Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Analytical Applications of Permanganate as an Oxidant in the Determination of Pharmaceuticals Using Chemiluminescence and Spectrophotometry: A Review

Author(s): Habibur Rahman*

Volume 16, Issue 6, 2020

Page: [670 - 686] Pages: 17

DOI: 10.2174/1573411015666190617103833

Price: $65

Abstract

Background: Potassium permanganate is a green and versatile industrial oxidizing agent. Due to its high oxidizing ability, it has received considerable attention and has been extensively used for many years for the synthesis, identification, and determination of inorganic and organic compounds.

Objective: Potassium permanganate is one of the most applicable oxidants, which has been applied in a number of processes in several industries. Furthermore, it has been widely used in analytical pharmacy to develop analytical methods for pharmaceutically active compounds using chemiluminescence and spectrophotometric techniques.

Results: This review covers the importance of potassium permanganate over other common oxidants used in pharmaceuticals and reported its extensive use and analytical applications using direct, indirect and kinetic spectrophotometric methods in different pharmaceutical formulations and biological samples. Chemiluminescent applications of potassium permanganate in the analyses of pharmaceuticals using flow and sequential injection techniques are also discussed.

Conclusion: This review summarizes the extensive use of potassium permanganate as a chromogenic and chemiluminescent reagent in the analyses of pharmaceutically active compounds to develop spectrophotometric and chemiluminescence methods since 2000.

Keywords: Chemiluminescence, dosage forms, green oxidant, pharmaceuticals, potassium permanganate, spectrophotometry.

Graphical Abstract

[1]
Singh, N.; Lee, D.G. Permanganate: A green and versatile industrial oxidant. Org. Process Res. Dev., 2001, 5, 599-603.
[http://dx.doi.org/10.1021/op010015x]
[2]
Kótai, L.; Gács, I.; Sajó, I.E.; Sharma, P.K.; Banerji, K.K. Beliefs and facts in permanganate chemistry – An overview on the synthesis and the reactivity of simple and complex permanganates. Tr. Inorg. Chem., 2009, 11, 25-104.
[3]
Wagenet, L.; Mancl, K.; Sailus, M. Home Water Treatment; Natural Resource, Agriculture and Engineering Service, Cornell University Cooperative Extension. Publication NRAES-48. Ithaca, NY, 1995.
[4]
Welch, W.A. Potassium permanganate in water treatment. J. Am. Water Works Assoc., 1963, 55, 735-741.
[http://dx.doi.org/10.1002/j.1551-8833.1963.tb01082.x]
[5]
Basiouny, M.; Fouad, E.A.; Elmitwalli, T.; Abu-Elkhair, N.Y. Enhancing purification of surface water by potassium permanganate addition Twelfth International Water Technology Conference, IWTC12, , 2008. Alexandria, Egypt,pp 979-989..
[6]
de Souza e Silva. P.T.; da Silva, V.L.; Neto, Bde.B.; Simonnot, M.O. Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils. J. Hazard. Mater., 2009, 168(2-3), 1269-1273.
[http://dx.doi.org/10.1016/j.jhazmat.2009.03.007] [PMID: 19345005]
[7]
Insauti, M.J.; Meta-Perez, F.; Macho, A. Kinetic study of the oxidation of L-phenylalanine by potassium permanganate in acidic medium. Int. J. Chem. Kinet., 1995, 27, 507-515.
[http://dx.doi.org/10.1002/kin.550270509]
[8]
Babatunde, O.A. A study of the kinetics and mechanism of oxidation of L-Ascorbic acid by permanganate ion in acidic medium. World J. Chem., 2008, 3, 27-31.
[9]
Gates-Anderson, D.D.; Siegrist, R.L.; Cline, S.R. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. J. Environ. Eng., 2001, 127.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(2001)127:4(337)]
[10]
Achugasim, O.; Ojinnaka, C.M.; Osuji, L.C. Potassium permanganate as an oxidant in the remediation of soils polluted by Bonny light crude oil. Sky J. Soil Sci. Environ. Management, 2014, 3, 4-19.
[11]
Waldemer, R.H.; Tratnyek, P.G. Kinetics of contaminant degradation by permanganate. Environ. Sci. Technol., 2006, 40(3), 1055-1061.
[http://dx.doi.org/10.1021/es051330s] [PMID: 16509357]
[12]
Mahmoodlu, M.G.; Hartog, N.; Majid, H.S.; Raoof, A. Oxidation of volatile organic vapours in air by solid potassium permanganate. Chemosphere, 2013, 91(11), 1534-1538.
[http://dx.doi.org/10.1016/j.chemosphere.2012.12.035] [PMID: 23357868]
[13]
Mahmoodlu, M.G.; Hassanizadeh, S.M.; Hartog, N.; Raoof, A. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier. J. Contam. Hydrol., 2014, 164, 193-208.
[http://dx.doi.org/10.1016/j.jconhyd.2014.05.013] [PMID: 24992709]
[14]
Elshiekh, M.; Guirguis, H.; Fathy, A. Removal of iron and manganese from ground water: a study of using potassium permanganate and sedimentation. MATEC Web Conf., 2018, 162(13,) 05018.
[15]
Banerjea, R. The use of potassium permanganate in the disinfection of water. Ind. Med. Gaz., 1950, 85(5), 214-219.
[PMID: 14794159]
[16]
Howard, D.B. Water disinfection, 5th ed; The Travel and Tropical Medicine Manual, 2017, pp. 91-111.
[17]
Carey, F.A.; Sundberg, R.J. Advanced Organic Chemistry, Part B: Reaction and Synthesis; 5th ed.; Springer US , 2007.
[18]
Shettar, R.S.; Hiremath, M.I.; Nandibewoor, S.T. Kinetics and mechanistic study of the Ruthenium(III) catalyzed oxidative decarboxylation of L-proline by alkaline heptavalent manganese (stopped flow technique) E -Journal Chem. (Hindawi),, 2005, 2,, 91-100.
[19]
Hiremath, G.A.; Timmanagoudar, P.L.; Namdibenoor, S.T. Kinetics of oxidation of thallium(I) by permanganate in aqueous hydrochloric acid medium using the stopped-flow technique. Transition Met. Chem., 1996, 21, 560-564.
[http://dx.doi.org/10.1007/BF00229713]
[20]
Hobbs, M.S.; Grippo, R.S.; Farris, J.L.; Griffin, B.R.; Harding, L.L. Comparative acute toxicity of potassium permanganate to nontarget aquatic organisms. Environ. Toxicol. Chem., 2006, 25(11), 3046-3052.
[http://dx.doi.org/10.1897/05-453R2.1] [PMID: 17089730]
[21]
Lay, B. A Application of potassium permanganate in fish Culture. Trans. Am. Fish. Soc., 2008, 100, 913-816.
[22]
Lay, B.A. Application of potassium permanganate in fish Culture. Trans. Am. Fish. Soc., 1971, 100, 813-816.
[http://dx.doi.org/10.1577/1548-8659(1971)100<813:AFPPIF>2.0.CO;2]
[23]
Cherry, A.K. Use of potassium permanganate in water treatment. J. Am. Water Works Assoc., 1962, 54, 417-424.
[http://dx.doi.org/10.1002/j.1551-8833.1962.tb00862.x]
[24]
Guan, X.; He, D.; Ma, J.; Chen, G. Application of permanganate in the oxidation of micropollutants: a mini review. Front. Environ. Sci. Eng. China, 2010, 4, 405-413.
[http://dx.doi.org/10.1007/s11783-010-0252-8]
[25]
Hu, L.; Martin, H.M.; Strathmann, T.J. Oxidation kinetics of antibiotics during water treatment with potassium permanganate. Environ. Sci. Technol., 2010, 44(16), 6416-6422.
[http://dx.doi.org/10.1021/es101331j] [PMID: 20704243]
[26]
Dietrich, A.M. Aesthetic issues for drinking water. J. Water Health, 2006, 4(Suppl. 1), 11-16.
[http://dx.doi.org/10.2166/wh.2006.0038] [PMID: 16493894]
[27]
Srinivasan, R.; Sorial, G.A. Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: a critical review. J. Environ. Sci. (China), 2011, 23(1), 1-13.
[http://dx.doi.org/10.1016/S1001-0742(10)60367-1] [PMID: 21476334]
[28]
Hu, L.; Stemig, A.M.; Wammer, K.H.; Strathmann, T.J. Oxidation of antibiotics during water treatment with potassium permanganate: reaction pathways and deactivation. Environ. Sci. Technol., 2011, 45(8), 3635-3642.
[http://dx.doi.org/10.1021/es104234m] [PMID: 21417319]
[29]
Pollitzer, R. Cholera studies, prevention and control. Bull. Org. Mond. Sante. Bull. Wld. Hlth. Org., 1957, 17, 67-162.
[PMID: 13479774]
[30]
Subramanya, S.H.; Pai, V.; Bairy, I.; Nayak, N.; Gokhale, S.; Sathian, B. Potassium permanganate cleansing is an effective sanitary method for the reduction of bacterial bioload on raw Coriandrum sativum. BMC Res. Notes, 2018, 11(1), 124.
[http://dx.doi.org/10.1186/s13104-018-3233-9] [PMID: 29439713]
[31]
Avi, S.; Howard, I.M. Wound Healing and Ulcers of the Skin: Diagnosis and Therapy The Practical Approach. Springer Science & Business Media, 2005, 152,, p.242..
[32]
Meggison, W.; Hollinworth, H. Using potassium permanganate for wound cleansing. J. Wound Care, 1994, 3, 194.
[33]
Downing, D.T.; Greene, R.S. Double bond positions in the unsaturated fatty acids of vernix caseosa. J. Invest. Dermatol., 1968, 50(5), 380-386.
[http://dx.doi.org/10.1038/jid.1968.61] [PMID: 5653235]
[34]
Delgado-Enciso, I.; Madrigal-Perez, V.M.; Lara-Esqueda, A.; Diaz-Sanchez, M.G.; Guzman-Esquivel, J.; Rosas-Vizcaino, L.E.; Virgen-Jimenez, O.O.; Kleiman-Trujillo, J.; Lagarda-Canales, M.R.; Ceja-Espiritu, G.; Rangel-Salgado, V.; Lopez-Lemus, U.A.; Delgado-Enciso, J.; Lara-Basulto, A.D.; Soriano Hernández, A.D. Topical 5% potassium permanganate solution accelerates the healing process in chronic diabetic foot ulcers. Biomed. Rep., 2018, 8(2), 156-159.
[http://dx.doi.org/10.3892/br.2018.1038] [PMID: 29435274]
[35]
Xu, X.R.; Li, H.B.; Wang, W.H.; Gu, J.D. Decolorization of dyes and textile wastewater by potassium permanganate. Chemosphere, 2005, 59(6), 893-898.
[http://dx.doi.org/10.1016/j.chemosphere.2004.11.013] [PMID: 15811419]
[36]
Potassium Permanganate from China. Inv. 731-TA-125 (Review),DIANE Publishing Co., Chapter: Introduction and overview, Sep 2010, 1-9..
[37]
Kao, C.M.; Huang, K.D.; Wang, J.Y.; Chen, T.Y.; Chien, H.Y. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study. J. Hazard. Mater., 2008, 153(3), 919-927.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.116] [PMID: 18006224]
[38]
Siegrist, R.L.; Michael, A.U.; Olivia, R.W.; Mitchelle, L.C.; Kathyn, S.L. Principles and practice of in situ chemical oxidation using permanganate; Bettalle Press: Columbus, Ohio, 2001, pp. 1-11.
[39]
Ross, C.; Murdoch, L.C.; Freedman, D.L.; Siegrist, R.L. Characteristics of potassium permanganate encapsulated in polymer. J. Environ. Eng., 2005, 131, 1231-1238.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(2005)131:8(1203)]
[40]
Rodríguez, E.; Majado, M.E.; Meriluoto, J.; Acero, J.L. Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment. Water Res., 2007, 41(1), 102-110.
[http://dx.doi.org/10.1016/j.watres.2006.10.004] [PMID: 17097716]
[41]
Chen, X.; Xiao, B.; Liu, J.; Fang, T.; Xu, X. Kinetics of the oxidation of MCRR by potassium permanganate. Toxicon, 2005, 45(7), 911-917.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.011] [PMID: 15904686]
[42]
Swearingen, M.C.; Mehta, A.; Mehta, A.; Nistico, L.; Hill, P.J.; Falzarano, A.R.; Wozniak, D.J.; Hall-Stoodley, L.; Stoodley, P. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms. Pathog. Dis., 2016, 74(1)ftv104
[PMID: 26536894]
[43]
Ahmad, K.A.M. Exploitation of KMnO4 material as precursors for the fabrication of manganese oxide nanomaterial. Taibah Univ. Sci. J., 2016, 10, 412-419.
[http://dx.doi.org/10.1016/j.jtusci.2015.06.005]
[44]
Brogren, C.; Karlsson, H.T.; Bjerle, I. Adsorption of NO in an alkaline solution of KMnO4. Chem. Eng. Technol., 1997, 20, 396-402.
[http://dx.doi.org/10.1002/ceat.270200607]
[45]
Zhang, H.; Chang, Q.; Jiang, Y.; Li, H.; Yang, Y. Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@GO/MnO x) and its application for removing of Cu2+ ions from aqueous solution. Nanotechnology, 2018, 29(13)135706
[http://dx.doi.org/10.1088/1361-6528/aaaa2f] [PMID: 29436518]
[46]
Fayad, P.B.; Zamyadi, A.; Broseus, R.; Prévost, M.; Sauvé, S. Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents. Chem. Cent. J., 2013, 7, 84.
[http://dx.doi.org/10.1186/1752-153X-7-84] [PMID: 23675917]
[47]
Huang, K.C.; Hoag, G.E.; Chheda, P.; Woody, B.A.; Dobbs, G.M. Kinetic study of the oxidation of trichloroethylene by potassium permanganate. Environ. Eng. Sci., 1999, 16, 265-274.
[http://dx.doi.org/10.1089/ees.1999.16.265]
[48]
Ighere, J.; Honjoya, K.; Chawla, R.J. Applications of potassium permanganate in the oxidative degradation of trichloroethylene. Mat. Sci. Chem. Engg., 2015, 3, 16-27.
[http://dx.doi.org/10.4236/msce.2015.37003]
[49]
Chen, J.; Qu, R.; Pan, X.; Wang, Z. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. Water Res., 2016, 103, 215-223.
[http://dx.doi.org/10.1016/j.watres.2016.07.041] [PMID: 27459151]
[50]
El-Kosasy, A.M.; Hussein, L.A.; Abdel Rahman, M.H. Reducing power evaluation of antioxidant drugs by potentiometric titrations. J. Am. Sci., 2013, 9, 114-118.
[51]
Saleh, M.M.S.; Hashem, E.Y.; Al-Salahi, N.O.A. Oxidation and complexation-based spectrophotometric methods for sensitive determination of Tartrazine E102 in some commercial food samples. Comput. Chem., 2016, 4, 51-64.
[http://dx.doi.org/10.4236/cc.2016.42005]
[52]
Georgscu, R.; Van Staden, J.F. Comparison of fluorescein and potassium permanganate in fast low cost screening methods for determination of folic acid in pharmaceutical tablets. Rev. Roum. Chim., 2015, 60, 563-569.
[53]
Ma, L.; Cui, Y.; Cai, R.; Liu, X.; Zhang, C.; Xiao, D. Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob. Bioresour. Technol., 2015, 180, 1-6.
[http://dx.doi.org/10.1016/j.biortech.2014.12.078] [PMID: 25585256]
[54]
Fereja, T.H.; Hymete, A.; Gunasekaran, T. A recent review on chemiluminescence reaction, Principle and Application on Pharmaceutical Analysis. ISRN Spectroscopy, 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/230858]
[55]
Easwaramoorthy, D.; Yu, Y-C.; Huang, H-J. Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal. Chim. Acta, 2001, 439, 95-100.
[http://dx.doi.org/10.1016/S0003-2670(01)00968-0]
[56]
Navarrro, M.V.; Payán, M.R.; López, M.A.B.; Fernández-Torres, R.; Mochón, M.C. Rapid flow injection method for the determination of sulfite in wine using the permanganate-luminol luminescence system. Talanta, 2010, 82(5), 2003-2006.
[http://dx.doi.org/10.1016/j.talanta.2010.08.021] [PMID: 20875609]
[57]
Roda, A.; Mirasoli, M.; Michelini, E.; Di Fusco, M.; Zangheri, M.; Cevenini, L.; Roda, B.; Simoni, P. Progress in chemical luminescence-based biosensors: A critical review. Biosens. Bioelectron., 2016, 76, 164-179.
[http://dx.doi.org/10.1016/j.bios.2015.06.017] [PMID: 26146129]
[58]
Eeckhout, K.V.D.; Smet, P.F. Poelman. D. Persistent luminescence in Eu2+-doped compounds: A review. Materials (Basel), 2010, 3, 2536-2566.
[http://dx.doi.org/10.3390/ma3042536]
[59]
Khattab, T.A.; Rehan, M.; Hamdy, Y.; Shaheen, T.I. Facile development of photoluminescent textile fabric via spray coating of Eu (II)-doped strontium aluminate. Ind. Eng. Chem. Res., 2018, 57, 11483-11492.
[http://dx.doi.org/10.1021/acs.iecr.8b01594]
[60]
Khattab, T.A.; Abou-Yousef, H.; Kamel, S. Photoluminescent spray-coated paper sheet: Write-in-the-dark. Carbohydr. Polym., 2018, 200, 154-161.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.094] [PMID: 30177153]
[61]
Khattab, T.A.; Gabr, A.M.; Mostafa, A.M.; Hamouda, T. Luminescent plant root: A step toward electricity-free natural lighting plants. J. Mol. Struct., 2019, 1176, 249-253.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.101]
[62]
Baldry, M.G.C. The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. J. Appl. Bacteriol., 1983, 54(3), 417-423.
[http://dx.doi.org/10.1111/j.1365-2672.1983.tb02637.x] [PMID: 6409877]
[63]
Campanella, L.; Roversi, R.; Sammartino, M.P.; Tomassetti, M. Hydrogen peroxide determination in pharmaceutical formulations and cosmetics using a new catalase biosensor. J. Pharm. Biomed. Anal., 1998, 18(1-2), 105-116.
[http://dx.doi.org/10.1016/S0731-7085(98)00155-1] [PMID: 9863948]
[64]
Satyanarayana, S. Pharmaceutical wastewater treatment using Hydrogen peroxide oxidation method. Int. J. Appl. Res. Stud., 2015, 1, 290-293.
[65]
Baker, J.T. Potassium Dichromate MSDS; Sigma-Aldrich: Germany, 1996.
[66]
Bazzaz, A.A.; Ahmad, N.A.; Chelebi, N.A. Effects of potassium dichromate on distribution of Toxocara Canis Larvae within brain of mice. J. Environ. Sci. Engg. A, 2015, 4, 177-180.
[67]
Hassan, E.; Hagga, M.; Al Johar, H.I. Kinetic method for the determination of cisapride in pharmaceutical preparations. Sci. Pharm., 2000, 68, 281-296.
[http://dx.doi.org/10.3797/scipharm.aut-00-26]
[68]
Hussain, S.; Hussain, S.Y. A kinetic study of oxidation of cetrizine hydrochloride by potassium dichromate in acid medium. J. Chem. Pharm. Res., 2017, 9, 143-147.
[69]
Sekaran, C.B; Tirupatamma, P.L.; Rajitha, V.; Vishnupriya, K.; Jayasree, B. Assay of ezetimibe in bulk and in its pharmaceutical formulations by spectrophotometry IJPPS, 2012, 4,, 396-401..
[70]
Kuchekar, B.S.; Thakkar, S.V.; Chothe, P.P.; Hiremath, M.R.; Shinde, D.B. Spectrophotometric estimation of sildenafil citrate in tablets. Indian J. Pharm. Sci., 2005, 67, 749-751.
[71]
Fraihat, S.M.; Bahgat, K.M.K.M. Spectrophotometric methods for the determination of ketoconazole in pharmaceutical dosage forms. Trop. J. Pharm. Res., 2014, 13, 1511-1514.
[http://dx.doi.org/10.4314/tjpr.v13i9.18]
[72]
Basavaiah, K.; Qarah, N.A.S.; Abdulrahman, S.A.M. Application of cerium (IV) as an oxidimetric agent for the determination of ethionamide in pharmaceutical formulations. J. Pharm. (Cairo), 2016, 20165410573
[http://dx.doi.org/10.1155/2016/5410573] [PMID: 27818836]
[73]
Sayanna, K.; Venkateshwarlu, G. Spectrophotometric determination of drugs and pharmaceuticals by cerium (IV) amaranth dye couple. IOSR-JAC, 2013, 5, 1-9.
[http://dx.doi.org/10.9790/5736-0540109]
[74]
Sasikala, M.; Tirupati, B.; Venkateshwarlu, G. Quantitative determination of drugs by using cerium (IV) and rhodamine b couple: a spectrophotometric study. IJPSR, 2015, 6, 5179-5187.
[75]
Tirupathi, B.; Venkateshwarlu, G. Indirect spectrophotometric estimation of drugs using cerium (IV) and rhodamine-B as analytical reagent. Int. J. Pharm. Pharm. Sci., 2016, 8, 62-66.
[76]
El-Didamony, A.M.; Ali, I.I. Spectrofluorimetric and spectrophotometric analysis of two analgesic drugs in pharmaceutical formulations and biological fluids. J. Forensic Sci., 2013, 58(5), 1322-1329.
[http://dx.doi.org/10.1111/1556-4029.12170] [PMID: 23601195]
[77]
Basavaiah, K.; Chandrashekar, U.; Prameela, H.C. Cerimetric determination of propranolol in bulk drug form and in tablets. Turk. J. Chem., 2003, 27, 591-599.
[78]
Revanasiddappa, H.D.; Veena, M.A. Highly sensitive spectrophotometric methods for the determination of olanzapine. Eclét. Quím., 2008, 33, 47-52.
[http://dx.doi.org/10.1590/S0100-46702008000300007]
[79]
Basavaiah, K.; Ramakrishna, V.; Anilkumar, U.R. Sensitive spectrophotometric determination of lansoprazole in pharmaceuticals using ceric ammonium sulphate based on redox and complex formation reactions. Eclét. Quím., 2006, 31, 67-74.
[http://dx.doi.org/10.1590/S0100-46702006000300009]
[80]
Ramesh, P.J.; Basavaiah, K.; Xavier, C.M.; Prashanth, K.N.; Madihalli, S.; Raghu, M.S.; Vinay, K.B. Titrimetric and spectrophotometric assay of ganciclovir in pharmaceuticals using cerium(IV) sulphate as the oxidimetric agent. ISRN Anal. Chem., 2012, 2012, 1-8.
[http://dx.doi.org/10.5402/2012/818405]
[81]
El Sheikh, R.; Hassan, W.S.; Gouda, A.A.; El Gabry, M.M. Utility of cerium (IV) ammonium sulphate as oxidizing agent for spectrophotometric assay of oxybutynin hydrochloride in pharmaceutical preparations. Int. J. Res. Pharm. Pharm. Sci., 2018, 3, 9-16.
[82]
Giri, A.; Saritha, B.; Reddy, B.V.; Reddy, T.S. Quantitative determination of mifepristone in pharmaceutical samples by visible spectrophotometric method using Ce (IV) as an analytical reagent. Int. J. Pharm. Sci. Drug Res., 2014, 6, 246-249.
[83]
Sasikala, M.; Kumar, B.V.; Venkateshwarlu, G. Quantitative determination of drugs by using cerium (IV) and indigocaramine couple: a spectrophotometric study. J. Chem. Chem. Sci., 2015, 5, 463-475.
[84]
Fadnis, A.G.; Agarwal, R. Kinetic method for estimation of atenolol. J. Chem. Pharm. Res., 2011, 3, 899-904.
[85]
Basavaiah, K.; Nagegowda, P.; Chikkaswamy, B. Somashekar, Ramakrishna, V. Spectrophotometric and titrimetric determination of ciprofloxacin based on reaction with cerium (IV) sulphate. Sci. Asia, 2006, 32, 403-409.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2006.32.403]
[86]
Fraihat, S.M.; Bahgat, K.M. Spectrophotometric methods for the determination of ketoconazole in pharmaceutical dosage forms. Trop. J. Pharm. Res., 2014, 13, 1511-1514.
[http://dx.doi.org/10.4314/tjpr.v13i9.18]
[87]
Rao, B.S.; Kishore, T.R.; Rao, V.S. A novel spectrophotometric method for the determination of Taximof and iron (III). Der Chemica Sinica, 2014, 5, 115-118.
[88]
Krishna, M.V.; Sankar, D.G. Application of oxidants to the spectrophotometric determination of gemifloxacin mesylate in pharmaceutical formulations. Pharm. Rev., 2008, 1, 148.
[89]
Shah, J.; Jan, M.R. Inayatullah, Shah, S. Sensitive spectrofluorimetric and spectrophotometric methods for determination of sparfloxacin in pharmaceuticals. J. Mex. Chem. Soc., 2012, 56, 109-114.
[90]
Rajitha, B.; Rao, S.; Kumar, T.V. Spectrophotometric determination of drugs and pharmaceuticals using cerium (IV) as oxidant and amaranth dye as analytical reagent. IOSR-JAC, 2015, 8, 15-23.
[91]
Basavaiah, K. Indirect spectrophotometric determination of some biologically important phenothiazines using potassium dichromate, iron(II) and 1,10-phenanthroline. Ind. J. Chem. Tech., 2004, 11, 632-638.
[92]
Li, B.; Zhang, Z.; Wu, M. A simple spectrophotometric determination of some phenothiazine drugs in pharmaceutical samples. Anal. Sci., 2000, 16, 1127-1131.
[http://dx.doi.org/10.2116/analsci.16.1127]
[93]
Hijran, S.J.; Faizullah, A.T. Flow injection analysis with chemiluminescence detection for determination of two phenothiazines. Int. J. Pharm. Sci. Res., 2015, 6, 474-481.
[94]
Alarfaj, N.A.; El-Tohamy, M.F. A sensitive sequential injection analysis (SIA) determination of memantine hydrochloride using luminol-hydrogen peroxide induced chemiluminescence detection. J. Chil. Chem. Soc., 2014, 59, 2657-2661.
[http://dx.doi.org/10.4067/S0717-97072014000400006]
[95]
Zhi-Hua, T.; Hai-Tao, X.; Duo, W.; Ying-chun, W.U. Determination of quinine by Ce(IV)-ascorbic acid chemiluminescence system. Yaowu Fenxi Zazhi, 2009, 29, 1734-1737.
[96]
Ahmed, M.; Asgher, M.; Yaqoob, M.; Ali, S.; Bibi, N.; Nabi, A. Determination of hyoscine butylbromide in pharmaceuticals using Ce(IV)–Na2CO3 chemiluminescent system in flow injection analysis. J. Anal. Chem., 2018, 73, 1098-1104.
[http://dx.doi.org/10.1134/S1061934818110059]
[97]
Damm, J.H.; Hardacre, C.; Kalin, R.M.; Walsh, K.P. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate. Water Res., 2002, 36(14), 3638-3646.
[http://dx.doi.org/10.1016/S0043-1354(02)00057-X] [PMID: 12230210]
[98]
Huling, S.G.; Pivetz, B.E. In-Situ chemical oxidation.. Environ. Protect. Agen.,, 2006,, EPA(600/R-06/072),, 1-61..
[99]
de Menezes, M.N.; Kogawa, A.C.; Salgado, H.R.N. Status of hydrogen peroxide solution 10 V in commercialized samples. Pharm. Anal. Acta, 2017, 8, 1-3.
[100]
Khopkar, S.M. Basic concepts of analytical chemistry 2nd ed.; New Age International Private limited Publishers, New Delhi, India,; , 1998.
[101]
Carey, F.A.; Sundberg, R.J. Advanced Organic Chemistry, Part A: Structure and Mechanisms; 5th ed.; Springer US , 2007.
[102]
Shechter, H.; Singh, S. Rawalay; Tubis, M. Studies of Oxidation of benzylamines with neutral potassium permanganate and the chemistry of the products Thereof. I. J. Am. Chem. Soc., 1964, 86, 1701-1705.
[http://dx.doi.org/10.1021/ja01063a012]
[103]
Weller, M.; Overton, T.; Rourke, J.; Armstrong, F.; Atkins, P. Inorganic Chemistry, 6th ed; Oxford University Press: USA, 2014.
[104]
Carson, P.; Mumford, C. Hazardous Chemical Handbook 2nd ed.; Butterworth –Heinemann Linacre House, Jordon Hill, Oxford,; , 2002.
[105]
Campiglio, A. Chemiluminescence determination of naltrexone based on potassium permanganate oxidation. Analyst (Lond.), 1998, 123(5), 1053-1056.
[http://dx.doi.org/10.1039/a706647c] [PMID: 9709489]
[106]
Solich, P.; Sklenarova, H.; Polasek, M.; Karlicek, R. Application of flow injection technique in pharmaceutical analysis., 2001.(Available from: )https://www.researchgate.net/publication/228638068
[107]
Fletcher, P.; Andrew, K.N.; Calokerinos, A.C.; Forbes, S.; Worsfold, P.J. Analytical applications of flow injection with chemiluminescence detection--a review. Luminescence, 2001, 16(1), 1-23.
[http://dx.doi.org/10.1002/bio.607] [PMID: 11180653]
[108]
Hansen, E.H.; Miro, M. How flow injection analysis (FIA) over the past 25 years has changed our way of performing chemical analyses. Trends Anal. Chem., 2007, 26, 18-26.
[http://dx.doi.org/10.1016/j.trac.2006.07.010]
[109]
Carroll, A.D.; Scampavia, L.; Ruzicka, J. Label dilution method: A novel tool for bioligand interaction studies using bead injection in the lab-on-valve format. Analyst (Lond.), 2002, 127(9), 1228-1232.
[http://dx.doi.org/10.1039/b205898g] [PMID: 12375849]
[110]
Ruzicka, J. Lab on valve: Universal microflow analyzer based on sequential and bead injection. Analyst (Lond.), 2000, 125, 1053-1060.
[http://dx.doi.org/10.1039/b001125h]
[111]
Šat’ınský, D.; Solich, P.; Chocholouš, P.; Karl’ıcek, R. Monolithic columns-a new concept of separation in the sequential injection technique. Anal. Chim. Acta, 2003, 499, 205-214.
[http://dx.doi.org/10.1016/S0003-2670(03)00625-1]
[112]
Klimundová, J.; Satinský, D.; Sklenárová, H.; Solich, P. Automation of simultaneous release tests of two substances by sequential injection chromatography coupled with Franz cell. Talanta, 2006, 69(3), 730-735.
[http://dx.doi.org/10.1016/j.talanta.2005.11.011] [PMID: 18970630]
[113]
Zhang, D.; Ma, Y.; Zhou, M.; Li, L.; Chen, H. Determination of ceftriaxone sodium in pharmaceutical formulations by flow injection analysis with acid potassium permanganate chemiluminescence detection. Anal. Sci., 2006, 22(1), 183-186.
[http://dx.doi.org/10.2116/analsci.22.183] [PMID: 16429800]
[114]
Helali, N.; Adhoum, N.; Monser, L. Flow injection kinetic spectrophotometric method for the determination of famotidine in pharmaceutical preparations. J. Flow Injection Anal., 2006, 22, 129-133.
[115]
Al-Arfaj, N.A. Flow-injection chemiluminescent determination of metoclopramide hydrochloride in pharmaceutical formulations and biological fluids using the [Ru(dipy)(3)(2+)]-permanganate system. Talanta, 2004, 62(2), 255-263.
[http://dx.doi.org/10.1016/j.talanta.2003.07.013] [PMID: 18969289]
[116]
Sékou, T.Z.; Xing-guang, S.U. Determination of biotin in pharmaceutical formulations by potassium permanganate-luminol-cdte nanoparticles chemiluminescence system. Chem. Res. Chin. Univ., 2012, 28, 604-608.
[117]
Yin-Huan, L. Chemiluminescence determination of sulpiride in pharmaceutical preparations and biological fluids based on KMnO4-Tween 80 reaction. J. Chin. Chem. Soc. (Taipei), 2009, 56, 164-168.
[http://dx.doi.org/10.1002/jccs.200900023]
[118]
Ahmed, A.M.K.; Khaleel, A.I.; Amine, S.T. Determination of ranitidine-HCl in pharmaceutical formulations by kinetic spectrophotometric and flow injection-activated chemiluminescence methods. New J. Chem., 2006, 24, 534-550.
[119]
Li, Y.; Lu, J. Direct chemiluminescence determination of ibuprofen by the enhancement of the KMnO(4)-sulphite reaction. Luminescence, 2007, 22(4), 326-330.
[http://dx.doi.org/10.1002/bio.966] [PMID: 17471464]
[120]
Jamil, L.A.; Faizullah, A.T.; Saleem, P.H. FIA-CL determination of paracetamol using luminol– KMnO4–Pb post- chemiluminscence system, applying merging zone principle. J. Univ. Zakho, 2013, 1, 723-734.
[121]
Fu, Z.; Wang, L. Highly sensitive chemiluminescent method for determination of indomethacin using permanganate-formaldehyde System. Chem. Anal., 2009, 54, 163-172.
[122]
Assubaie, F.N. Employing sequential injection analysis technique and chemometric optimization approach for developing diltiazem assay method. Yao Wu Shi Pin Fen Xi, 2009, 17, 408-414.
[123]
Rodriguez, J.A.; Islas, G.; Paez-Hernandez, M.E.; Barrado, E. Sequential injection spectrophotometric determination of diclofenac sodium in urine and pharmaceutical formulation. J. Flow Injection Anal., 2008, 25, 39-43.
[124]
Ibrahim, A.E.E.; Saleh, T.A.; Abulkibash, A.M.; Ibrahim, K.E.E. Chemometric optimization of sequential injection spectrophotometric method for chlorpheniramine determination in pharmaceutical formulations. J. Flow Injection Anal., 2010, 27, 26-31.
[125]
Yan, M.; Wei-Hong, T.; Guo-Dong, F.; Wei, C. Flow injection chemiluminescence determination of progesterone. J. Anal. Sci,, 2013,, 01.
[126]
Jingkai, X.Y.; Li, J. Flow injection determination of Tramadol based on its sensitizing effect on the chemiluminescent reaction of permanganate-sulphite. Am. J. Anal. Chem., 2011, 2, 768-775.
[http://dx.doi.org/10.4236/ajac.2011.27088]
[127]
Yang, F.; Tian, X.; Fan, X.; Zhang, W.; Ren, P. Determination of captopril with potassium permanganate chemiluminescence system. Pharma Chem., 2016, 8, 289-293.
[128]
Du, J.; Li, Y.; Lu, J. Chemiluminescence flow injection analysis of amoxycillin by a permanganate-based reaction. Anal. Lett., 2002, 35, 2295-2304.
[http://dx.doi.org/10.1081/AL-120016103]
[129]
Wei, G.; Wei, C.; Dang, G.; Yao, H.; Li, H. Determination of puerarin in pharmaceutical injection by flow injection analysis with acidic potassium permanganate–glyoxal chemiluminescence detection. Anal. Lett., 2007, 40, 2179-2191.
[http://dx.doi.org/10.1080/00032710701566404]
[130]
Emara, S. Determination of methotrexate in pharmaceutical formulations by flow injection analysis exploiting the reaction with potassium permanganate. Farmaco, 2004, 59(10), 827-833.
[http://dx.doi.org/10.1016/j.farmac.2004.06.005] [PMID: 15474060]
[131]
Silva, E.F.; Gomes, P.R.B.; Fernandes, R.N.; Lyra, W.S. Flow-Injection spectrometric determination of Sodium Diclofenac in pharmaceutical formulations. J. Chil. Chem. Soc., 2018, 63, 3941-3946.
[http://dx.doi.org/10.4067/s0717-97072018000203941]
[132]
Jie, S.; Kai-Lou, Z.; Qing-Guo, S.; Ling-Bo, Q.; Xue-Yun, G. Chemiluminescence determination of amoxicillin by flow injection analysis. Yaowu Fenxi Zazhi, 2004, 24, 395-396.
[133]
Xie, X.; Song, Z. Ultrasensitive determination of amoxicillin using chemiluminescence with flow injection analysis. Spectroscopy (Springf.), 2006, 20, 37-43.
[http://dx.doi.org/10.1155/2006/270417]
[134]
Alarfaj, N.A.; Abd El-Razeq, S.A. Flow-injection chemiluminescent determination of cefprozil using Tris (2,2′-bipyridyl) ruthenium (II)-permanganate system. J. Pharm. Biomed. Anal., 2006, 41(4), 1423-1427.
[http://dx.doi.org/10.1016/j.jpba.2006.03.011] [PMID: 16682164]
[135]
Sun, H.; Li, L. Flow-Injection chemiluminescence determination of fleroxacin in pharmaceutical preparations and human urine. J. Chromatograph. Separat. Techniq., 2010, 1, 1-5.
[http://dx.doi.org/10.4172/2157-7064.1000104]
[136]
Li, Y.; Li, Y.; Yang, Y. Flow-injection chemiluminescence determination of lisinopril using luminol-KMnO4 reaction catalyzed by silver nanoparticles. Appl. Spectrosc., 2011, 65(4), 376-381.
[http://dx.doi.org/10.1366/10-06115] [PMID: 21396183]
[137]
Abulkibash, A.M.S.; Fraihat, S.; El-Ali, B. Flow injection determination of vitamin C in pharmaceutical preparations by differential electrolytic potentiometry. J. Flow Injection Anal., 2009, 26, 121-125.
[138]
Qassim, B.B.; Omaish, H.S. Development of FIA system for the spectrophotometric determination of hydroquinone in pure material and pharmaceutical formulations. J. Chem. Pharm. Res., 2014, 6, 1548-1559.
[139]
Li, L.; Sun, H. A flow-injection chemiluminescence method for determination of cinchona alkaloids in pharmaceuticals and biological fluids. Anal. Methods, 2010, 2, 1270-1274.
[http://dx.doi.org/10.1039/c0ay00184h]
[140]
Zhao, L.; Lv, B.; Yuan, H.; Zhou, Z.; Xiao, D. A sensitive chemiluminescence method for determination of hydroquinone and catechol. Sensors (Basel), 2007, 7, 578-588.
[http://dx.doi.org/10.3390/s7040578]
[141]
Pinotsis, N.; Calokerinos, A.C.; Baeyens, W.R.G. Chemiluminometric determination of reserpine and related alkaloids. Analyst (Lond.), 2000, 125(7), 1307-1311.
[http://dx.doi.org/10.1039/b001430n] [PMID: 10984927]
[142]
Thongpoon, C.; Liawruangrath, B.; Liawruangrath, S.; Wheatley, R.A.; Townshend, A. Flow injection chemiluminescence determination of cefadroxil using potassium permanganate and formaldehyde system. J. Pharm. Biomed. Anal., 2006, 42(2), 277-282.
[http://dx.doi.org/10.1016/j.jpba.2006.03.001] [PMID: 16766156]
[143]
Wang, L-J.; Tang, Y-H.; Liu, Y-H. Flow injection chemiluminescence determination of loxoprofen and naproxen with the acidic permanganate-sulfite system. J. Pharm. Anal., 2011, 1(1), 51-56.
[http://dx.doi.org/10.1016/S2095-1779(11)70009-0] [PMID: 29403682]
[144]
Cao, W.; Gong, P.; Liu, W.; Zhuang, M.; Yang, J. A sensitive flow injection chemiluminescence method for the determination of progesterone. Drug Test. Anal., 2013, 5(4), 242-246.
[http://dx.doi.org/10.1002/dta.299] [PMID: 21671425]
[145]
Sun, Y.; Tang, Y.; Yao, H.; Zheng, X. Potassium permanganate-glyoxal chemiluminescence system for flow injection analysis of cephalosporin antibiotics: cefalexin, cefadroxil, and cefazolin sodium in pharmaceutical preparations. Talanta, 2004, 64(1), 156-159.
[http://dx.doi.org/10.1016/j.talanta.2004.02.012] [PMID: 18969582]
[146]
Li, Y.; Lu, J. Chemiluminescence flow-injection analysis of β-lactam antibiotics using the luminol-permanganate reaction. Luminescence, 2006, 21(4), 251-255.
[http://dx.doi.org/10.1002/bio.915] [PMID: 16791833]
[147]
Alarfaj, N.A. Flow-injection chemiluminescence determination of enalapril maleate in pharmaceuticals and biological fluids using tris(2,2′-bipyridyl)ruthenium(II). Anal. Sci., 2003, 19(8), 1145-1149.
[http://dx.doi.org/10.2116/analsci.19.1145] [PMID: 12945667]
[148]
Zhuang, Y.F.; Zhang, S.C.; Yu, J.S.; Ju, H.X. Flow injection determination of papaverine based on its sensitizing effect on the chemiluminescence reaction of permanganate-sulfite. Anal. Bioanal. Chem., 2003, 375(2), 281-286.
[http://dx.doi.org/10.1007/s00216-002-1651-x] [PMID: 12560974]
[149]
Wabaidur, S.M.; Alam, S.M.; Alothman, Z.A.; Siddiqui, M.R.; Naushad, M.; Alqadami, A.A. Flow-injection chemiluminescence method for the determination of moxifloxacin in pharmaceutical tablets and human urine using silver nanoparticles sensitized calcein-KMnO4 system. Bioprocess Biosyst. Eng., 2015, 38(9), 1803-1810.
[http://dx.doi.org/10.1007/s00449-015-1433-4] [PMID: 26104538]
[150]
Wabaidur, Sm.; Alam, S.M.; Alothman, Z.A.; Mohsin, K. Silver nanoparticles enhanced flow injection chemiluminescence determination of gatifloxacin in pharmaceutical formulation and spiked urine sample. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 144, 170-175.
[http://dx.doi.org/10.1016/j.saa.2015.02.051] [PMID: 25754393]
[151]
Cao, J.; Wang, H.; Liu, Y. Determination of L-thyroxine in pharmaceutical preparations by flow injection analysis with chemiluminescence detection based on the enhancement of the luminol-KMnO4 reaction in a micellar medium. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 140, 162-165.
[http://dx.doi.org/10.1016/j.saa.2014.12.105] [PMID: 25594210]
[152]
Kojło, A.; Michałowski, J.; Wołyniec, E. Chemiluminescence determination of thioridazine hydrochloride by flow-injection analysis. J. Pharm. Biomed. Anal., 2000, 22(1), 85-91.
[http://dx.doi.org/10.1016/S0731-7085(99)00270-8] [PMID: 10727126]
[153]
Cao, W.; Yang, J.H.; Sun, C.X.; Chen, Y.J.; Gao, Q.F. Flow injection-chemiluminescence determination of amoxycillin using potassium permanganate and formaldehyde system. Luminescence, 2005, 20(1), 20-24.
[http://dx.doi.org/10.1002/bio.796] [PMID: 15685663]
[154]
Kojło, A.; Michałowski, J.; Wołyniec, E. Chemiluminescence determination of thioridazine hydrochloride by flow-injection analysis. J. Pharm. Biomed. Anal., 2000, 22(1), 85-91.
[http://dx.doi.org/10.1016/S0731-7085(99)00270-8] [PMID: 10727126]
[155]
Fan, X.; Wang, S.; Su, Z.; Chen, F.; Liu, Y.; Liu, P.; Zheng, X.; Cui, F. Determination of cinnamic acid in human urine by flow injection chemiluminescence. Quim. Nova, 2011, 34, 1405-1408.
[http://dx.doi.org/10.1590/S0100-40422011000800020]
[156]
Almeida, M.G.J.; Teixeira, M.F.S.; Gomes, H.M. Spectrophotometric determination of acetazolamide using a flow injection system with KMnO4 reagent. Br. J. Anal. Chem., 2013, 9, 374-379.
[157]
Anastos, N.; Barnett, N.W.; Hindson, B.J.; Lenehan, C.E.; Lewis, S.W. Comparison of soluble manganese(IV) and acidic potassium permanganate chemiluminescence detection using flow injection and sequential injection analysis for the determination of ascorbic acid in Vitamin C tablets. Talanta, 2004, 64(1), 130-134.
[http://dx.doi.org/10.1016/j.talanta.2004.01.021] [PMID: 18969577]
[158]
Waseem, A.; Yaqoob, M.; Nabi, A. Flow-injection Chemiluminometric analysis of Thyroxine hormone in a KMnO4 – Na2SO3 System. J. Chin. Chem. Soc. (Taipei), 2007, 54, 1505-1510.
[http://dx.doi.org/10.1002/jccs.200700212]
[159]
Yi, L.; Zhao, H.; Chen, S.; Jin, L.; Zheng, D.; Wu, Z. Flow-injection analysis of two fluoquinolones by the sensitizing effect of terbium(III) on chemiluminescence of the potassium permanganate-sodium sulfite system. Talanta, 2003, 61(3), 403-409.
[http://dx.doi.org/10.1016/S0039-9140(03)00301-1] [PMID: 18969200]
[160]
Abolhasani, J.; Hassanzadeh, J. Potassium permanganate-acridine yellow chemiluminescence system for the determination of fluvoxamine, isoniazid and ceftriaxone. Luminescence, 2014, 29(8), 1053-1058.
[http://dx.doi.org/10.1002/bio.2659] [PMID: 24753178]
[161]
Zenki, M.; Fujiwara, S.; Yokoyama, T. Repetitive determination of chemical oxygen demand by cyclic flow injection analysis using on-line regeneration of consumed permanganate. Anal. Sci., 2006, 22(1), 77-80.
[http://dx.doi.org/10.2116/analsci.22.77] [PMID: 16429777]
[162]
Satienperakul, S.; Phongdong, P.; Liawaruangrath, S. Pervoparation flow injection analysis for the determination of sulphite in food samples utilizing potassium permanganate- rhodamine B chemiluminescence detection. Food Chem., 2010, 121, 893-898.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.013]
[163]
Crouch, S.R.; Scheeline, A.; Kirkor, E.S.; Kirkor, E.S. Kinetic determinations and some kinetic aspects of analytical chemistry. Anal. Chem., 2000, 72(12), 53R-70R.
[http://dx.doi.org/10.1021/a1000004b] [PMID: 10882197]
[164]
Bahram, M.; Afkhami, A. Recent Applications of kinetic methods in multi-component analysis. J. Iran. Chem. Soc., 2008, 5, 352-366.
[http://dx.doi.org/10.1007/BF03245989]
[165]
Pérez-Bendito, D.; Gómez-Hens, A.; Silva, M. Advances in drug analysis by kinetic methods. J. Pharm. Biomed. Anal., 1996, 14(8-10), 917-930.
[http://dx.doi.org/10.1016/0731-7085(95)01673-2] [PMID: 8817996]
[166]
Devi, O.Z.; Basavaiah, K.; Vinay, K.B. Application of potassium permanganate to spectrophotometric assay of metoclopramide hydrochloride in pharmaceuticals. J. Appl. Spectrosc., 2012, 78, 873-883.
[http://dx.doi.org/10.1007/s10812-012-9547-9]
[167]
Basavaiah, K.; Devi, O.Z.J. Application of oxidizing properties of permanganate to the determination of famotidine in pharmaceutical formulations. Mex. Chem. Soc., 2010, 54, 182-191.
[168]
El-Didamony, A.M.; Saad, M.Z.; El-Shaprawy, D.S. Direct and indirect spectrophotometric determination of some selected antibiotics using potassium permanganate. Main Group Chem., 2013, 12, 139-152.
[169]
Sitaram, B.; Rao, P.R.K.; Pavani, Y.; Pavani, P.; Sekaran, C.B. Spectrophotometric determination of ezetimibe with potassium permanganate in bulk and tablet dosage forms. RJPBCS, 2014, 5, 789-800.
[170]
Kalsang, T.; Kanakapura, B.; Nagaraju, R.; Basavaiah, V.K.; Ganeshbhat, H.S. Sensitive spectrophotometric assay of simvastatin in pharmaceuticals using permanganate. Braz. J. Pharm. Sci., 2010, 46, 91-98.
[http://dx.doi.org/10.1590/S1984-82502010000100010]
[171]
Kalsang, T.; Basavaiah, K.; Vinay, K.B. Spectrophotometric determination of furosemide in pharmaceuticals using permanganate. Jordan J. Chem., 2009, 4, 387-397.
[172]
Al Bratty, M. Visible spectrophotometric determination of chlorpheniramine maleate and diphenhydramine hydrochloride in raw and dosage form using potassium permanganate. Orient. J. Chem., 2016, 32, 885-894.
[http://dx.doi.org/10.13005/ojc/320214]
[173]
Kanakapura, B.; Rajendraprasad, N. Spectrophotometric assay of pioglitazone hydrochloride using permanganate in acidic and basic media. Curr. Chem. Lett., 2018, 7, 45-56.
[174]
Rajendraprasad, N.; Basavaiah, K. Determination of olanzapine by spectrophotometry using permanganate. Braz. J. Pharm. Sci., 2009, 45, 539-550.
[http://dx.doi.org/10.1590/S1984-82502009000300020]
[175]
Al-Neaimy, U.I.; Hamdon, E.A. The use of oxidation reaction for the spectrophotometric determination of ganciclovir in pharmaceutical formulations. Raf. J. Sci., 2012, 23, 93-104.
[176]
Vinay, K.B.; Revanasiddappa, H.D.; Shantala, P.R.; Basavaiah, K. Simple and sensitive titrimetric and spectrophotometric determination of enalapril maleate in pharmaceuticals using permanganate. Eurasian J. Anal. Chem., 2010, 5, 112-125.
[177]
Kumar, J.V.S.; Prasanthi, S.; Guravaiah, M.; Sekaran, C.B. Application of potassium permanganate to the spectrophotometric determination of oseltamivir phosphate in bulk and capsules. Asian J. Pharm. Clin. Res., 2012, 5, 18-22.
[178]
Omara, H.A. New spectrophotometric microdetermination of Meclizine HCl in pharmaceutical formulations and human plasma. IJAPBC, 2014, 3, 516-522.
[179]
Sharmin, N.; Shanta, N.S.; Bachar, S.C. Spectrophotometric analysis of azithromycin and its pharmaceutical dosage forms: comparison between spectrophotometry and HPLC. Dhaka Univ. J. Pharm. Sci., 2013, 12, 171-179.
[http://dx.doi.org/10.3329/dujps.v12i2.21981]
[180]
Devi, O.Z.; Basavaiah, K.; Vinay, K.B. Sensitive and selective spectrophotometric determination of pantoprazole sodium in pharmaceuticals using permanganate. CI&CEQ, 2010, 16, 97-102.
[http://dx.doi.org/10.2298/CICEQ091006015D]
[181]
Virupaxappa, B.S.; Shivaprasad, K.H.; Latha, M.S. Novel spectrophotometric method for the assay of Pitavastatin Calcium in pharmaceutical formulations. Der Chemica Sinica, 2011, 2, 1-5.
[182]
Haidar, O.I. Simple indirect spectrophotometric determination of amoxicillin in pharmaceutical preparations. J. Natural Sci. Res., 2015, 2, 42-146.
[183]
Sivakumar, R.; Nallasivan, P.; Saranya, K.; Sam, S.W.; Akelesh, T.; Venkatnarayanan, R. Visible spectrophotometric estimation of diacerein in bulk and pharmaceutical dosage forms. J. Young Pharm., 2010, 2(4), 414-416.
[http://dx.doi.org/10.4103/0975-1483.71631] [PMID: 21264105]
[184]
Al-Majed, A.A.; Belal, F.; Al-Warthan, A.A. Spectrophotometric determination of ramipril (a novel ace inhibitor) in dosage forms. Spectrosc. Lett., 2001, 34, 211-220.
[http://dx.doi.org/10.1081/SL-100002010]
[185]
Fadhel, D.H. Spectrophotometric determination of ascorbic acid in aqueous solutions. J. Al-Nahrain Univ., 2012, 15, 88-94.
[http://dx.doi.org/10.22401/JNUS.15.3.13]
[186]
Rahman, N.; Khan, N.A.; Azmi, S.N.H. Kinetic spectrophotometric method for the determination of silymarin in pharmaceutical formulations using potassium permanganate as oxidant. Pharmazie, 2004, 59(2), 112-116.
[PMID: 15025178]
[187]
Konidala, S.K. Spectrophotometric determination of eprosartan based on oxidation by acidic KMnO4 in bulk and dosage form. Anal. Chem. Lett., 2017, 7, 120-127.
[http://dx.doi.org/10.1080/22297928.2017.1279984]
[188]
Basavaiah, K.; Swamy, N.; Chandrashekar, U. Simple and sensitive spectrophotometric assay of isoniazid in pharmaceuticals using permanganate, methyl orange and indigo carmine as reagent. Acta Poloniae Pharmaceutica-. Drug Res. (Stuttg.), 2017, 74, 1353-1364.
[189]
Swamy, N.; Prashanth, K.N.; Basavaiah, K. Analytical utility of potassium permanganate for the assay of albendazole in bulk drug and pharmaceuticals. JRPS, 2015, 4, 12-23.
[190]
Gouda, A.A.; El-Sheikh, R.; El Shafey, Z.; Hossny, N.; El-Azzazy, R. Spectrophotometric determination of pipazethate HCl and dextromethorphan HBr using potassium permanganate. Int. J. Biomed. Sci., 2008, 4(4), 294-302.
[PMID: 23675101]
[191]
Bala, T.; Sallau, M.S.; Nuhu, A.A. One factor at a time optimization of spectrophotometric method for the determination of diclofenac in pharmaceutical preparations. Int. J. Sci. Technol, 2015, 5, 2.
[192]
Basavaiah, K.; Rajendraprasad, N.; Tharpa, K.; Anilkumar, U.R.; Hiriyanna, S.G.; Vinay, K.B. Titrimetric and spectrophotometric assay of pantoprazole in pharmaceuticals using permanganate. J. Mex. Chem. Soc., 2009, 53, 34-40.
[193]
Shama, S.A.; Amin, A.S.; Omara, H. Colorimetric microdetermination of captopril in pure form and in pharmaceutical formulations. J. Quant. Spectrosc. Radiat. Transf., 2006, 102, 261-268.
[http://dx.doi.org/10.1016/j.jqsrt.2006.02.012]
[194]
Baddenapalli, T.; Gandu, V. Oxidative spectrophotometric estimation of drugs using KMnO4 and methyl orange as dye. IJPSR, 2016, 7, 174-180.
[195]
Balusani, R.; Rao, S. Spectrophotometric determination of drugs and pharmaceuticals using kmno4 as oxidant and methyl orange dye as analytical reagent. Int. J. Pharma Bio Sci., 2016, 7, 254-264.
[196]
Prashanthi, M.; Venkateshwarlu, G. Spectrophotometric estimation of drugs using potassium permanganate and Saffranin-O dye couple. IOSR J. App. Chem., 2015, 8, 12-18.
[197]
Baddenapalli, T.; Gandu, V. Oxidative spectrophotometric determination of drugs using KMno4 and methyl orange as dye. World J. Pharm. Pharm. Sci., 2015, 4, 869-880.
[198]
Shama, S.A.; Amin, A.S.; Mabrouk, E.M.; Omara, H.A. Utility of oxidation–reduction reaction for the spectrophotometric determination of amlodipine besylate. Arab. J. Chem., 2009, 2, 59-63.
[http://dx.doi.org/10.1016/j.arabjc.2009.07.002]
[199]
Mohamed, H.A.; Khashaba, P.Y.; Shahin, R.Y. Spectrophotometric determination of some angiotensin converting enzyme inhibitors by potassium dichromate and potassium permanganate in tablet dosage form. Asian J. Biomed. Pharm. Sci., 2014, 4, 16-24.
[http://dx.doi.org/10.15272/ajbps.v4i39.642]
[200]
El-Didamony, A.M.; Amin, A.S.; Ghoneim, A.K.; Telebany, A.M. Indirect spectrophotometric determination of gentamicin and vancomycin antibiotics based on their oxidation by potassium permanganate. CEJC, 2006, 4, 708-722.
[http://dx.doi.org/10.2478/s11532-006-0035-z]
[201]
Shama, S.A.; Amin, A.S.; Omara, H. Spectrophotometry microdetermination of some antihypertensive drugs in pure form and in pharmaceutical formulations. J. Chil. Chem. Soc., 2011, 56, 566-570.
[http://dx.doi.org/10.4067/S0717-97072011000100009]
[202]
El-Didamony, A.M.; Saad, M.Z.; Saleem, N.O. Determination of tramadol, morphine, nalbuphine and naltrexone analgesic drugs using potassium permanganate by visible spectrophotometry. Main Group Chem., 2014, 13, 175-186.
[203]
Sebaiy, M.M.; El-Henawee, M.M.; Abdellatef, H.E.; Alshuwaili, M.K. Introducing FDA validation guidelines for the spectrophotometric determination of olopatadine hydrochloride in pure form and eye drops. Der Pharmacia Lett., 2018, 10, 45-57.
[204]
Murthy, T.K.; Reddy, M.N.; Dagger, M.D.R.; Sankar, D.G. Spectrophotometric determination of flutamide, nimesulide and meloxicam. Asian J. Chem., 2001, 13, 915-918.
[205]
Hassan, E.M.; Belal, F. Kinetic spectrophotometric determination of nizatidine and ranitidine in pharmaceutical preparations. J. Pharm. Biomed. Anal., 2002, 27(1-2), 31-38.
[http://dx.doi.org/10.1016/S0731-7085(01)00473-3] [PMID: 11682208]
[206]
Hassan, M.; Abeed, F.A.; Saif, B. A New Kinetic spectrophotometric method for determination of cefadroxil in pharmaceutical formulations using Lawsonia inermis (Henna) as Natural Reagent. Adv. Biol. Chem., 2014, 4, 116-128.
[http://dx.doi.org/10.4236/abc.2014.42016]
[207]
Rahman, N.; Bano, Z.; Azmi, S.N.H.; Kashif, M. A kinetic spectrophotometric method for the determination of lansoprazole in pharmaceutical formulations. J. Serb. Chem. Soc., 2006, 71, 1107-1120.
[http://dx.doi.org/10.2298/JSC0610107R]
[208]
Al-Tamimi, S.A.; Aly, F.A.; Almutairi, A.M. Kinetic spectrophotometric methods for the determination of alfuzosin hydrochloride in bulk and pharmaceutical formulations. J. Anal. Chem., 2013, 68, 340-347.
[http://dx.doi.org/10.1134/S1061934813040102]
[209]
Ahamed, A.M.K.; Khaleel, A.I.; Amine, S.T. Determination of ranitidine - HCl in pharmaceutical formulations by kinetic spectrophotometric and flow injection - activated chemiluminescence methods. New J. Chem., 2006, 24, 534-550.
[210]
Khan, A.A.P.; Ayaz, M.; Shaista, B.; Siddiqi, K.S.; Asiri, A.M. Spectrophotometric methods for the determination of ampicillin by potassium permanganate and 1-chloro-2,4-dinitrobenzene in pharmaceutical preparations. Arab. J. Chem., 2015, 8, 255-263.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.033]
[211]
Rizk, M.; Belal, F.; Ibrahim, F.; Ahmed, S.M.; El-Enany, N.M. A simple kinetic spectrophotometric method for the determination of oxamniquine in formulations and spiked biological fluids. J. Pharm. Biomed. Anal., 2000, 23(2-3), 503-513.
[http://dx.doi.org/10.1016/S0731-7085(00)00320-4] [PMID: 10933544]
[212]
Soto, C.; Poza, C.; Contreras, D.; Yáñez, J.; Nacaratte, F.; Toral, M.I. A new kinetic spectrophotometric method for the quantitation of amorolfine.J. Anal. Meth. Chem,; , 2017., Article ID 9812894, 8 pages., .
[http://dx.doi.org/10.1155/2017/9812894]
[213]
Walash, M.I.; El-Brashy, A.M.; Metwally, M.S.; Abdelal, A.A. Spectrophotometric and kinetic determination of some sulphur containing drugs in bulk and drug formulations. Bull. Korean Chem. Soc., 2004, 25, 517-524.
[http://dx.doi.org/10.5012/bkcs.2004.25.4.517]
[214]
Rahman, N.; Rahman, H.; Azmi, S.N.H. Validated kinetic spectrophotometric method for the determination of metoprolol tartrate in pharmaceutical formulations. Chem. Pharm. Bull. (Tokyo), 2005, 53(8), 942-948.
[http://dx.doi.org/10.1248/cpb.53.942] [PMID: 16079525]
[215]
Rahman, N.; Anwar, N.; Kashif, M.; Hoda, M.N.; Rahman, H. Determination of labetalol hydrochloride by kinetic spectrophotometry using potassium permanganate as oxidant. J. Mex. Chem. Soc., 2011, 55, 105-112.
[216]
Kumar, A.; Kishore, L.; Nair, A.; Navpreet, K. Kinetic spectrophotometric method for the estimation of cefixime in pharmaceutical formulations. Pharma. Chem., 2011, 3, 279-291.
[217]
Rahman, N.; Kashif, M. Kinetic spectrophotometric determination of famotidine in commercial dosage forms. Anal. Sci., 2003, 19(6), 907-911.
[http://dx.doi.org/10.2116/analsci.19.907] [PMID: 12834233]
[218]
Al-Abachi, M.Q.; Abdul Sattar, J.A. Kinetic spectrophotometric methods for the determination of amoxicillin in pharmaceutical preparation. Iraqi J. Sci., 2012, 53, 8-16.
[219]
Reddy, K.D.; Sayanna, K.; Venkateshwarlu, G. Kinetic spectrophotometric determination of drugs based on oxidation by alkaline KMnO4. IOSR J. Appl. Chem. (IOSR-JAC),, 2014, 6,, 8-14..
[http://dx.doi.org/10.9790/5736-0660814]
[220]
Rahman, N.; Ahmad, Y.; Hejaz Azmi, S.N. Kinetic spectrophotometric method for the determination of norfloxacin in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2004, 57(2), 359-367.
[http://dx.doi.org/10.1016/S0939-6411(03)00192-9] [PMID: 15018997]
[221]
Omar, M.A.; Abdelmageed, O.H.; Attia, T.Z. Kinetic spectrophotometric determination of certain cephalosporins in pharmaceutical formulationsInt. J. Anal. Chem,; , 2009., Article ID 596379, 12 pages., .
[222]
Darwish, I.; Sultan, M.A.; Al-Arfaj, H.A. Kinetic spectrophotometric method for determination of ciprofloxacin and lomefloxacin in their pharmaceutical dosage forms. Int. J. Res. Pharm. Sci., 2010, 1, 43-50.
[223]
Abdel Wahed, M.G.; El Sheikh, R.; Ayman, A.G.; Taleb, S.A. Kinetic spectrophotometric determination of some fluoroquinolone antibiotics in bulk and pharmaceutical preparations. Bull. Chem. Soc. Ethiop., 2013, 27, 329-346.
[http://dx.doi.org/10.4314/bcse.v27i3.2]
[224]
Saif, B.N.; Hassan, M.; Abeed, F.A. New kinetic spectrophotometric method for determination of cefixime in pharmaceutical preparations using saffron extract as natural reagent. IJPRBS, 2013, 2, 328-349.
[225]
Rahman, N.; Rahman, H.; Haque, S.M. Kinetic spectrophotometric method for the determination of perindopril erbumine in pure and commercial dosage forms. Arab. J. Chem., 2017, 10, S831-S838.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.017]
[226]
Walash, M.I.; El Din, M.K.S.; El Sayed, M.M.; Shabana, M.R. Kinetic spectrophotometric determination of famotidine in pharmaceutical preparations. J. Chin. Chem. Soc. (Taipei), 2005, 52, 71-76.
[http://dx.doi.org/10.1002/jccs.200500011]
[227]
Ibrahim, F.A.; Ali, F.A.; Ahmed, S.M.; Tolba, M.M. Kinetic determination of acarbose and miglitol in bulk and pharmaceutical formulations using alkaline potassium permanganate. Int. J. Biomed. Sci., 2007, 3(1), 20-30.
[PMID: 23675017]
[228]
Taha, E.A. Kinetic spectrophotometric methods for the determination of dothiepin hydrochloride in bulk and in drug formulation. Anal. Bioanal. Chem., 2003, 376(7), 1131-1136.
[http://dx.doi.org/10.1007/s00216-003-2040-9] [PMID: 12856096]
[229]
Rahman, N.; Rahman, H.; Azmi, S.N.H. Kinetic spectrophotometric determination of ramipril in commercial dosage forms. WASET- International Journal of Chemical, Molecular, Nuclear. Mat. Metallurg. Eng., 2008, 2, 27-33.
[230]
Darwish, I.A. Kinetic spectrophotometric assays for determination of trimetazidine dihydrochloride. Anal. Chim. Acta, 2005, 551, 222-231.
[http://dx.doi.org/10.1016/j.aca.2005.07.027]
[231]
El-Didamony, A.M.; Saad, M.Z.; Ramadan, G.M. Kinetic spectrophotometric determination of β-adrenergic antagonists using alkaline potassium permanganate. Main Group Chem., 2012, 11, 245-258.
[232]
El-Brashy, A.M.; Sheribah, Z.A.; Sharaf El-Din, M.K.; El-Gamal, R.M. Kinetic determination of ribavirin in drug formulations. Int. J. Biomed. Sci., 2007, 3(1), 65-71.
[PMID: 23675024]
[233]
Ratemi, E.; Haque, S.K.M.; Rahman, H. Development of a validated initial rate method for the assay of gliclazide in drug formulations. Pharma Chem., 2016, 8, 94-102.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy