[1]
Rajabalaya R, Tor L-Q, David S. Formulation and in vitro evaluation of ondansetron hydrochloride matrix transdermal systems using ethyl cellulose/polyvinyl pyrrolidone polymer blends. Int Schol Sci Res Innov 2012; 12: 667-71.
[2]
Can AS, Erdal MS, Güngör S, Özsoy Y. Optimization and characterization of chitosan films for transdermal delivery of ondansetron. Molecules 2013; 18(5): 5455-71.
[3]
Takahashi K, Rytting JH. Novel approach to improve permeation of ondansetron across shed snake skin as a model membrane. J Pharm Pharmacol 2001; 53(6): 789-94.
[4]
Teodorescu F, Quéniat G, Foulon C, et al. Transdermal skin patch based on reduced graphene oxide: a new approach for photothermal triggered permeation of ondansetron across porcine skin. J Control Release 2017; 245: 137-46.
[5]
Pillai O, Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J Control Release 2003; 89(1): 127-40.
[6]
Larrañeta E, Stewart S, Ervine M, Al-Kasasbeh R, Donnelly RF. Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. J Funct Biomater 2018; 9(1): 13.
[7]
Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000; 50(1): 27-46.
[8]
Parhi R. Cross-linked hydrogel for pharmaceutical applications: a review. Adv Pharm Bull 2017; 7(4): 515-30.
[9]
Kashyap N, Kumar N, Kumar MNVR. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 2005; 22(2): 107-49.
[10]
Maia J, Ribeiro MP, Ventura C, Carvalho RA, Correia IJ, Gil MH. Ocular injectable formulation assessment for oxidized dextran-based hydrogels. Acta Biomater 2009; 5(6): 1948-55.
[11]
Escobar-Chávez JJ, López-Cervantes M, Naïk A, et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 2006; 9(3): 339-58.
[12]
Gong CY, Shi S, Dong PW, et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: part 1 synthesis, characterization, and acute toxicity evaluation. J Pharm Sci 2009; 98(12): 4684-94.
[13]
Parhi R, Suresh P, Pattnaik S. Transdermal delivery of diltiazem hydrochloride from poloxamer-hpmc gel: in vitro, ex vivo, and in vivo studies. Drug Deliv Lett 2015; 5: 163-72.
[14]
Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 2006; 23(12): 2709-28.
[15]
Sehgal RR, Roohani-Esfahani SI, Zreiqat H, Banerjee R. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. J Tissue Eng Regen Med 2017; 11(4): 1195-211.
[16]
Rhim J-W. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 2011; 86: 691-9.
[17]
Gilani S, Mir S, Masood M, et al. Triple-component nanocomposite films prepared using a casting method: its potential in drug delivery. J Food Drug Anal 2018; 26(2): 887-902.
[18]
Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 2009; 12: 1-39.
[19]
Anandhan S, Bandyopadhyay S. Polymer nanocomposites: from synthesis to applications Nanocomposites and Polymers with Analytical Methods, InTech Europe, University Campus, STeP Ri. Slavka Krautzeka, Croatia 2011; p. 328.
[20]
Jeon I-Y, Baek J-B. Nanocomposites derived from polymers and inorganic nanoparticles. Mater 2010; 3: 3654-74.
[21]
Shi Y, Jiang S, Zhou K, et al. Influence of g-C3N4 nanosheets on thermal stability and mechanical properties of biopolymer electrolyte nanocomposite films: a novel investigation. ACS Appl Mater Interfaces 2014; 6(1): 429-37.
[22]
Krolow MZ, Hartwig CA, Link GC, et al. Synthesis and characterisation of carbon nanocomposites Carbon Nanostructures. New York: Springer-Verlag Berlin Heidelberg 2013; p. 3347.
[23]
Chen S, Wu Q, Mishra C, et al. Thermal conductivity of isotopically modified graphene. Nat Mater 2012; 11(3): 203-7.
[24]
Justin R, Chen B. Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites. Carbohydr Polym 2014; 103: 70-80.
[25]
Barahuie F, Saifullah B, Dorniani D, et al. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater Sci Eng C 2017; 74: 177-85.
[26]
Sovizi MR, Fakhrpour G, Bagheri S, Bardajee GR. Non-isothermal dehydration kinetic study of a new swollen biopolymer silver nanocomposite hydrogel. J Therm Anal Calorim 2015; 121: 1383-91.
[27]
Giri A, Ghosh T, Panda AB, Pal S, Bandyopdhyay A. Tailoring carboxymethyl guargum hydrogel with nanosilica for sustained transdermal release of diclofenac sodium. Carbohydr Polym 2012; 87: 1532-8.
[28]
Mahdavinia GR, Hosseini R, Darvishi F, Sabzi M. The release of cefazolin from chitosan/polyvinyl alcohol/sepiolite nanocomposite hydrogel films. Iran Polym J 2016; 25: 933-43.
[29]
Thakur G, Singh A, Singh I. Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin. Int J Pharm Investig 2016; 6(1): 23-31.
[30]
Shaikh S, Birdi A, Qutubuddin S, Lakatosh E, Baskaran H. Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites. Ann Biomed Eng 2007; 35(12): 2130-7.
[31]
Biswal T, Samal R, Sahoo PK. Microwave-assisted preparation of poly(2-EHA-co-ST) copolymer and poly(2-EHA-co-ST)/MMT nanocomposite. J Appl Polym Sci 2012; 125: 1467-75.
[32]
da Costa Neto BP, da Mata ALML, Lopes MV, Rossi-Bergmann B, Ré MI. Preparation and evaluation of chitosan–hydrophobic silica composite microspheres: Role of hydrophobic silica in modifying their properties. Powder Technol 2014; 255: 109-19.
[33]
Gaur PK, Mishra S, Purohit S. Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery. BioMed Res Int 2013; 20132013750690
[34]
Medhi P, Olatunji O, Nayak A, et al. Lidocaine-loaded fish scale-nanocellulose biopolymer composite microneedles. AAPS PharmSciTech 2017; 18(5): 1488-94.
[35]
Schmolka IR. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res 1972; 6(6): 571-82.
[36]
Parhi R. Development and optimization of pluronic® F127 and HPMC based thermosensitive gel for the skin delivery of metoprolol succinate. J Drug Deliv Sci Technol 2016; 36: 23-33.
[37]
Agrawal V, Gupta V, Ramteke S, Trivedi P. Preparation and evaluation of tubular micelles of pluronic lecithin organogel for transdermal delivery of sumatriptan. AAPS PharmSciTech 2010; 11(4): 1718-25.
[38]
Parhi R, Suresh P. Formulation optimization and characterization of transdermal film of simvastatin by response surface methodology. Mater Sci Eng C 2016; 58: 331-41.
[39]
Prakash PR, Rao NGR, Soujanya C. Formulation, evaluation and antiinflamatory activity of topical etoricoxib gel. Asian J Pharm Clin Res 2010; 3: 126-9.
[40]
Joshi M, Patravale V. Formulation and evaluation of Nanostructured Lipid Carrier (NLC)-based gel of Valdecoxib. Drug Dev Ind Pharm 2006; 32(8): 911-8.
[41]
Wang D, Zhao J, Liu X, et al. Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation. Eur J Pharm Sci 2014; 60: 40-8.
[42]
Moghimi HR, Makhmalzadeh BS, Manafi A. Enhancement effect of terpenes on silver sulphadiazine permeation through third-degree burn eschar. Burns 2009; 35(8): 1165-70.
[43]
Parhi R, Suresh P, Pattnaik S. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: effect of solvents/penetration enhancers on ex vivo permeation. Drug Deliv Transl Res 2016; 6(3): 243-53.
[44]
Bhatia A, Singh B, Raza K, Wadhwa S, Katare OP. Tamoxifen-loaded lecithin organogel (LO) for topical application: Development, optimization and characterization. Int J Pharm 2013; 444(1-2): 47-59.
[45]
Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 1944; 82: 377-90.
[46]
Parhi R, Panchamukhi T. RSM-based design and optimization of transdermal film of ondansetron HCl. J Pharm Innov 2019; 1-6.
[47]
Choudhary DR, Patel VA, Chhalotiya UK, Patel HV, Kundawala AJ. Natural polysaccharides as film former: a feasibility study for development of rapid dissolving films of ondansetron hydrochloride. Int J Pharm Pharm Sci 2012; 4(Suppl. 3): 78-85.
[48]
Anilkumar A, Murthy TE, Rani AP. Formulation of Ondansetron HCl Matrix Tablets with Microenvironmental pH Modifier for Improved Dissolution and Bioavailability under Hypochlorhydria. Asian J Pharm 2016; 10: 188.
[49]
Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano 2010; 4(8): 4806-14.
[50]
Gurunathan S, Han JW, Kim ES, Park JH, Kim J-H. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int J Nanomedicine 2015; 10: 2951-69.
[51]
Vintiloiu A, Leroux JC. Organogels and their use in drug delivery--a review. J Control Release 2008; 125(3): 179-92.
[52]
Kramaric A, Resman A, Kofler B, Zmitek J. Thermoreversible gel
as a liquid pharmaceutical carrier for a galenic formulation. European
Patent CA2085690A1 1992.
[53]
Yong CS, Choi JS, Quan Q-Z, et al. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. Int J Pharm 2001; 226(1-2): 195-205.
[54]
Mukherjee A, Kang JH, Kuznetsov O, et al. Water-soluble graphite nanoplatelets formed by oleum exfoliation of graphite. Chem Mater 2011; 23: 9-13.
[55]
Kim S, Sergiienko R, Shibata E, Hayasaka Y, Nakamura T. Production of graphite nanosheets by low-current plasma discharge in liquid ethanol. Mater Trans 2010; 51: 1455-9.
[56]
Al-Kassas R, Wen J, Cheng AE-M, Kim AM-J, Liu SSM, Yu J. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym 2016; 153: 176-86.