[1]
Bu, H.; Hao, J.; Guan, J.; Zhou, S. Predicting enhancers from multiple cell lines and tissues across different developmental stages based on SVM method. Curr. Bioinform., 2018, 13(6), 655-660.
[2]
Khashei, M.; Bijari, M. An artificial neural network (p, d, q) model for time series forecasting. Expert Syst. Appl., 2010, 37(1), 479-489.
[3]
Cerqueira, V.; Torgo, L.; Pinto, F.; Soares, C. Arbitrated ensemble for time series forecasting. Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics., 2018, 10535, 478-494.
[4]
Oliveira, M.; Torgo, L. Ensembles for time series forecasting., 2014.
[5]
Wang, H.; Fan, W.; Sun, F.; Qian, X. An adaptive ensemble model of extreme learning machine for time series prediction. 12th Int. Computer Conf. Wavelet Active Media Technol. Informat. Processing, ICCWAMTIP . 2015, pp. 80-85.
[6]
Mandal, B.; Puhan, N.; Verma, A. Deep convolutional generative adversarial network based food recognition using partially labeled data. IEEE Sensors Lett., 2018, 3(2), 1-4.
[7]
Sur, D.; Ali, M.Von; Seidlein, L.; Manna, B.; Deen, J.L.; Acosta, C.J.; Bhattacharya, S.K. Comparisons of predictors for typhoid and paratyphoid fever in Kolkata, India. BMC Public Health, 2007, 7, 1-10.
[8]
Bhatnagar, S.; Lal, V.; Gupta, S.D.; Gupta, O.P. Forecasting incidence of dengue in Rajasthan, using time series analyses. Indian J. Public Health, 2012, 56(4), 281-285.
[9]
Zhang, Y.; Wang, T.; Liu, K.; Xia, Y.; Lu, Y.; Jing, Q.; Yang, Z.; Hu, W.; Lu, J. Developing a time series predictive model for dengue in Zhongshan, China based on weather and Guangzhou Dengue surveillance data. PLoS Negl. Trop. Dis., 2016, 10(2)e0004473
[10]
Buczak, A.L.; Baugher, B.; Moniz, L.J.; Bagley, T.; Babin, S.M.; Guven, E. Ensemble method for dengue prediction. PLoS One, 2018, 13(1)e0189988
[11]
Yamana, T.K.; Kandula, S.; Shaman, J. Super ensemble forecasts of dengue outbreaks. J. R. Soc. Interface, 2016, 13(123)20160410
[12]
Zhang, X.; Zhang, T.; Young, A.A.; Li, X. Applications and comparisons of four-time series models in epidemiological surveillance data. PLoS One, 2014, 9(2)e88075
[13]
Dietterich, T.G. Ensemble methods in machine learning; Oregon State University Corvallis Oregon USA, 2007, pp. 1-15.
[14]
Agrawal, R.K. An introductory study on time series modeling and
forecasting. arXiv Preprint arXiv:1302.6613,, 2013, 1-68.
[15]
Ramos, D.; Hervás, F.; Gámez, C. Simple and low-cost procedure for monthly and yearly stream flow forecasts during the current hydrological year. Water (Switzerland), 2014, 10(8), 2018.