lu X. Oxidative desulfurization of diesel with TBHP/isobutyl aldehyde/air oxidation system. Appl Energy 2011; 88: 175-9.
[http://dx.doi.org/10.1016/j.apenergy.2010.08.003]
[8]
Abdullah Al-Malkib, Shakil Ahmed. Chemical desulfurization of petroleum fractions for ultra-low sulfur fuels. Fuel Process Technol 2009; 90(4): 536-44.
[http://dx.doi.org/10.1016/j.fuproc.2009.01.005]
[9]
Mohammad Amin Sobati. AsgharMolaeiDehkordi, Mohammad Shahrokhi, Liquid-liquid extraction of oxidized sulfur-containing compounds of non-hydrotreated kerosene. Fuel Process Technol 2010; 91(11): 1386-94.
[http://dx.doi.org/10.1016/j.fuproc.2010.05.010]
[10]
Dhir S. RUppaluri, Mihir K Purkait, Oxidative desulfurization: Kinetic modeling, Journal of Hazardous Materials (Impact Factor: 4.33). 06/2008; 161(2-3): 1360-8.
[11]
Atsushi Ishihara, Danhong Wang, Franck Dumeignil, Hiroshi Amano. EikaWeihuaQian, Toshiaki Kabe, Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process. Appl Catal A Gen 2005; 279: 279-87.
[http://dx.doi.org/10.1016/j.apcata.2004.10.037]
[12]
Velu S. Shingo Watanabe, Xiaoliang Ma, and Chunshan Song, Regenerable Adsorbents for the Adsorptive Desulfurization of Transportation Fuels for Fuel Cell Applications, Clean Fuels and Catalysis Program, The Energy Institute, and Department of Energy and Geo-Environmental Engineering The Pennsylvania State University 209 Academic Project Building, University Park, PA 16802
[13]
Song C, Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl Catal B 2003; 41: 207 Hydrocarbon Process 1999; (May): 39.
[http://dx.doi.org/10.1016/S0926-3373(02)00212-6]
[14]
Herna’ndez-Maldonado AJ, Yang RT. Desulfurization of diesel fuels via pcomplexation with nickel(II)-exchanged X- and Y-zeolites. Ind Eng Chem Res 2004; 43: 1081-9.
[http://dx.doi.org/10.1021/ie034206v]
[15]
Tatarchuk B, Yang H, Nair S. Silver-based sorbents. US Patent Application 2008
[16]
Nair S, Tatarchuk BJ. Supported silver adsorbents for selective removal of sulfur species from hydrocarbon fuels. Fuel 2010; 89: 3218-25.
[http://dx.doi.org/10.1016/j.fuel.2010.05.006]
[17]
Nair S, Tatarchuk BJ. Characteristics of sulfur removal by silver-titania adsorbents at ambient conditions. Adsorpt–J Int Adsorpt Soc 2011; 17: 663-73.
[http://dx.doi.org/10.1007/s10450-011-9362-2]
[18]
Ramirez J, Macias G, Cedeno L, Gutierrez-Alejandre A, Cuevas R, Castillo P. The role of titania in supported Mo, CoMo, NiMo, and NiWhydrodesulfurization catalysts: analysis of past and new evidences. Catal Today 2004; 98: 19-30.
[http://dx.doi.org/10.1016/j.cattod.2004.07.050]
[19]
Walker GS, Williams E, Bhattacharya AK. Preparation and characterization of high surface area alumina-titania solid acids. J Mater Sci 1997; 32: 5583-92.
[http://dx.doi.org/10.1023/A:1018628608830]
[20]
Rana MS, Maity SK, Ancheyta J, Dhar GM, Rao T. TiO2–SiO2 supported hydrotreating catalysts: physico-chemical characterization and activities. Appl Catal A Gen 2003; 253: 165-76.
[http://dx.doi.org/10.1016/S0926-860X(03)00502-7]
[21]
Jae Hyung Kim. Xiaoliang Ma, AnningZhou, Chunshan Song, Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. Catalysis TodayVolume 2006; 111(1-2): 74-83.
[22]
Kim JH, Ma X, Zhou A. ChunshanSongUltra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism. Catal Today 2006; 111: 74-83.
[http://dx.doi.org/10.1016/j.cattod.2005.10.017]
[23]
Sano Y, Choi K, Korai Y, Mochida I. Energy Fuels 2004; 18: 644-51.
[http://dx.doi.org/10.1021/ef034080e]
[24]
Sano Y, Choi K, Korai Y, Mochida I. Appl Catal B 2004; 49: 219-25.
[http://dx.doi.org/10.1016/j.apcatb.2003.12.007]
[25]
Wang YH, Yang FH, Yang RT, Heinzel JM, Nickens AD. Desulfurization of high-sulfur jet fuel by π-complexation with copper and palladium halide sorbents. Ind Eng Chem Res 2006; 45: 7649-55.
[http://dx.doi.org/10.1021/ie060922w]
[26]
Wang YH, Yang RT, Heinzel JM. Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials. Chem Eng Sci 2008; 63: 356-65.
[http://dx.doi.org/10.1016/j.ces.2007.09.002]
[27]
Ma Xiaoliang, Sun Lu, Song Chunshan. Adsorptive desulfurization of diesel fuel over a metal sulfide-based adsorbent
[28]
Wang YH, Yang RT, Heinzel JM. Desulfurization of jet fuel JP-5 light fraction by MCM-41 and SBA-15 supported cuprous oxide for fuel cell applications. Ind Eng Chem Res 2009; 42: 142-7.
[http://dx.doi.org/10.1021/ie800208g]
[29]
Chen H, Wang YH, Yang FH, Yang RT. Desulfurization of high-sulfur jet fuel by mesoporous π-complex-ation adsorbents. Chem Eng Sci 2009; 64: 5240-6.
[http://dx.doi.org/10.1016/j.ces.2009.08.031]
[30]
Ghasemali Mohebali1 and Andrew S. Ball, Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiology 2008; 154(8): 2169-83.
[http://dx.doi.org/10.1099/mic.0.2008/017608-0]
[31]
Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K. Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 1973; 37: 45-50.
[http://dx.doi.org/10.1080/00021369.1973.10860640]
[32]
Eric N. Kaufman’ and Abhijeet P Borole, Bioprocessing of crude oils and desulfurization using electro-spray reactors Bioprocessing Research and Development Center Chemical Technology Division. Oak Ridge National Laboratory' Oak Ridge, Tennessee USA 1973; 37831-6226.
[33]
Eric N. Kaufman, James B. Harkins, and Abhijeet P. Borole, Comparison of Batch-Stirred and ElectroSpray Reactors for Biodesulfurization of Dibenzothiophene in Crude Oil and Hydrocarbon Feedstocks, Bioprocessing Research and Development Center, Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 3783 1-6226 Received September 16. Agric Biol Chem 1997; Accepted February 23, 1998.
[34]
Sumedha Bhatia DK. Sharma, Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoeaagglomerans D23W3. Biochem Eng J 2010; 50(3): 104-9.
[http://dx.doi.org/10.1016/j.bej.2010.04.001]
[35]
Aribike DS. A ASusu, SCU Nwachukwu, SA Kareem, Microbial Desulfurization of Diesel by Desulfobacteriumanilini Academia Arena. Biochem Eng J 2009; 1(4): ISSN 1553.
[36]
Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 1996; 14(13): 1705-9.
[http://dx.doi.org/10.1038/nbt1296-1705] [PMID: 9634856]
[37]
Matsubara T, Ohshiro T, Nishina Y, Izumi Y. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 2001; 67(3): 1179-84.
[http://dx.doi.org/10.1128/AEM.67.3.1179-1184] [PMID: 11229908]
[38]
Galán B, Díaz E, García JL. Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2000; 2(6): 687-94.
[http://dx.doi.org/10.1046/j.1462-2920.2000.00151.x] [PMID: 11214801]
[39]
Xi L, Squires CH, Monticello DJ, Childs JD. A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 1997; 230(1): 73-5.
[http://dx.doi.org/10.1006/bbrc.1996.5878] [PMID: 9020064]
[40]
Reichmuth DS, Hittle JL, Blanch HW, Keasling JD. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 2000; 67(1): 72-9.
[http://dx.doi.org/10.1002/(SICI)1097-0290(20000105) 67:1<72:AID-BIT8>3.0.CO;2-C] [PMID: 10581437]
[41]
Gray KA, Pogrebinsky OS, Mrachko GT. XiL, Monticello DJ, Squires CH. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 1996; 14(13): 1705-9.
[http://dx.doi.org/10.1038/nbt1296-1705] [PMID: 9634856]
[42]
Filisetti L, Fontecave M, Niviere V. Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor. J Biol Chem 2003; 278(1): 296-303. [First mechanistic report on the class of enzymes to which DszD belongs.
[http://dx.doi.org/10.1074/jbc.M209689200] [PMID: 12417584]
[43]
Nivière V, Fieschi F, Dećout JL, Fontecave M. The NAD(P)H:flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides. J Biol Chem 1999; 274(26): 18252-60.
[http://dx.doi.org/10.1074/jbc.274.26.18252] [PMID: 10373427]
[44]
Nivière V, Vanoni MA, Zanetti G, Fontecave M. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates. Biochemistry 1998; 37(34): 11879-87.
[http://dx.doi.org/10.1021/bi980396f] [PMID: 9718311]
[45]
Zenno S, Saigo K, Kanoh H, Inouye S. Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744. J Bacteriol 1994; 176(12): 3536-43.
[http://dx.doi.org/10.1128/jb.176.12.3536-3543.1994] [PMID: 8206830]
[46]
Tu SC. Reduced flavin: donor and acceptor enzymes and mechanisms of channeling. Antioxid Redox Signal 2001; 3(5): 881-97.
[http://dx.doi.org/10.1089/15230860152665046] [PMID: 11761334]
[47]
Jeffers CE, Nichols JC, Tu SC. Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase. Biochemistry 2003; 42(2): 529-34. [Recent work on the direct transfer of flavin from an oxidoreductase]. [Frp] [to luciferase. It will be interesting to see what similar experiments with DszD and its partner monooxygenases will reveal].
[http://dx.doi.org/10.1021/bi026877n]] [PMID: 12525181]
[48]
Fernández-Moreno MA, Martínez E, Boto L, Hopwood DA, Malpartida F. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem 1992; 267(27): 19278-90.
[PMID: 1527048]
[49]
Fernández-Moreno MA, Martínez E, Caballero JL, Ichinose K, Hopwood DA, Malpartida F. DNA sequence and functions of the actVI region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor A3(2). J Biol Chem 1994; 269(40): 24854-63.
[PMID: 7929165]
[50]
Thibaut D, Ratet N, Bisch D, Faucher D, Debussche L, Blanche F. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J Bacteriol 1995; 177(18): 5199-205.
[http://dx.doi.org/10.1128/jb.177.18.5199-5205.1995] [PMID: 7665508]
[51]
Parry RJ, Li W. Purification and characterization of isobutylamine N-hydroxylase from the valanimycin producer Streptomyces viridifaciens MG456-hF10. Arch Biochem Biophys 1997; 339(1): 47-54.
[http://dx.doi.org/10.1006/abbi.1996.9857] [PMID: 9056232]
[52]
Galán B, Díaz E, Prieto MA, García JL. Functional analysis of the small component of the 4-hydroxy-phenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new Flavin:NAD(P)H reductase subfamily. J Bacteriol 2000; 182(3): 627-36.
[http://dx.doi.org/10.1128/JB.182.3.627-636.2000] [PMID: 10633095]
[53]
Babich IV, Moulijn JA. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 2003; 82(6): 607-31.
[http://dx.doi.org/10.1016/S0016-2361(02)00324-1]
[54]
Francisco M. Alberto Arce*, Ana Soto, Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilib 2010; 294: 39-48.
[http://dx.doi.org/10.1016/j.fluid.2009.12.020]
[55]
Asumana C, Yu G, Li X, Zhao J, Liu G, Chen X. Extractive desulfurization of fuel oils with low-viscosity dicyanamide-based ionic liquids. Green Chem 2010; 12: 2030-7.
[http://dx.doi.org/10.1039/c0gc00118j]
[56]
Ban L-L, Liu P, Ma C-H, Dai B. Deep extractive desulfurization of diesel fuels by FeCl3/ionic liquids. Chin Chem Lett 2013; 24(8): 755-8.
[http://dx.doi.org/10.1016/j.cclet.2013.04.031]
[57]
JianzhouGuia. Dan Liua, b, ZhaolinSuna, DaoshengLiua, DayoungMinb, BusubSongb, XilaiPenga,Deep oxidative desulfurization with task-specific ionic liquids: An experimental and computational study. J Mol Catal Chem 2010; 331(1–2): 64-70.
[58]
Herna’ndez-Maldonado AJ, Stamatis SD, Yang RT. New sorbents for desulfurization of diesel fuels via p-complexation: layered beds and regeneration. Ind Eng Chem Res 2004; 43: 769-76.
[http://dx.doi.org/10.1021/ie034108+]
[59]
Chi Yansheng ac, Li Changping *ab, Jiao Qingzhu c, Liu Qingshan a, Yan Peifang a, Liu Xiumei a and UrsWelz-Biermann,Desulfurization by oxidation combined with extraction using acidic room-temperature ionic liquids. Green Chem 2011; 13: 1224-9.
[http://dx.doi.org/10.1039/c0gc00745e]
[60]
Zhang W. KeXu, Qian Zhang, Daliang Liu, Shuyao Wu, Francis Verpoort, and Xi-Ming Song, Oxidative Desulfurization of DibenzothiopheneCatalyzed by Ionic Liquid [BMIm]HSO4. Ind Eng Chem Res 2010; 49: 11760-3.
[http://dx.doi.org/10.1021/ie100957k]
[61]
Huang WL, Zhu WS, Li HM, Shi H, Zhu GP, Chen GY. Heteropolyanion-based,ionic liquid for deep desulfurization of fuels in ionic liquids. Ind Eng Chem Res 2010; 49: 8998-9003.
[http://dx.doi.org/10.1021/ie100234d]
[62]
Rodríguez-Cabo B, Rodríguez H, Rodil E, Arce A, Soto A. Extractive and oxidative-extractive desulfurization of fuels with ionic liquids, Fuel, Volume 117. Part A 2014; 30(January): 882-9.
[63]
Soleimani M, Bassi A, Margaritis A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 2007; 25(6): 570-96.
[http://dx.doi.org/10.1016/j.biotechadv.2007.07.003] [PMID: 17716849]
[64]
Lo WH, Yang HY, Wei GT. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids. Green Chem 2003; 5: 639-42.
[http://dx.doi.org/10.1039/b305993f]
[65]
Qi R, Wang Y, Chen J, Li J, Zhu S. Pervaporative desulfurization of model gasoline with Ag 2 O-filled PDMS membranes. Separ Purif Tech 57(1): 170-5.
[http://dx.doi.org/10.1016/j.seppur.2007.04.001]
[66]
Chen J, Li J, Qi R, Ye H, Chen C. Pervaporation performance of crosslinked polydimethylsiloxane membranes for deep desulfurization of FCC gasoline: I. Effect of different sulfur species. J Membr Sci 322(1): 113-21.
[http://dx.doi.org/10.1016/j.memsci.2008.05.032]
[67]
Wang LH, Zhao ZP, Li JD, Chen CX. Synthesis and characterization of fluorinated polyimides for pervaperation of n-heptane/thiophene mixtures. Eur Polym J 2006; 42: 1266-72.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.12.013]
[68]
Qu HM, Kong Y, Lv HL, Zhang YZ, Yang JR, Shi DQ. Effect of crosslinking on sorption, diffusion and pervaporation of gasoline components in hydroxyethyl cellulose membranes. Chem Eng J 2010; 157: 60-6.
[http://dx.doi.org/10.1016/j.cej.2009.09.044]
[69]
Lin L, Zhang Y, Li H. Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species. J Colloid Interface Sci 2010; 350(1): 355-60.
[http://dx.doi.org/10.1016/j.jcis.2010.06.031] [PMID: 20630535]
[70]
Li B, Yu S, Jiang Z, Liu W, Cao R, Wu H. Efficient desulfurization by polymer-inorganic nanocomposite membranes fabricated in reverse microemulsion. J Hazard Mater 2012; 211-212: 296-303.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.047] [PMID: 22056885]
[71]
Cao R, Zhang X, Wu H, Wang J, Liu X, Jiang Z. Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core-shell microspheres. J Hazard Mater 2011; 187(1-3): 324-32.
[http://dx.doi.org/10.1016/j.jhazmat.2011.01.031] [PMID: 21288638]
[72]
Qi RB, Zhao CW, Li JD, Wang YJ, Zhu SL. Removal of thiophenes from noctane/thiophene mixtures by pervaporation. J Membr Sci 2006; 269: 94-100.
[http://dx.doi.org/10.1016/j.memsci.2005.06.022]
[73]
Chen J, Li JD, Qi RB, Ye H, Chen CX. Pervaporation performance of crosslinkedpolydimethylsiloxane membranes for deep desulfurization of FCC gasoline – I. Effect of different sulfur species. J Membr Sci 2008; 322: 113-21.
[http://dx.doi.org/10.1016/j.memsci.2008.05.032]
[74]
Qi RB, Wang YJ, Li JD, Zhao CW, Zhu SL. Pervaporation separation of alkane/thiophene mixtures with PDMS membrane. J Membr Sci 2006; 280: 545-52.
[http://dx.doi.org/10.1016/j.memsci.2006.02.008]
[75]
Xu R, Liu GP, Dong XL, Jin WQ. Pervaporation separation of n-octane/thiophene mixtures using polydimethylsiloxane/ceramic composite membranes. Desalination 2010; 258: 106-11.
[http://dx.doi.org/10.1016/j.desal.2010.03.035]
[76]
Chen J, Li JD, Chen JX, Lin YZ, Wang XG. Pervaporation separation of ethyl thioether/heptane mixtures by polyethylene glycol membranes. Separ Purif Tech 2009; 66: 606-12.
[http://dx.doi.org/10.1016/j.seppur.2009.01.007]
[77]
Lin L, Wang G, Qu H, et al. Pervaporation performance of crosslinked polyethylene glycol membranes for deep desulfurization of FCC gasoline. J Membr Sci 2006; 280: 651-8.
[http://dx.doi.org/10.1016/j.memsci.2006.02.022]
[78]
Lin L, Zhang Y, Kong Y. Pervaporation separation of n-heptane/thiophene mixtures by polyethylene glycol membranes: Modeling and experimental. J Colloid Interface Sci 2009; 339(1): 152-9.
[http://dx.doi.org/10.1016/j.jcis.2009.07.015] [PMID: 19666173]
[79]
Wu H, Zhang XF, Xu D, Li B, Jiang ZY. Enhancing the interfacial stability and solvent-resistant property of PDMS/PES composite membrane by introducing a bifunctionalaminosilane. J Membr Sci 2009; 337: 61-9.
[http://dx.doi.org/10.1016/j.memsci.2009.03.043]
[80]
Allcock HR. Polyphosphazenes: new polymers with inorganic backbone atoms. Science 1976; 193(4259): 1214-9.
[http://dx.doi.org/10.1126/science.193.4259.1214] [PMID: 17837006]
[81]
Allcock HR, Kugel RL. Synthesis of high polymeric alkoxy- and aryloxyphosphonitriles. J Am Chem Soc 1965; 87: 4216-7.
[http://dx.doi.org/10.1021/ja01096a056]
[82]
Allcock HR, Patterson DB, Evans TL. Synthesis of alkyl and aryl phosphazene high polymers. J Am Chem Soc 1977; 99: 6095-6.
[http://dx.doi.org/10.1021/ja00460a042]
[83]
Amin AM, Wang L, Wang J, et al. Recent research progress in the synthesis of polyphosphazene elastomers and their applications. Polym Plast Technol Eng 2010; 49: 1399-405.
[http://dx.doi.org/10.1080/03602559.2010.496387]
[84]
Orme CJ, Harrup MK, Mccoy JD, Weinkauf DH, Stewart FF. Pervaporation of water-dye, alcohol-dye and water-alcohol mixtures using a polyphosphazene membrane. J Membr Sci 2002; 197: 89-101.
[http://dx.doi.org/10.1016/S0376-7388(01)00633-0]
[85]
Orme CJ, Klaehn JR, Harrup MK, Lash RP, Stewart FF. Characterization of 2-(2-methoxyethoxy) ethanol-substituted phosphazene polymers using pervaporation, solubility parameters, and sorption studies. J Appl Polym Sci 2005; 97: 939-45.
[http://dx.doi.org/10.1002/app.21898]
[86]
Stewart FF, Harrup MK, Luther TA, Orme CJ, Lash RP. Formation of pervaporation membranes from polyphosphazene having hydrophilic and hydrophobic pendant groups: synthesis and characterization. J Appl Polym Sci 2001; 80: 422-31.
[http://dx.doi.org/10.1002/1097-4628(20010418)80:3 <422:AID-APP1115>3.0.CO;2-H]
[87]
Liu WP, Li B, Cao RJ, et al. Enhanced pervaporation performance of poly (dimethylsiloxane)membrane by incorporating titania microspheres with high silver ion loading. J Membr Sci 2011; 378: 382-92.
[http://dx.doi.org/10.1016/j.memsci.2011.05.027]
[88]
Yang Z-J, Wang Z-Q, Li J, Chen J-X. Enhancing FCC gasoline desulfurization performance in a polyphosphazenepervaporative membrane. Separ Purif Tech 2013; 109: 48-54.
[http://dx.doi.org/10.1016/j.seppur.2013.01.056]
[89]
L.G. Lin, Y.Z. Zhang, Y. Kong. Pervaporation separation of n-heptane/thiophene mixtures by polyethylene glycol membranes: modeling and experimental. J Colloid Interface Sci 339 (2009) 152-159
[90]
Zhanga QG. Bing Cheng Fanb, Qing Lin Liua,Ai Mei Zhua, FengFeng Shi, A novel poly(dimethyl siloxane)/poly(oligosilsesquioxanes) composite membrane for pervaporation desulfurization. J Membr Sci 2011; 366(1-2): 335-41.
[http://dx.doi.org/10.1016/j.memsci.2010.10.022]
[91]
Lin L, Kong Y, Wang G. HuiminQu, Jinrong Yang, Deqing Shi, Selection and crosslinking modification of membrane material for FCC gasoline desulfurization. J Membr Sci 2006; 285(1-2): 144-51.
[http://dx.doi.org/10.1016/j.memsci.2006.08.016]
[92]
Chen J, Li J, Qi R, Ye H, Chen C. Pervaporation separation of thiophene-heptane mixtures with polydimethylsiloxane (PDMS) membrane for desulfurization. Appl Biochem Biotechnol 2010; 160(2): 486-97.
[http://dx.doi.org/10.1007/s12010-008-8368-z] [PMID: 18830823]
[93]
Kong Ying. LigangLin, JinrongYang, DeqingShi, HuiminQu, KekunXie FCC gasoline desulfurization by pervaporation: Effects of gasoline components, Journal of Membrane Science (Impact Factor: 4.91). 04/2007; 293(1-2): 36-43.
[94]
Lama V. GuangchunLia, ChaojieSonga, JinwenChenb, Craig Fairbridgeb, Rob Huia, JiujunZhanga, A review of electrochemical desulfurization technologies for fossil fuels. Fuel Process Technol 2012; 98: 30-8.
[http://dx.doi.org/10.1016/j.fuproc.2012.01.022]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy