Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Calorimetric Sensor for Ethanol Using Ni2+-nitrilotriacetic Acid (NTA) Resin Immobilized Alcohol Dehydrogenase (ADH)

Author(s): YongJin Li*

Volume 16, Issue 6, 2020

Page: [795 - 799] Pages: 5

DOI: 10.2174/1573411015666190617110233

Price: $65

Abstract

Background: A simple, fast and economic analytical method for the determination of ethanol is important for clinical, biological, forensic and physico-legal purposes.

Methods: Ni2+-NTA resin was used as an immobilization matrix for the simple one-step purification/ immobilization of his6-tagged ADH. Different alcohols with a concentration range of 0.5-50% V/V, namely methanol, ethanol and propanol were measured using prepared ADH enzyme thermistor. The ethanol content of Tsingtao beer was tested as a real sample containing alcohol. Reproducibility and stability of prepared ADH enzyme thermistor were also investigated by repeated measurements.

Results: In comparison to the controlled pore glass (a common used support for the immobilization of enzyme) used in thermal biosensor, the use of Ni2+-NTA resin not only led to simple one-step purification/ immobilization by his6-tagged ADH binding to Ni2+-NTA resin, but also made the immobilizing supports reusable. The prepared biosensor can be used to determine ethanol and methanol by the calorimetric measurement. A linear range of 1 -32% (V/V) and 2-20% (V/V) was observed for ethanol and methanol, respectively. The detection limits were 0.3% (V/V) and 1% (V/V) for ethanol and methanol, respectively. The tested ethanol concentration of Tsingtao beer was 4.5% V/V, which is comparable with the labeled alcohol by volume (ABV) 4.80%.

Conclusion: Ni2+-NTA resin, as an immobilization matrix in ET sensor, provides a simple one-step purification/immobilization for His6-tagged recombinase and a reusable immobilization matrix. The prepared biosensor exhibits good repeatability and stability. Such a new biosensor shows great promise for rapid, simple, and cost-effective analysis of ethanol and methanol, both in qualitative and in quantitative tests.

Keywords: Alcohol dehydrogenase, biosensor, enzyme thermistor, ethanol, immobilization, methanol.

Graphical Abstract

[1]
Patel, N.; Meier, S.; Cammann, K.; Chemnitius, G-C. Screen-printed biosensors using different alcohol oxidases. Sens. Actuators B Chem., 2001, 75(1-2), 101-110.
[http://dx.doi.org/10.1016/S0925-4005(01)00545-7]
[2]
Curry, A.S.; Walker, G.W.; Simpson, G.S. Determination of ethanol in blood by gas chromatography. Analyst, 1966, 91(88), 742-743.
[http://dx.doi.org/10.1039/an9669100742 ] [PMID: 5979106]
[3]
Vonach, R.; Lendl, B.; Kellner, R. High-performance liquid chromatography with real-time Fourier-transform infrared detection for the determination of carbohydrates, alcohols and organic acids in wines. J. Chromatogr. A, 1998, 824(2), 159-167.
[http://dx.doi.org/10.1016/S0021-9673(98)00570-6]
[4]
Verduyn, C.; van Dijken, J.P.; Scheffers, W.A. Colorimetric alcohol assays with alcohol oxidase. J. Microbiol. Methods, 1984, 2(1), 15-25.
[http://dx.doi.org/10.1016/0167-7012(84)90027-7]
[5]
Cinti, S.; Basso, M.; Moscone, D.; Arduini, F. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal. Chim. Acta, 2017, 960, 123-130.
[http://dx.doi.org/10.1016/j.aca.2017.01.010 ] [PMID: 28193355]
[6]
Erfkamp, J.; Guenther, M.; Gerlach, G. Hydrogel-Based Sensors for Ethanol Detection in Alcoholic Beverages. Sensors (Basel, Switzerland), 2019, 19(5)
[7]
Penza, M.; Cassano, G.; Aversa, P.; Antolini, F.; Cusano, A.; Cutolo, A.; Giordano, M.; Nicolais, L. Alcohol detection using carbon nanotubes acoustic and optical sensors. Appl. Phys. Lett., 2004, 85(12), 2379-2381.
[http://dx.doi.org/10.1063/1.1784872]
[8]
Sivakesava, S.; Irudayaraj, J.; Demirci, A. Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy. J. Ind. Microbiol. Biotechnol., 2001, 26(4), 185-190.
[http://dx.doi.org/10.1038/sj.jim.7000124 ] [PMID: 11464265]
[9]
Hooda, V.; Kumar, V.; Gahlaut, A.; Hooda, V. Alcohol quantification: recent insights into amperometric enzyme biosensors. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 398-410..
[http://dx.doi.org/10.1080/21691401.2017.1315426] [PMID: 28415884]
[10]
Aymerich, J.; Márquez, A.; Terés, L.; Muñoz-Berbel, X.; Jiménez, C.; Domínguez, C.; Serra-Graells, F.; Dei, M. Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples. Biosens. Bioelectron., 2018, 117, 736-742.
[http://dx.doi.org/10.1016/j.bios.2018.06.044 ] [PMID: 30014948]
[11]
Zhao, L.; Liu, Q.; Yan, S.; Chen, Z.; Chen, J.; Li, X. Multimeric immobilization of alcohol oxidase on electrospun fibers for valid tests of alcoholic saliva. J. Biotechnol., 2013, 168(1), 46-54.
[http://dx.doi.org/10.1016/j.jbiotec.2013.08.015 ] [PMID: 23968724]
[12]
Chinnadayyala, S.R.; Santhosh, M.; Singh, N.K.; Goswami, P. Alcohol oxidase protein mediated in-situ synthesized and stabilized gold nanoparticles for developing amperometric alcohol biosensor. Biosens. Bioelectron., 2015, 69, 155-161.
[http://dx.doi.org/10.1016/j.bios.2015.02.015 ] [PMID: 25725464]
[13]
Leca, B.; Marty, J-L. Reusable ethanol sensor based on a NAD+-dependent dehydrogenase without coenzyme addition. Anal. Chim. Acta, 1997, 340(1-3), 143-148.
[http://dx.doi.org/10.1016/S0003-2670(96)00537-5]
[14]
Niculescu, M.; Erichsen, T.; Sukharev, V.; Kerenyi, Z.; Csöregi, E.; Schuhmann, W. Quinohemoprotein alcohol dehydrogenase-based reagentless amperometric biosensor for ethanol monitoring during wine fermentation. Anal. Chim. Acta, 2002, 463(1), 39-51.
[http://dx.doi.org/10.1016/S0003-2670(02)00344-6]
[15]
Shkotova, L.V.; Soldatkin, A.P.; Gonchar, M.V.; Schuhmann, W.; Dzyadevych, S.V. Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Mater. Sci. Eng. C, 2006, 26(2-3), 411-414.
[http://dx.doi.org/10.1016/j.msec.2005.10.031]
[16]
Yildiz, H.B.; Toppare, L. Biosensing approach for alcohol determination using immobilized alcohol oxidase. Biosens. Bioelectron., 2006, 21(12), 2306-2310.
[http://dx.doi.org/10.1016/j.bios.2005.11.006 ] [PMID: 16352430]
[17]
Kieber, R.J.; Guy, A.L.; Roebuck, J.A.; Carroll, A.L.; Mead, R.N.; Jones, S.B.; Giubbina, F.F.; Campos, M.L.; Willey, J.D.; Avery, G.B. Determination of ambient ethanol concentrations in aqueous environmental matrixes by two independent analyses. Anal. Chem., 2013, 85(12), 6095-6099.
[http://dx.doi.org/10.1021/ac400974m ] [PMID: 23672335]
[18]
Mosbach, K.; Danielsson, B. Thermal bioanalyzers in flow streams. Enzyme thermistor devices. Anal. Chem., 1981, 53(1), 83-94.
[http://dx.doi.org/10.1021/ac00224a002]
[19]
Satoh, I.; Arakawa, S.; Okamoto, A. Calorimetric flow-injection determination of glutathione with enzyme-thermistor detector. Sens. Actuators B Chem., 1991, 5(1-4), 245-247.
[http://dx.doi.org/10.1016/0925-4005(91)80256-J]
[20]
Mattiasson, B.; Danielsson, B.; Hermansson, C.; Mosbach, K. Enzyme thermistor analysis of heavy metal ions with use of immobilized urease. FEBS Lett., 1978, 85(2), 203-206.
[http://dx.doi.org/10.1016/0014-5793(78)80455-4 ] [PMID: 620798]
[21]
Mattiasson, B.; Danielsson, B.; Winquist, F.; Nilsson, H.; Mosbach, K. Enzyme thermistor analysis of penicillin in standard solutions and in fermentation broth. Appl. Environ. Microbiol., 1981, 41(4), 903-908.
[PMID: 16345754]
[22]
Cinti, S.; Basso, M.; Moscone, D.; Arduini, F. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal. Chim. Acta, 2017, 960, 123-130.
[http://dx.doi.org/10.1016/j.aca.2017.01.010 ] [PMID: 28193355]
[23]
Salman, S.; Soundararajan, S.; Safina, G.; Satoh, I.; Danielsson, B. Hydroxyapatite as a novel reversible in situ adsorption matrix for enzyme thermistor-based FIA. Talanta, 2008, 77(2), 490-493.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy