摘要
背景:可注射水凝胶是一种基于生物材料的热响应系统。可注射水凝胶主要作为包括药物、蛋白质、细胞和生物活性分子在内的治疗药物的载体或支架被广泛研究,用于治疗癌症等疾病以及组织的修复和再生。 结果:有几项研究描述了水凝胶的多种特征。然而,在水凝胶的应用中打破常规的主要方面是它们的热响应性,即它们的性质会因温度的微小变化而发生突变。因此,具有溶胶-凝胶转变特性的热响应型水凝胶在过去几十年中受到了特别的关注。这些水凝胶在接近人体生理温度时出现相变。这一特性是将其应用于与人类健康相关的研究领域的关键。 结论:本研究的目的是概述可注射水凝胶及其在医学应用方面的最新进展,包括生物活性化合物给药、组织工程和再生医学。
关键词: 热响应水凝胶,可注射水凝胶,生物材料,溶胶-凝胶转变,药物传递,组织工程,再生医学
[1]
Hilmi, B.; Hamid, Z.A.; Akil, H.M.; Yahaya, B.H. The characteristics of the smart polymeras temperature or PH-responsive hydrogel. Procedia Chem., 2016, 19, 406-409.
[http://dx.doi.org/10.1016/j.proche.2016.03.031]
[http://dx.doi.org/10.1016/j.proche.2016.03.031]
[2]
Vishnubhakthula, S.; Elupula, R.; Durán-Lara, E.F. Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: A mini review. J. Drug Deliv., 2017.20177275985
[http://dx.doi.org/10.1155/2017/7275985 ] [PMID: 28852576]
[http://dx.doi.org/10.1155/2017/7275985 ] [PMID: 28852576]
[3]
Nguyen, Q.V.; Huynh, D.P.; Park, J.H.; Lee, D.S. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur. Polym. J., 2015, 72, 602-619.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.016]
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.016]
[4]
Ahmed, E.M. Hydrogel: preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006 ] [PMID: 25750745]
[http://dx.doi.org/10.1016/j.jare.2013.07.006 ] [PMID: 25750745]
[5]
Rwei, S.P.; Tuan, H.N.A.; Chiang, W.Y.; Way, T.F. Synthesis and characterization of pH and thermo dual-responsive hydrogels with a semi-IPN structure based on N-Isopropylacrylamide and Itaconamic Acid. Materials (Basel), 2018, 11(5), 696.
[http://dx.doi.org/10.3390/ma11050696 ] [PMID: 29710793]
[http://dx.doi.org/10.3390/ma11050696 ] [PMID: 29710793]
[6]
Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[7]
Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep., 2015, 93, 1-49.
[http://dx.doi.org/10.1016/j.mser.2015.04.001 ] [PMID: 27134415]
[http://dx.doi.org/10.1016/j.mser.2015.04.001 ] [PMID: 27134415]
[8]
Willner, I. Stimuli-controlled hydrogels and their applications. Acc. Chem. Res., 2017, 50(4), 657-658.
[http://dx.doi.org/10.1021/acs.accounts.7b00142 ] [PMID: 28415844]
[http://dx.doi.org/10.1021/acs.accounts.7b00142 ] [PMID: 28415844]
[9]
Bukhari, S.M.H.; Khan, S.; Rehanullah, M.; Ranjha, N.M. Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int. J. Polym. Sci., 2015, (4), 1-15.
[http://dx.doi.org/10.1155/2015/187961]
[http://dx.doi.org/10.1155/2015/187961]
[10]
Deen, G.R.; Loh, X.J. Stimuli-responsive cationic hydrogels in drug delivery applications. Gels, 2018, 4(1), 13.
[http://dx.doi.org/10.3390/gels4010013 ] [PMID: 30674789]
[http://dx.doi.org/10.3390/gels4010013 ] [PMID: 30674789]
[11]
Seo, J.Y.; Lee, B.; Kang, T.W.; Noh, J.H.; Kim, M.J.; Ji, Y.B.; Ju, H.J.; Min, B.H.; Kim, M.S. Electrostatically inter-active injectable hydrogels for drug delivery. Tissue engi-neering and regenerative medicine. Tissue Eng. Regen. Med., 2018, 15(5), 513-520.
[http://dx.doi.org/10.1007/s13770-018-0146-6 ] [PMID: 30603575]
[http://dx.doi.org/10.1007/s13770-018-0146-6 ] [PMID: 30603575]
[12]
Yu, Y.; Chang, X.; Ning, H.; Zhang, S. Synthesis and characterization of thermoresponsive hydrogels cross-linked with chitosan. Cent. Eur. J. Chem., 2008, 6(1), 107-113.
[13]
Jalani, G.; Rosenzweig, D.H.; Makhoul, G.; Abdalla, S.; Cecere, R.; Vetrone, F.; Haglund, L.; Cerruti, M. Tough, in-situ thermogelling, injectable hydrogels for biomedical applications. Macromol. Biosci., 2015, 15(4), 473-480.
[http://dx.doi.org/10.1002/mabi.201400406 ] [PMID: 25557500]
[http://dx.doi.org/10.1002/mabi.201400406 ] [PMID: 25557500]
[14]
Dimatteo, R.; Darling, N.J.; Segura, T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev., 2018, 127, 167-184.
[http://dx.doi.org/10.1016/j.addr.2018.03.007 ] [PMID: 29567395]
[http://dx.doi.org/10.1016/j.addr.2018.03.007 ] [PMID: 29567395]
[15]
Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res., 2017, 5, 17014.
[http://dx.doi.org/10.1038/boneres.2017.14 ] [PMID: 28584674]
[http://dx.doi.org/10.1038/boneres.2017.14 ] [PMID: 28584674]
[16]
Yang, J.A.; Yeom, J.; Hwang, B.W.; Hoffman, A.S.; Hahn, S.K. In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci., 2014, 39(12), 1973-1986.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006]
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006]
[17]
Tang, S.; Floy, M.; Bhandari, R.; Sunkara, M.; Morris, A.J.; Dziubla, T.D.; Hilt, J.Z. Synthesis and characterization of thermoresponsive hydrogels based on N-isopro-pylacrylamide crosslinked with 4,4′-dihydroxybiphenyl diacrylate. ACS Omega, 2017, 2(12), 8723-8729.
[http://dx.doi.org/10.1021/acsomega.7b01247 ] [PMID: 29302630]
[http://dx.doi.org/10.1021/acsomega.7b01247 ] [PMID: 29302630]
[18]
Yeh, M.Y.; Zhao, J.Y.; Hsieh, Y.R.; Lin, J.H.; Chen, F.Y.; Chakravarthy, R.D.; Chung, P.C.; Lin, H.C.; Hung, S.C. (Reverse thermo-responsive hydrogels prepared from Plu-ronic F127 and gelatin composite materials. RSC Advances, 2017, 7, 21252-21257.
[http://dx.doi.org/10.1039/C7RA01118K]
[http://dx.doi.org/10.1039/C7RA01118K]
[19]
El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 316-342.
[http://dx.doi.org/10.5339/gcsp.2013.38 ] [PMID: 24689032]
[http://dx.doi.org/10.5339/gcsp.2013.38 ] [PMID: 24689032]
[20]
Cohn, D.; Sosnik, A.; Levy, A. Improved reverse thermo-responsive polymeric systems. Biomaterials, 2003, 24(21), 3707-3714.
[http://dx.doi.org/10.1016/S0142-9612(03)00245-X ] [PMID: 12818542]
[http://dx.doi.org/10.1016/S0142-9612(03)00245-X ] [PMID: 12818542]
[21]
Thambi, T.; Li, Y.; Lee, D.S. Injectable hydrogels for sustained release of therapeutic agents. J. Control. Release, 2017, 267, 57-66.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.006 ] [PMID: 28827094]
[http://dx.doi.org/10.1016/j.jconrel.2017.08.006 ] [PMID: 28827094]
[22]
Teotia, A.K.; Sami, H.; Kumar, A. Thermo-responsive polymers: structure and design of smart materials in: Switchable and Responsive Surfaces and Materials for Biomedical Applications; Zhang, Z., Ed.; Woodhead Publishing: Oxford, 2015, pp. 299-306.
[http://dx.doi.org/10.1016/B978-0-85709-713-2.00001-8]
[http://dx.doi.org/10.1016/B978-0-85709-713-2.00001-8]
[23]
Klouda, L.; Perkins, K.R.; Watson, B.M.; Hacker, M.C.; Bryant, S.J.; Raphael, R.M.; Kasper, F.K.; Mikos, A.G. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater., 2011, 7(4), 1460-1467.
[http://dx.doi.org/10.1016/j.actbio.2010.12.027 ] [PMID: 21187170]
[http://dx.doi.org/10.1016/j.actbio.2010.12.027 ] [PMID: 21187170]
[24]
Gandhi, A.; Paul, A.; Sen, S.O.; Sen, K.K. Studies on ther-moresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J. Pharm., 2015, 10, 99-107.
[25]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, K. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2018, 33(11), 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[26]
Cho, J.K.; Hong, K.Y.; Park, J.W.; Yang, H.K.; Song, S.C. Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. J. Drug Target., 2011, 19(4), 270-280.
[http://dx.doi.org/10.3109/1061186X.2010.499461 ] [PMID: 20608785]
[http://dx.doi.org/10.3109/1061186X.2010.499461 ] [PMID: 20608785]
[27]
Chatterjee, S.; Hui, P.C.; Kan, C. Thermoresponsive hydrogels and their biomedical applications: special insight into their applications in textile based transdermal therapy. Polymers , 2018, 10(5), 1-25.
[http://dx.doi.org/10.3390/polym10050480]]
[http://dx.doi.org/10.3390/polym10050480]]
[28]
Sá-Lima, H.; Caridade, S.G.; Mano, J.F.; Reis, R.L. Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 2010, 6, 5184-5195.
[http://dx.doi.org/10.1039/c0sm00041h]
[http://dx.doi.org/10.1039/c0sm00041h]
[29]
Li, Y.; Meng, H.; Liu, Y.; Lee, B.P. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal, 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/685690] [PMID: 25853146]
[http://dx.doi.org/10.1155/2015/685690] [PMID: 25853146]
[30]
Molinos, M.; Carvalho, V.; Silva, D.M.; Gama, F.M. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system. Biomacromolecules, 2012, 13(2), 517-527.
[http://dx.doi.org/10.1021/bm2015834 ] [PMID: 22288730]
[http://dx.doi.org/10.1021/bm2015834 ] [PMID: 22288730]
[31]
Xing, R.; Li, S.; Zhang, N.; Shen, G.; Möhwald, H.; Yan, X. Self-assembled injectable peptide hydrogels capable of trig-gering antitumor immune response. Biomacromolecules, 2017, 18(11), 3514-3523.
[http://dx.doi.org/10.1021/acs.biomac.7b00787 ] [PMID: 28721731]
[http://dx.doi.org/10.1021/acs.biomac.7b00787 ] [PMID: 28721731]
[32]
Bakaic, E.; Smeets, N.B.S.; Hoare, T. Injectable hydrogels based on poly (ethylene glycol) and derivatives as functional biomaterials. RCS Adv., 2015, 5, 35469-35486.
[http://dx.doi.org/10.1039/C4RA13581D]
[http://dx.doi.org/10.1039/C4RA13581D]
[33]
Cho, S.H.; Lim, S.M.; Han, D.K.; Yuk, S.H. Im, G.I.; Lee, J.H. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. J. Biomater. Sci. Polym. Ed., 2009, 20(7-8), 863-876.
[http://dx.doi.org/10.1163/156856209X444312 ] [PMID: 19454157]
[http://dx.doi.org/10.1163/156856209X444312 ] [PMID: 19454157]
[34]
Zhang, K.; Shi, X.; Lin, X.; Yao, C.; Shen, L.; Feng, Y. Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv., 2015, 22(3), 375-382.
[http://dx.doi.org/10.3109/10717544.2014.891272 ] [PMID: 24601854]
[http://dx.doi.org/10.3109/10717544.2014.891272 ] [PMID: 24601854]
[35]
Boonlai, W.; Tantishaiyakul, V.; Hirun, N.; Sangfai, T.; Suknuntha, K. Thermosensitive poloxamer 407/poly (acrylic acid) hydrogels with potential application as injectable drug delivery system. AAPS PharmSciTech, 2018, 19(5), 2103-2117.
[http://dx.doi.org/10.1208/s12249-018-1010-7 ] [PMID: 29696613]
[http://dx.doi.org/10.1208/s12249-018-1010-7 ] [PMID: 29696613]
[36]
Alexander, A. Ajazuddin; Khan, J.; Saraf, S.; Saraf, S. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J. Control. Release, 2013, 172(3), 715-729.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.006 ] [PMID: 24144918]
[http://dx.doi.org/10.1016/j.jconrel.2013.10.006 ] [PMID: 24144918]
[37]
Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci., 2014, 15(3), 3640-3659.
[http://dx.doi.org/10.3390/ijms15033640 ] [PMID: 24590126]
[http://dx.doi.org/10.3390/ijms15033640 ] [PMID: 24590126]
[38]
Poudel, A.J.; He, F.; Huang, L.; Xiao, L.; Yang, G. Supramolecular hydrogels based on poly (ethylene glycol)-poly (lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system. Carbohydr. Polym., 2018, 194, 69-79.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.035 ] [PMID: 29801860]
[http://dx.doi.org/10.1016/j.carbpol.2018.04.035 ] [PMID: 29801860]
[39]
Hruschka, V.; Saeed, A.; Slezak, P.; Cheikh Al Ghanami, R.; Feichtinger, G.A.; Alexander, C.; Redl, H.; Shakesheff, K.; Wolbank, S. Evaluation of a thermoresponsive polycaprolactone scaffold for in vitro three-dimensional stem cell differentiation. Tissue Eng. Part A, 2015, 21(1-2), 310-319.
[http://dx.doi.org/10.1089/ten.tea.2013.0710 ] [PMID: 25167885]
[http://dx.doi.org/10.1089/ten.tea.2013.0710 ] [PMID: 25167885]
[40]
Zhao, X.; Li, P.; Guo, B.; Ma, P.X. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater., 2015, 26, 236-248.
[http://dx.doi.org/10.1016/j.actbio.2015.08.006 ] [PMID: 26272777]
[http://dx.doi.org/10.1016/j.actbio.2015.08.006 ] [PMID: 26272777]
[41]
Yan, S.; Wang, T.; Li, X.; Jian, Y.; Zhang, K.; Li, G.; Yin, J. Fabrication of injectable hydrogels based on poly (l-glutamic acid) and chitosan. RSC Advances, 2017, 7, 17005-17019.
[http://dx.doi.org/10.1039/C7RA01864A]
[http://dx.doi.org/10.1039/C7RA01864A]
[42]
Baghaei, S.; Khorasani, M.T. Preparation and characteriza-tion of a thermal responsive of poly(N-isopropylacrylamide)/chitosan/gelatin hydrogels. Biomat. Biomed. Eng. (N.Y.), 2014, 1(2), 105-116.
[43]
Lee, J.H. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res., 2018, 22, 27.
[http://dx.doi.org/10.1186/s40824-018-0138-6 ] [PMID: 30275970]
[http://dx.doi.org/10.1186/s40824-018-0138-6 ] [PMID: 30275970]
[44]
Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Duraivel, S.; Kumar, K.S.P. Controlled release drug delivery systems. Pharma Innovation Journal, 2012, 1, 24-32.
[45]
Neeves, K. Delivery from Hydrogels. Student Guide. Cornell Science Inquiry Partnerships. Available at https://pdfs.semanticscholar.org/2293/4b4a218618139c4166dc153f90241b126dcd.pdf2019 (Accessed Date: October, 2018)
[46]
Ummadi, S.; Shravani, B.; Rao, N.R.R.; Reddy, M.S.; Nayak, B.S. Overview on controlled release dosage form. Int. J. Pharma Sci., 2013, 3(4), 258-269.
[47]
Norouzi, M.; Nazari, B.; Miller, D.W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today, 2016, 21(11), 1835-1849.
[http://dx.doi.org/10.1016/j.drudis.2016.07.006 ] [PMID: 27423369]
[http://dx.doi.org/10.1016/j.drudis.2016.07.006 ] [PMID: 27423369]
[48]
Zhou, M.; Liu, K.; Qian, X. A facile preparation of p H temperature dual stimuli‐responsive supramolecular hydrogel and its controllable drug release. J. Appl. Polym. Sci., 2016, 133(15), 43279.
[http://dx.doi.org/10.1002/app.43279]
[http://dx.doi.org/10.1002/app.43279]
[49]
Pertici, V.; Pin-Barre, C.; Rivera, C.; Pellegrino, C.; Laurin, J.; Gigmes, D.; Trimaille, T. Degradable and injectable hydrogel for drug delivery in soft tissues. Biomacromolecules, 2019, 20(1), 149-163.
[http://dx.doi.org/10.1021/acs.biomac.8b01242 ] [PMID: 30376309]
[http://dx.doi.org/10.1021/acs.biomac.8b01242 ] [PMID: 30376309]
[50]
Huynh, D.P.; Nguyen, M.K.; Pi, B.S.; Kim, M.S.; Chae, S.Y.; Lee, K.C.; Kim, B.S. Kim, Sung, W.; Lee, D.S. Biomaterials, 2008, 29(16), 2527-2534.
[http://dx.doi.org/10.1016/j.biomaterials.2008.02.016 ] [PMID: 18329707]
[http://dx.doi.org/10.1016/j.biomaterials.2008.02.016 ] [PMID: 18329707]
[51]
Li, C.; Wang, K.; Zhou, X.; Li, T.; Xu, Y.; Qiang, L.; Peng, M.; Xu, Y.; Xie, L.; He, C.; Wang, B.; Wang, J. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Biomed. Mater., 2019, 14(2)025006
[http://dx.doi.org/10.1088/1748-605X/aaf8ed ] [PMID: 30557856]
[http://dx.doi.org/10.1088/1748-605X/aaf8ed ] [PMID: 30557856]
[52]
Gilarska, A.; Lewandowska-Łańcucka, J.; Horak, W.; Nowakowska, M. Collagen/chitosan/hyaluronic acid - based injectable hydrogels for tissue engineering applications - design, physicochemical and biological characterization. Colloids Surf. B Biointerfaces, 2018, 170, 152-162.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.004 ] [PMID: 29902729]
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.004 ] [PMID: 29902729]
[53]
Qu, J.; Zhao, X.; Liang, Y.; Xu, Y.; Ma, P.X.; Guo, B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem. Eng. J., 2019, 362, 548-560.
[http://dx.doi.org/10.1016/j.cej.2019.01.028]
[http://dx.doi.org/10.1016/j.cej.2019.01.028]
[54]
Lv, X.; Liu, Y.; Song, S.; Tong, C.; Shi, X.; Zhao, Y.; Zhang, J.; Hou, M. Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes. Carbohydr. Polym., 2019, 205, 312-321.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.067 ] [PMID: 30446110]
[http://dx.doi.org/10.1016/j.carbpol.2018.10.067 ] [PMID: 30446110]
[55]
Chen, X.; Fu, W.; Cao, X.; Jiang, H.; Che, X.; Xu, X.; Ma, B.; Zhang, J. Peptide SIKVAV-modified chitosan hydrogels promote skin wound healing by accelerating angiogenesis and regulating cytokine secretion. Am. J. Transl. Res., 2018, 10(12), 4258-4268.
[PMID: 30662668]
[PMID: 30662668]
[56]
Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183, 185-199.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.044 ] [PMID: 30172244]
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.044 ] [PMID: 30172244]
[57]
Tong, X. F.; Zhao, F. Q.; Ren, Y. Z.; Zhang, Y.; Cui, Y. L.; Wang, Q. S. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J. Biomed. Mater. Res., 2018, 106(2), 3292-3302.
[http://dx.doi.org/10.1002/jbm.a.36528 ] [PMID: 30242952]
[http://dx.doi.org/10.1002/jbm.a.36528 ] [PMID: 30242952]
[58]
Yan, S.; Wang, W.; Li, X.; Ren, J.; Yun, W.; Zhang, K.; Li, G.; Yin, J. Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(40), 6377-6390.
[http://dx.doi.org/10.1039/C8TB01928B ] [PMID: 32254646]
[http://dx.doi.org/10.1039/C8TB01928B ] [PMID: 32254646]
[59]
Shaghiera, A.D.; Widiyanti, P.; Yusuf, H. Synthesis and characterization of injectable hydrogels with varying colla-gen-chitosan-thymosin β4 composition for myocardial infarc-tion therapy. J. Funct. Biomater., 2018, 9(2), 33.
[http://dx.doi.org/10.3390/jfb9020033 ] [PMID: 29710844]
[http://dx.doi.org/10.3390/jfb9020033 ] [PMID: 29710844]
[60]
Hou, S.; Lake, R.; Park, S.; Edwards, S.; Jones, C.; Jeong, K.J. Injectable macroporous hydrogel formed by enzymatic cross-linking of gelatin microgels. ACS Appl Bio Mater, 2018, 1(5), 1430-1439.
[http://dx.doi.org/10.1021/acsabm.8b00380 ] [PMID: 31701093]
[http://dx.doi.org/10.1021/acsabm.8b00380 ] [PMID: 31701093]
[61]
Liu, Y.; Cheong Ng, S.; Yu, J.; Tsai, W.B. Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf. B Biointerfaces, 2019, 174, 316-323.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.077 ] [PMID: 30472617]
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.077 ] [PMID: 30472617]
[62]
Dong, Y.; Rodrigues, M.; Kwon, S.H.; Li, X. A, S.; Brett, E.A.; Elvassore, N.; Wang, W.; Gurtner, G.C. Acceleration of diabetic wound regeneration using an in situ-formed stem-cell-based skin substitute. Adv. Healthc. Mater., 2018, 7(17),e1800432.
[http://dx.doi.org/10.1002/adhm.201800432 ] [PMID: 30004192]
[http://dx.doi.org/10.1002/adhm.201800432 ] [PMID: 30004192]
[63]
Luo, J.W.; Liu, C.; Wu, J.H.; Lin, L.X.; Fan, H.M.; Zhao, D.H.; Zhuang, Y.Q.; Sun, Y.L. In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. Mater. Sci. Eng. C, 2019, 98, 628-634.
[http://dx.doi.org/10.1016/j.msec.2019.01.034 ] [PMID: 30813066]
[http://dx.doi.org/10.1016/j.msec.2019.01.034 ] [PMID: 30813066]
[64]
Fiorica, C.; Palumbo, F.S.; Pitarresi, G.; Allegra, M.; Puleio, R.; Giammona, G. Hyaluronic acid and elastin based hydrogel for three dimensional culture of vascular endothelial cells. J. Drug Deliv. Sci. Technol., 2018, 46, 28-33.
[http://dx.doi.org/10.1016/j.jddst.2018.04.017]
[http://dx.doi.org/10.1016/j.jddst.2018.04.017]
[65]
Mohandas, A.; Sun, W.; Nimal, T.R.; Shankarappa, S.A.; Hwang, N.S.; Jayakumar, R. Injectable chitosan-fibrin/nanocurcumin composite hydrogel for the enhancement of angiogenesis. Res. Chem. Intermed., 2018, 44(8), 4873-4887.
[http://dx.doi.org/10.1007/s11164-018-3340-1]
[http://dx.doi.org/10.1007/s11164-018-3340-1]
[66]
Frauchiger, D.A.; May, R.D.; Bakirci, E.; Tekari, A.; Chan, S.C.W.; Wöltje, M.; Benneker, L.M.; Gantenbein, B. Genipin-enhanced fibrin hydrogel and novel silk for intervertebral disc repair in a loaded bovine organ culture model. J. Funct. Biomater., 2018, 9(3)E40
[http://dx.doi.org/10.3390/jfb9030040 ] [PMID: 29937524]
[http://dx.doi.org/10.3390/jfb9030040 ] [PMID: 29937524]
[67]
Ma, X.; Liu, S.; Tang, H.; Yang, R.; Chi, B.; Ye, Z. In situ photocrosslinked hyaluronic acid and poly (γ-glutamic acid) hydrogels as injectable drug carriers for load-bearing tissue application. J. Biomater. Sci. Polym. Ed., 2018, 29(18), 2252-2266.
[http://dx.doi.org/10.1080/09205063.2018.1535820 ] [PMID: 30311855]
[http://dx.doi.org/10.1080/09205063.2018.1535820 ] [PMID: 30311855]
[68]
Mohd Isa, I.L.; Abbah, S.A.; Kilcoyne, M.; Sakai, D.; Dockery, P.; Finn, D.P.; Pandit, A. Implantation of hyaluronic acid hydrogel prevents the pain phenotype in a rat model of intervertebral disc injury. Sci. Adv., 2018, 4(4)eaaq0597
[http://dx.doi.org/10.1126/sciadv.aaq0597 ] [PMID: 29632893]
[http://dx.doi.org/10.1126/sciadv.aaq0597 ] [PMID: 29632893]
[69]
Li, Y.; Cao, J.; Han, S.; Liang, Y.; Zhang, T.; Zhao, H.; Wang, L.; Sun, Y. ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis. Artif. Cells Nanomed. Biotechnol,, 2018. 46(Sup2), 152-160.
[http://dx.doi.org/10.1080/21691401.2018.1452752] [PMID: 29575932]
[http://dx.doi.org/10.1080/21691401.2018.1452752] [PMID: 29575932]
[70]
Wang, G.; Cao, X.; Dong, H.; Zeng, L.; Yu, C.; Chen, X. A hyaluronic acid based injectable hydrogel formed via pho-to-crosslinking reaction and thermal-induced diels-alder reaction for cartilage tissue engineering. Polymers (Basel), 2018, 10(9), 1-13.
[http://dx.doi.org/10.3390/polym10090949]
[http://dx.doi.org/10.3390/polym10090949]
[71]
Christoffersson, J.; Aronsson, C.; Jury, M.; Selegård, R.; Aili, D.; Mandenius, C.F. Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication, 2018, 11(1): 015013.
[http://dx.doi.org/10.1088/1758-5090/aaf657 ] [PMID: 30523863]
[http://dx.doi.org/10.1088/1758-5090/aaf657 ] [PMID: 30523863]
[72]
Rosenzweig, D.H.; Fairag, R.; Mathieu, A.P.; Li, L.; Eglin, D.; D’Este, M.; Steffen, T.; Weber, M.H.; Ouellet, J.A.; Haglund, L. Thermoreversible hyaluronan-hydrogel and autologous nucleus pulposus cell delivery regenerates human intervertebral discs in an ex vivo, physiological organ culture model. Eur. Cell. Mater., 2018, 36, 200-217.
[http://dx.doi.org/10.22203/eCM.v036a15 ] [PMID: 30370912]
[http://dx.doi.org/10.22203/eCM.v036a15 ] [PMID: 30370912]
[73]
Liao, H.T.; Tsai, M.J.; Brahmayya, M.; Chen, J.P. Bone regeneration using adipose-derived stem cells in injectable thermo-gelling hydrogel scaffold containing platelet-rich plasma and biphasic calcium phosphate. Int. J. Mol. Sci., 2018, 19(9), 1-18.
[http://dx.doi.org/10.3390/ijms19092537 ] [PMID: 30150580]
[http://dx.doi.org/10.3390/ijms19092537 ] [PMID: 30150580]
[74]
Hozumi, T.; Kageyama, T.; Ohta, S.; Fukuda, J.; Ito, T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff’s base formation. Biomacromolecules, 2018, 19(2), 288-297.
[http://dx.doi.org/10.1021/acs.biomac.7b01133 ] [PMID: 29284268]
[http://dx.doi.org/10.1021/acs.biomac.7b01133 ] [PMID: 29284268]
[75]
Rezaeeyazdi, M.; Colombani, T.; Memic, A.; Bencherif, S.A. Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications. Materials (Basel), 2018, 11(8), 23-25.
[http://dx.doi.org/10.3390/ma11081374 ] [PMID: 30087295]
[http://dx.doi.org/10.3390/ma11081374 ] [PMID: 30087295]
[76]
Jooybar, E.; Abdekhodaie, M.J.; Alvi, M.; Mousavi, A.; Karperien, M.; Dijkstra, P.J. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells. Acta Biomater., 2019, 83, 233-244.
[http://dx.doi.org/10.1016/j.actbio.2018.10.031 ] [PMID: 30366137]
[http://dx.doi.org/10.1016/j.actbio.2018.10.031 ] [PMID: 30366137]
[77]
Kunisch, E.; Knauf, A-K.; Hesse, E.; Freudenberg, U.; Werner, C.; Bothe, F.; Diederichs, S.; Richter, W. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication, 2018, 11(1),015001.
[http://dx.doi.org/10.1088/1758-5090/aae75a ] [PMID: 30376451]
[http://dx.doi.org/10.1088/1758-5090/aae75a ] [PMID: 30376451]
[78]
Ren, B.; Chen, X.; Ma, Y.; Du, S.; Qian, S.; Xu, Y.; Yan, Z.; Li, J.; Jia, Y.; Tan, H.; Ling, Z.; Chen, Y.; Hu, X. Dynamical release nanospheres containing cell growth factor from biopolymer hydrogel via reversible covalent conjugation. J. Biomater. Sci. Polym. Ed., 2018, 29(11), 1344-1359.
[http://dx.doi.org/10.1080/09205063.2018.1460140 ] [PMID: 29609508]
[http://dx.doi.org/10.1080/09205063.2018.1460140 ] [PMID: 29609508]
[79]
Bang, S.; Jung, U.W.; Noh, I. Synthesis and biocompatibility characterizations of in situ chondroitin sulfate-gelatin hydrogel for tissue engineering. Tissue Eng. Regen. Med., 2017, 15(1), 25-35.
[http://dx.doi.org/10.1007/s13770-017-0089-3 ] [PMID: 30603532]
[http://dx.doi.org/10.1007/s13770-017-0089-3 ] [PMID: 30603532]
[80]
Alinejad, Y.; Adoungotchodo, A.; Hui, E.; Zehtabi, F.; Lerouge, S. An injectable chitosan/chondroitin sulfate hydrogel with tunable mechanical properties for cell therapy/tissue engineering. Int. J. Biol. Macromol., 2018, 113, 132-141.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.069 ] [PMID: 29452185]
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.069 ] [PMID: 29452185]
[81]
Zhang, Z.; Wang, X.; Wang, Y.; Hao, J. Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings. Biomacromolecules, 2018, 19(3), 980-988.
[http://dx.doi.org/10.1021/acs.biomac.7b01764 ] [PMID: 29451778]
[http://dx.doi.org/10.1021/acs.biomac.7b01764 ] [PMID: 29451778]
[82]
Phogat, K.; Bandyopadhyay-Ghosh, S. Nanocellulose mediated injectable bio-nanocomposite hydrogel scaffold-microstructure and rheological properties. Cellulose, 2018, 25(10), 5821-5830.
[http://dx.doi.org/10.1007/s10570-018-2001-2]
[http://dx.doi.org/10.1007/s10570-018-2001-2]
[83]
Doench, I.; Torres-Ramos, M.E.W.; Montembault, A.; Nunes de Oliveira, P.; Halimi, C.; Viguier, E.; Heux, L.; Siadous, R.; Thiré, R.M.S.M.; Osorio-Madrazo, A. Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering. Polymers (Basel), 2018, 10(11), 1-27.
[http://dx.doi.org/10.3390/polym10111202 ] [PMID: 30961127]
[http://dx.doi.org/10.3390/polym10111202 ] [PMID: 30961127]
[84]
Loh, E.Y.X.; Mohamad, N.; Fauzi, M.B.; Ng, M.H.; Ng, S.F.; Mohd Amin, M.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep., 2018, 8(1), 2875.
[http://dx.doi.org/10.1038/s41598-018-21174-7 ] [PMID: 29440678]
[http://dx.doi.org/10.1038/s41598-018-21174-7 ] [PMID: 29440678]
[85]
Basu, P.; Saha, N.; Alexandrova, R.; Andonova-Lilova, B.; Georgieva, M.; Miloshev, G.; Saha, P. Biocompatibility and biological efficiency of inorganic calcium filled bacterial cellulose based hydrogel scaffolds for bone bioengineering. Int. J. Mol. Sci., 2018, 19(12), 1-16.
[http://dx.doi.org/10.3390/ijms19123980 ] [PMID: 30544895]
[http://dx.doi.org/10.3390/ijms19123980 ] [PMID: 30544895]
[86]
Trivedi, P.; Saloranta-Simell, T.; Maver, U. Chitosan-cellulose multifunctional hydrogel beads: design, characterization and evaluation of cytocompatibility with breast adenocarcinoma and osteoblast cells. Bioengineering , 2018, 1(3), 1-16.
[87]
Liu, J.; Li, Z.; Lin, Q.; Jiang, X.; Yao, J.; Yang, Y.; Shao, Z.; Chen, X.A. Robust, resilient, and multi-functional soy protein-based hydrogel. ACS Sustain. Chem.& Eng., 2018, 6(11), 13730-13738.
[http://dx.doi.org/10.1021/acssuschemeng.8b01450]
[http://dx.doi.org/10.1021/acssuschemeng.8b01450]
[88]
Wang, C.; Fadeev, M.; Zhang, J.; Vázquez-González, M.; Davidson-Rozenfeld, G.; Tian, H.; Willner, I. Shape-memory and self-healing functions of DNA-based carboxymethyl cellulose hydrogels driven by chemical or light triggers. Chem. Sci. (Camb.), 2018, 9(35), 7145-7152.
[http://dx.doi.org/10.1039/C8SC02411A ] [PMID: 30310637]
[http://dx.doi.org/10.1039/C8SC02411A ] [PMID: 30310637]
[89]
Liu, C.; Han, J.; Pei, Y.; Du, J. Aptamer Functionalized DNA hydrogel for wise-stage controlled protein release. App. Sci., 2018, 8, 1-14.
[http://dx.doi.org/10.3390/app8101941]
[http://dx.doi.org/10.3390/app8101941]