Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Trends in the Bioremediation of Pharmaceuticals and Other Organic Contaminants Using Native or Genetically Modified Microbial Strains: A Review

Author(s): Andreas S. Petsas * and Maria C. Vagi

Volume 20, Issue 10, 2019

Page: [787 - 824] Pages: 38

DOI: 10.2174/1389201020666190527113903

Price: $65

Abstract

Nowadays, numerous synthetic and semisynthetic chemicals are extensively produced and consequently used worldwide for many different purposes, such as pharmaceuticals, pesticides, hydrocarbons with aromatic rings (known as polycyclic aromatic hydrocarbons, PAHs), multi-substituted biphenyls with halogens (such as polychlorinated biphenyls, PCBs), and many other toxic and persistent chemical species. The presence of the aforementioned xenobiotic substances not only in various environmental matrices (water, air, and soil), but also in biological tissues (organisms) as well as in several compartments of raw or processed food (of fruit, vegetal, and animal origin), has raised global scientific concerns regarding their potential toxicity towards non target organisms including humans. Additionally, the ability of those persistent organic pollutants to be magnified via food consumption (food chain) has become a crucial threat to human health. Microbial degradation is considered an important route influencing the fate of those toxicants in each matrix. The technique of bioremediation, either with microorganisms (native or genetically modified) which are applied directly (in a reactor or in situ), or with cell extracts or purified enzymes preparations, is reported as a low cost and potential detoxification technology for the removal of toxic chemicals. The sources and toxic impacts of target groups of chemicals are briefly presented in the present study, whereas the bioremediation applications for the removal of pharmaceuticals and other organic contaminants using microbial strains are critically reviewed. All the recently published data concerning the genes encoding the relevant enzymes that catalyze the degradation reactions, the mechanisms of reactions and parameters that influence the bioremediation process are discussed. Finally, research needs and future trends in the direction of decontamination are high-lightened.

Keywords: Biodegradation, bioremediation, organic pollutant, microorganisms, pharmaceuticals, Polycyclic Aromatic Hydrocarbons (PAHs), pesticides, Polychlorinated Biphenyls (PCBs).

Graphical Abstract

[1]
Megharaj, M.; Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Naidu, R. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int., 2011, 37(8), 1362-1375.
[http://dx.doi.org/10.1016/j.envint.2011.06.003] [PMID: 21722961]
[2]
Nikolaou, A.D.; Kostopoulou, M.; Petsas, A.; Vagi, M.; Lofrano, G.; Meric, S. Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments. TRAC. Trends Analyt. Chem., 2009, 28(6), 653-664.
[http://dx.doi.org/10.1016/j.trac.2009.04.004]
[3]
Ghidini, S.; Zanardi, E.; Battaglia, A.; Varisco, G.; Ferretti, E.; Campanini, G.; Chizzolini, R. Comparison of contaminant and residue levels in organic and conventional milk and meat products from northern Italy. Food Addit. Contam., 2005, 22(1), 9-14.
[http://dx.doi.org/10.1080/02652030400027995] [PMID: 15895606]
[4]
Goulart, S.M.; de Queiroz, M.E.; Neves, A.A.; de Queiroz, J.H. Low-temperature clean-up method for the determination of pyrethroids in milk using gas chromatography with electron capture detection. Talanta, 2008, 75(5), 1320-1323.
[http://dx.doi.org/10.1016/j.talanta.2008.01.058] [PMID: 18585219]
[5]
Baranowska, I.; Barchańska, H.; Pyrsz, A. Distribution of pesticides and heavy metals in trophic chain. Chemosphere, 2005, 60(11), 1590-1599.
[http://dx.doi.org/10.1016/j.chemosphere.2005.02.053] [PMID: 16083765]
[6]
Lázaro, R.; Herrera, A.; Arino, A.A.; Conchello, M.P.; Bayarri, S.J. Organochlorine pesticide residues in total diet samples from Aragón (Northeastern Spain). Agric. Food Chem., 1996, 44(9), 2742-2747.
[http://dx.doi.org/10.1021/jf9507248]
[7]
Tao, S.; Liu, W.X.; Li, X.Q.; Zhou, D.X.; Li, X.; Yang, Y.F.; Yue, D.P.; Coveney, R.M. Organochlorine pesticide residuals in chickens and eggs at a poultry farm in Beijing, China. Environ. Pollut., 2009, 157(2), 497-502.
[http://dx.doi.org/10.1016/j.envpol.2008.09.005] [PMID: 18963306]
[8]
Weichbrodt, M.; Vetter, W.; Luckas, B. Microwave-assisted extraction and accelerated solvent extraction with ethyl acetate-cyclohexane before determination of organochlorines in fish tissue by gas chromatography with electron-capture detection. J. AOAC Int., 2000, 83(6), 1334-1343.
[PMID: 11128135]
[9]
Serrano, R.; Barreda, M.; Pitarch, E.; Hernández, F. Determination of low concentrations of organochlorine pesticides and PCBs in fish feed and fish tissues from aquaculture activities by gas chromatography with tandem mass spectrometry. J. Sep. Sci., 2003, 26, 75-86.
[http://dx.doi.org/10.1002/jssc.200390018]
[10]
Campos, A.; Lino, C.M.; Cardoso, S.M.; Silveira, M.I.N. Organochlorine pesticide residues in European sardine, horse mackerel and Atlantic mackerel from Portugal. Food Addit. Contam., 2005, 22(7), 642-646.
[http://dx.doi.org/10.1080/02652030500136969] [PMID: 16019839]
[11]
Di Bella, G.; Licata, P.; Bruzzese, A.; Naccari, C.; Trombetta, D.; Lo Turco, V.; Dugo, G.; Richetti, A.; Naccari, F. Levels and congener pattern of polychlorinated biphenyl and organochlorine pesticide residues in bluefin tuna (Thunnus thynnus) from the Straits of Messina (Sicily, Italy). Environ. Int., 2006, 32(6), 705-710.
[http://dx.doi.org/10.1016/j.envint.2006.02.001] [PMID: 16750268]
[12]
Muralidharan, S.; Dhananjayan, V.; Jayanthi, P. Organochlorine pesticides in commercial marine fishes of Coimbatore, India and their suitability for human consumption. Environ. Res., 2009, 109(1), 15-21.
[http://dx.doi.org/10.1016/j.envres.2008.08.006] [PMID: 18849026]
[13]
Zhou, R.; Zhu, L.; Kong, Q. Levels and distribution of organochlorine pesticides in shellfish from Qiantang River, China. J. Hazard. Mater., 2008, 152(3), 1192-1200.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.103] [PMID: 17825984]
[14]
Yang, Y.; Liu, M.; Xu, S.; Hou, L.; Ou, D.; Liu, H.; Cheng, S.; Hofmann, T. HCHs and DDTs in sediment-dwelling animals from the Yangtze Estuary, China. Chemosphere, 2006, 62(3), 381-389.
[http://dx.doi.org/10.1016/j.chemosphere.2005.04.102] [PMID: 15993466]
[15]
Singh, A.K.; Srivastava, A.; Prabha-Pandey, C.; Sharma, V.P. Determination of pesticides in vegetables and fruit from supermarkets of luck now city using gas chromatography-mass spectroscopy. Int. J. Adv. Res. (Indore), 2017, 5(10), 1600-1607.
[http://dx.doi.org/10.21474/IJAR01/5676]
[16]
Bordajandi, L.R.; Gómez, G.; Abad, E.; Rivera, J.; Del Mar Fernández-Bastón, M.; Blasco, J.; González, M.J. Survey of persistent organochlorine contaminants (PCBs, PCDD/Fs, and PAHs), heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic in food samples from Huelva (Spain): Levels and health implications. J. Agric. Food Chem., 2004, 52(4), 992-1001.
[http://dx.doi.org/10.1021/jf030453y] [PMID: 14969562]
[17]
Abou-Arab, A.A.K.; Abou-Donia, M.A.M.; El-Dars, F.M.S.E.; Ali, O.I.M.; Hossam, A.G. Levels of polycyclic aromatic hydrocarbons (PAHS) in some Egyptian vegetables and fruits and their influences by some treatments. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(7), 277-293.
[18]
Orif, M.; El-Maradny, A. Bio-accumulation of polycyclic aromatic hydrocarbons in the grey mangrove (Avicennia marina) along Arabian Gulf, Saudi Coast. Open Chem., 2018, 16, 340-348.
[http://dx.doi.org/10.1515/chem-2018-0038]
[19]
Randhawa, G.K.; Kullar, J.S. Bioremediation of pharmaceuticals, pesticides, and petrochemicals with gomea/cow dung. Int. Schol. Res. Net. Pharm, 2011 Article ID 362459. , 7.https://www.hindawi.com/journals/isrn/2011/362459/
[20]
Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater., 2009, 169(1-3), 1-15.
[http://dx.doi.org/10.1016/j.jhazmat.2009.03.137] [PMID: 19442441]
[21]
Chen, M.; Xu, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv., 2015, 33(6 Pt 1), 745-755.
[http://dx.doi.org/10.1016/j.biotechadv.2015.05.003] [PMID: 26008965]
[22]
Adams, G.O.; Tawari-Fufeyin, P.; Okoro, S.E.; Ehinomen, I. Bioremediation, Biostimulation and bioaugmention: A review. Intern. J. Environ. Biodeter. Biodegr., 2015, 3(1), 28-39.
[http://dx.doi.org/10.12691/ijebb-3-1-5]
[23]
Kadri, T.; Rouissi, T.; Kaur Brar, S.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. (China), 2017, 51, 52-74.
[http://dx.doi.org/10.1016/j.jes.2016.08.023] [PMID: 28115152]
[24]
Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol., 2016, 32(11), 180.
[http://dx.doi.org/10.1007/s11274-016-2137-x] [PMID: 27638318]
[25]
Margesin, R.; Schinner, F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol., 2001, 56(5-6), 650-663.
[http://dx.doi.org/10.1007/s002530100701] [PMID: 11601610]
[26]
Abraham, W.R.; Nogales, B.; Golyshin, P.N.; Pieper, D.H.; Timmis, K.N. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr. Opin. Microbiol., 2002, 5(3), 246-253.
[http://dx.doi.org/10.1016/S1369-5274(02)00323-5] [PMID: 12057677]
[27]
Ohtsubo, Y.; Kudo, T.; Tsuda, M.; Nagata, Y. Strategies for bioremediation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol., 2004, 65(3), 250-258.
[http://dx.doi.org/10.1007/s00253-004-1654-y] [PMID: 15248039]
[28]
Greenwood, P.F.; Wibrow, S.; George, S.J.; Tibbett, M. Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure. Org. Geochem., 2009, 40, 293-300.
[http://dx.doi.org/10.1016/j.orggeochem.2008.12.009]
[29]
Cajthaml, T.; Erbanová, P.; Šašek, V.; Möeder, M. Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere, 2006, 64(4), 560-564.
[http://dx.doi.org/10.1016/j.chemosphere.2005.11.034] [PMID: 16403417]
[30]
Stella, T.; Covino, S.; Čvančarová, M.; Filipová, A.; Petruccioli, M.; D’Annibale, A.; Cajthaml, T. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J. Hazard. Mater, 2017, 324(Pt B), 701-710.
[http://dx.doi.org/10.1016/j.jhazmat.2016.11.044] [PMID: 27894756]
[32]
Spina, F.; Cecchi, G.; Landizez-Torres, A.; Pecoraro, L.; Russo, F.; Wu, B.; Cai, L.; Liu, X.Z.; Tosi, S.; Varese, G.C.; Zoti, M.; Persiani, A.M. Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water. Plant Biosystems- An Intern. J. Deal. Asp. Plant Biol., 2018, 152(3), 474-488.
[33]
Al-Mailem, D.M.; Sorkhoh, N.A.; Al-Awadhi, H.; Eliyas, M.; Radwan, S.S. Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles, 2010, 14(3), 321-328.
[http://dx.doi.org/10.1007/s00792-010-0312-9] [PMID: 20364355]
[34]
Fairley, D.J.; Boyd, D.R.; Sharma, N.D.; Allen, C.C.; Morgan, P.; Larkin, M.J. Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl. Environ. Microbiol., 2002, 68(12), 6246-6255.
[http://dx.doi.org/10.1128/AEM.68.12.6246-6255.2002] [PMID: 12450849]
[35]
Duran, R.; Cravo-Laureau, C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol. Rev., 2016, 40(6), 814-830.
[http://dx.doi.org/10.1093/femsre/fuw031] [PMID: 28201512]
[36]
Patel, A.B.; Mahala, K.; Jain, K.; Madamwar, D. Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs). Bioresour. Technol., 2018, 253, 288-296.
[http://dx.doi.org/10.1016/j.biortech.2018.01.049] [PMID: 29353758]
[37]
Pathak, H.; Kantharia, D.; Malpani, A.; Madamwar, D. Naphthalene degradation by Pseudomonas sp. HOB1: In vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms. J. Hazard. Mater., 2009, 166(2-3), 1466-1473.
[http://dx.doi.org/10.1016/j.jhazmat.2008.12.074] [PMID: 19167154]
[38]
Patel, V.; Jain, S.; Madamwar, D. Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. Bioresour. Technol., 2012, 107, 122-130.
[http://dx.doi.org/10.1016/j.biortech.2011.12.056] [PMID: 22217733]
[39]
Patel, V.; Patel, J.; Madamwar, D. Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard Mar. Pollut. Bull, 2013, 74(1), 199-207.
[http://dx.doi.org/10.1016/j.marpolbul.2013.07.001] [PMID: 23906474]
[40]
Włóka, D.; Placek, A.; Rorat, A.; Smol, M.; Kacprzak, M. The evaluation of polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soil amended with organic fertilizers and bulking agents. Ecotoxicol. Environ. Saf., 2017, 145, 161-168.
[http://dx.doi.org/10.1016/j.ecoenv.2017.07.021] [PMID: 28734218]
[41]
Molina-Barahona, L.; Vega-Loyo, L.; Guerrero, M.; Ramírez, S.; Romero, I.; Vega-Jarquín, C.; Albores, A. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process. Environ. Toxicol., 2005, 20(1), 100-109.
[http://dx.doi.org/10.1002/tox.20083] [PMID: 15712321]
[42]
Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res., 2000, 455(1-2), 29-60.
[http://dx.doi.org/10.1016/S0027-5107(00)00064-6] [PMID: 11113466]
[43]
White, P.A.; Claxton, L.D. Mutagens in contaminated soil: A review. Mutat. Res., 2004, 567(2-3), 227-345.
[http://dx.doi.org/10.1016/j.mrrev.2004.09.003] [PMID: 15572286]
[44]
Beausse, J. Selected drugs in solid matrices: A review of environmental determination, occurrence and properties of principal substances. TRAC. Trends Analyt. Chem., 2004, 23(10), 753-761.
[http://dx.doi.org/10.1016/j.trac.2004.08.005]
[45]
Boxall, A.B.; Rudd, M.A.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T.; Ankley, G.T.; Beazley, K.F.; Belanger, S.E.; Berninger, J.P.; Carriquiriborde, P.; Coors, A.; Deleo, P.C.; Dyer, S.D.; Ericson, J.F.; Gagné, F.; Giesy, J.P.; Gouin, T.; Hallstrom, L.; Karlsson, M.V.; Larsson, D.G.; Lazorchak, J.M.; Mastrocco, F.; McLaughlin, A.; McMaster, M.E.; Meyerhoff, R.D.; Moore, R.; Parrott, J.L.; Snape, J.R.; Murray-Smith, R.; Servos, M.R.; Sibley, P.K.; Straub, J.O.; Szabo, N.D.; Topp, E.; Tetreault, G.R.; Trudeau, V.L.; Van Der Kraak, G. Pharmaceuticals and personal care products in the environment: What are the big questions? Environ. Health Perspect., 2012, 120(9), 1221-1229.
[http://dx.doi.org/10.1289/ehp.1104477] [PMID: 22647657]
[46]
Kalyva, M. Fate of pharmaceuticals in the environment-A review. Theoret. Geoecol. Earth Sci. 15 ECTS,, 2017, 1-30.
[47]
OECD. (Organization for Economic Cooperation and Development). Health at a Glance: Europe 2014. OECD PUBLISHING 2; OECD: Paris, 2014.
[48]
Cromwell, G.L. Why and how antibiotics are used in swine production. Anim. Biotechnol., 2002, 13(1), 7-27.
[http://dx.doi.org/10.1081/ABIO-120005767] [PMID: 12212945]
[49]
Li, X.; Zheng, W.; Machesky, M.L.; Yates, S.R.; Katterhenry, M. Degradation kinetics and mechanism of antibiotic ceftiofur in recycled water derived from a beef farm. J. Agric. Food Chem., 2011, 59(18), 10176-10181.
[http://dx.doi.org/10.1021/jf202325c] [PMID: 21863813]
[50]
Loke, M.L.; Ingerslev, F.; Halling-Sørensen, B.; Tjørnelund, J. Stability of Tylosin A in manure containing test systems determined by high performance liquid chromatography. Chemosphere, 2000, 40(7), 759-765.
[http://dx.doi.org/10.1016/S0045-6535(99)00450-6] [PMID: 10705554]
[51]
Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ., 2016, 563-564, 366-376.
[http://dx.doi.org/10.1016/j.scitotenv.2016.04.140] [PMID: 27139307]
[52]
Alexandrino, D.A.M.; Mucha, A.P.; Almeida, C.M.R.; Gao, W.; Jia, Z.; Carvalho, M.F. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Sci. Total Environ., 2017, 581-582, 359-368.
[http://dx.doi.org/10.1016/j.scitotenv.2016.12.141] [PMID: 28069302]
[53]
Nakata, H.; Kannan, K.; Jones, P.D.; Giesy, J.P.L. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere, 2005, 58(6), 759-766.
[http://dx.doi.org/10.1016/j.chemosphere.2004.08.097] [PMID: 15621189]
[54]
Mitani, K.; Kataoka, H. Determination of fluoroquinolones in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2006, 562, 16-22.
[http://dx.doi.org/10.1016/j.aca.2006.01.053]
[55]
Lee, H.B.; Peart, T.E.; Svoboda, M.L. Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2007, 1139(1), 45-52.
[http://dx.doi.org/10.1016/j.chroma.2006.11.068] [PMID: 17157863]
[56]
Kümmerer, K. The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. J. Environ. Manage., 2009, 90(8), 2354-2366.
[http://dx.doi.org/10.1016/j.jenvman.2009.01.023] [PMID: 19261375]
[57]
Kümmerer, K. Antibiotics in the aquatic environment-a review-part II. Chemosphere, 2009, 75(4), 435-441.
[http://dx.doi.org/10.1016/j.chemosphere.2008.12.006] [PMID: 19178931]
[58]
Topp, E.; Monteiro, S.C.; Beck, A.; Coelho, B.B.; Boxall, A.B.; Duenk, P.W.; Kleywegt, S.; Lapen, D.R.; Payne, M.; Sabourin, L.; Li, H.; Metcalfe, C.D. Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field. Sci. Total Environ., 2008, 396(1), 52-59.
[http://dx.doi.org/10.1016/j.scitotenv.2008.02.011] [PMID: 18377955]
[59]
Shi, X.; Leong, K.Y.; Ng, H.Y. Anaerobic treatment of pharmaceutical wastewater: A critical review. Bioresour. Technol., 2017, 245(Pt A), 1238-1244..
[http://dx.doi.org/10.1016/j.biortech.2017.08.150] [PMID: 28899679]
[60]
Ince, B.K.; Selcuk, A.; Ince, O. Effect of a chemical synthesis-based pharmaceutical wastewater on performance, acetoclastic methanogenic activity and microbial population in an upflow anaerobic filter. J. Chem. Technol. Biotechnol., 2002, 7, 711-719.
[http://dx.doi.org/10.1002/jctb.629]
[61]
Fatta-Kassinos, D.; Kümmerer, K. Pharmaceuticals in the environment: sources, fate, effects and risks. Environ. Sci. Pollut. Res. Int., 2010, 17(2), 519-521.
[http://dx.doi.org/10.1007/s11356-009-0276-4]
[62]
Speltini, A.; Sturini, M.; Maraschi, F.; Profumo, A. Fluoroquinolone antibiotics in environmental waters: sample preparation and determination. J. Sep. Sci., 2010, 33(8), 1115-1131.
[http://dx.doi.org/10.1002/jssc.200900753] [PMID: 20187033]
[63]
Lillenberg, M.; Yurchenko, S.; Kipper, K.; Herodes, K.; Pihl, V.; Sepp, K.; Lõhmus, R.; Nei, L. Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. J. Chromatogr. A, 2009, 1216(32), 5949-5954.
[http://dx.doi.org/10.1016/j.chroma.2009.06.029] [PMID: 19552910]
[64]
Li, B.; Zhang, T. Biodegradation and adsorption of antibiotics in the activated sludge process. Environ. Sci. Technol., 2010, 44(9), 3468-3473.
[http://dx.doi.org/10.1021/es903490h] [PMID: 20384353]
[65]
Jia, A.; Wan, Y.; Xiao, Y.; Hu, J. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res., 2012, 46(2), 387-394.
[http://dx.doi.org/10.1016/j.watres.2011.10.055] [PMID: 22118907]
[66]
Speltini, A.; Sturini, M.; Maraschi, F.; Profumo, A.; Albini, A. Analytical methods for the determination of fluoroquinolones in solid environmental matrices. TRAC. Trends Analyt. Chem., 2011, 30, 1337-1350.
[http://dx.doi.org/10.1016/j.trac.2011.04.011]
[67]
Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 2006, 65(5), 725-759.
[http://dx.doi.org/10.1016/j.chemosphere.2006.03.026] [PMID: 16677683]
[68]
Sedlak, D.L.; von Gunten, U. Chemistry. The chlorine dilemma. Science, 2011, 331(6013), 42-43.
[http://dx.doi.org/10.1126/science.1196397] [PMID: 21212347]
[69]
EMEA (European Agency for the Evaluation of Medicinal Products) Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use., 2006.http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003978.pdf
[70]
Kreuzinger, N.; Clara, M.; Strenn, B.; Kroiss, H. Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Sci. Technol., 2004, 50(5), 149-156.
[http://dx.doi.org/10.2166/wst.2004.0322] [PMID: 15497842]
[71]
Metcalfe, C.D.; Miao, X.S.; Koenig, B.G.; Struger, J. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ. Toxicol. Chem., 2003, 22(12), 2881-2889.
[http://dx.doi.org/10.1897/02-627] [PMID: 14713027]
[72]
Metcalfe, C.D.; Koenig, B.G.; Bennie, D.T.; Servos, M.; Ternes, T.A.; Hirsch, R. Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environ. Toxicol. Chem., 2003, 22(12), 2872-2880.
[http://dx.doi.org/10.1897/02-469] [PMID: 14713026]
[73]
Čvančarová, M.; Moeder, M.; Filipová, A.; Cajthaml, T. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity. Chemosphere, 2015, 136, 311-320.
[http://dx.doi.org/10.1016/j.chemosphere.2014.12.012] [PMID: 25592459]
[74]
Cardoza, L.A.; Knapp, C.W.; Larive, C.K.; Belden, J.B.; Lydy, M.; Graham, D.W. Factors affecting the fate of ciprofloxacin in aquatic field systems. Water Air Soil Pollut., 2005, 161, 383-398.
[http://dx.doi.org/10.1007/s11270-005-5550-6]
[75]
Sturini, M.; Speltini, A.; Maraschi, F.; Pretali, L.; Profumo, A.; Fasani, E.; Albini, A.; Migliavacca, R.; Nucleo, E. Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Res., 2012, 46(17), 5575-5582.
[http://dx.doi.org/10.1016/j.watres.2012.07.043] [PMID: 22901305]
[76]
Sukul, P.; Spiteller, M. Fluoroquinolone antibiotics in the environment. Rev. Environ. Contam. Toxicol., 2007, 191, 131-162.
[http://dx.doi.org/10.1007/978-0-387-69163-3_5] [PMID: 17708074]
[77]
Girardi, C.; Greve, J.; Lamshöft, M.; Fetzer, I.; Miltner, A.; Schäffer, A.; Kästner, M. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J. Hazard. Mater., 2011, 198, 22-30.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.004] [PMID: 22036930]
[78]
Čvančarová, M.; Křesinová, Z.; Cajthaml, T. Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. J. Hazard. Mater., 2013, 254-255, 116-124.
[http://dx.doi.org/10.1016/j.jhazmat.2013.03.060] [PMID: 23611796]
[79]
Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut., 2009, 157(11), 2893-2902.
[http://dx.doi.org/10.1016/j.envpol.2009.05.051] [PMID: 19560847]
[80]
Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res., 1998, 32(11), 3245-3260.
[http://dx.doi.org/10.1016/S0043-1354(98)00099-2]
[81]
Andreozzi, R.; Marotta, R.; Pinto, G.; Pollio, A. Carbamazepine in water: Persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Res., 2002, 36(11), 2869-2877.
[http://dx.doi.org/10.1016/S0043-1354(01)00500-0] [PMID: 12146875]
[82]
Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect., 1999, 107(6)(Suppl. 6), 907-938.
[http://dx.doi.org/10.1289/ehp.99107s6907] [PMID: 10592150]
[83]
Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 2001, 77(3), 247-255.
[http://dx.doi.org/10.1016/S0960-8524(00)00080-8] [PMID: 11272011]
[84]
Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res., 2007, 41(5), 1013-1021.
[http://dx.doi.org/10.1016/j.watres.2006.06.034] [PMID: 16934312]
[85]
Huerta-Fontela, M.; Galceran, M.T.; Ventura, F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res., 2011, 45(3), 1432-1442.
[http://dx.doi.org/10.1016/j.watres.2010.10.036] [PMID: 21122885]
[86]
Mansour, H.B.; Mosrati, R.; Barillier, D.; Ghedira, K.; Chekir-Ghedira, L. Bioremediation of industrial pharmaceutical drugs. Drug Chem. Toxicol., 2012, 35(3), 235-240.
[http://dx.doi.org/10.3109/01480545.2011.591799] [PMID: 22313387]
[87]
Corcoran, J.; Winter, M.J.; Tyler, C.R. Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish. Crit. Rev. Toxicol., 2010, 40(4), 287-304.
[http://dx.doi.org/10.3109/10408440903373590] [PMID: 20225984]
[88]
Rana, R.S.; Singh, P.; Kandari, V.; Singh, R.; Dobhal, R.; Gupta, S. A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective. Appl. Water Sci., 2017, 7, 1-12.
[http://dx.doi.org/10.1007/s13201-014-0225-3]
[89]
Misal, S.A.; Lingojwar, D.P.; Shinde, R.M.; Gawai, K.R. Purification and characterization of azoreductase from alkaliphilic strains Bacillus badius. Process Biochem., 2011, 46(6), 264-269.
[http://dx.doi.org/10.1016/j.procbio.2011.02.013]
[90]
Weist, K.; Muller, A.; Monnet, D.; Heuer, O. European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe, 2014.https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-consumption-europe-esac-net-2012.pdf
[91]
Felczak, A.; Zawadzka, K.; Lisowska, K. Efficient biodegradation of quinolone - factors determining the process. Int. Biodeter. Biodegrad., 2014, 96, 127-134.
[http://dx.doi.org/10.1016/j.ibiod.2014.08.004]
[92]
Hornish, R.E.; Kotarski, S.F. Cephalosporins in veterinary medicine - ceftiofur use in food animals. Curr. Top. Med. Chem., 2002, 2(7), 717-731.
[http://dx.doi.org/10.2174/1568026023393679] [PMID: 12052187]
[93]
Hu, J.; Wang, W.; Zhu, Z.; Chang, H.; Pan, F.; Lin, B. Quantitative structure-activity relationship model for prediction of genotoxic potential for quinolone antibacterials. Environ. Sci. Technol., 2007, 41(13), 4806-4812.
[http://dx.doi.org/10.1021/es070031v] [PMID: 17695933]
[94]
Junker, T.; Alexy, R.; Knacker, T.; Kümmerer, K. Biodegradability of 14C-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations. Environ. Sci. Technol., 2006, 40(1), 318-324.
[http://dx.doi.org/10.1021/es051321j] [PMID: 16433367]
[95]
Picó, Y.; Andreu, V. Fluoroquinolones in soil-risks and challenges. Anal. Bioanal. Chem., 2007, 387(4), 1287-1299.
[http://dx.doi.org/10.1007/s00216-006-0843-1] [PMID: 17082879]
[96]
Larsson, D.G.J.; de Pedro, C.; Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater., 2007, 148(3), 751-755.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.008] [PMID: 17706342]
[97]
Zhang, T.; Li, B. Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit. Rev. Environ. Sci. Technol., 2011, 41(11), 951-998.
[http://dx.doi.org/10.1080/10643380903392692]
[98]
Miranda, C.D.; Castillo, G. Resistance to antibiotic and heavy metals of motile aeromonads from Chilean freshwater. Sci. Total Environ., 1998, 224(1-3), 167-176.
[http://dx.doi.org/10.1016/S0048-9697(98)00354-4] [PMID: 9926432]
[99]
Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature, 2000, 406(6797), 775-781.
[http://dx.doi.org/10.1038/35021219] [PMID: 10963607]
[100]
Ho, P.L.; Yung, R.W.H.; Tsang, D.N.C.; Que, T.L.; Ho, M.; Seto, W.H.; Ng, T.K.; Yam, W.C.; Ng, W.W. Increasing resistance of Streptococcus pneumoniae to fluoroquinolones: Results of a Hong Kong multicentre study in 2000. J. Antimicrob. Chemother., 2001, 48(5), 659-665.
[http://dx.doi.org/10.1093/jac/48.5.659] [PMID: 11679555]
[101]
Hooper, D.C. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect. Dis., 2002, 2(9), 530-538.
[http://dx.doi.org/10.1016/S1473-3099(02)00369-9] [PMID: 12206969]
[102]
Su, L.H.; Chu, C.; Cloeckaert, A.; Chiu, C.H. An epidemic of plasmids? Dissemination of extended-spectrum cephalosporinases among Salmonella and other Enterobacteriaceae. FEMS Immunol. Med. Microbiol., 2008, 52(2), 155-168.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00360.x] [PMID: 18093140]
[103]
Röling, W.F.; van Bodegom, P.M. Toward quantitative understanding on microbial community structure and functioning: A modeling-centered approach using degradation of marine oil spills as example. Front. Microbiol., 2014, 5(5), 125.
[PMID: 24723922]
[104]
Jendrzejewska, N.; Karwowska, E. The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Sci. Technol., 2018, 77(9-10), 2320-2326.
[http://dx.doi.org/10.2166/wst.2018.153] [PMID: 29757184]
[105]
Parshikov, I.A.; Sutherland, J.B. Microbial transformations of antimicrobial quinolones and related drugs. J. Ind. Microbiol. Biotechnol., 2012, 39(12), 1731-1740.
[http://dx.doi.org/10.1007/s10295-012-1194-x] [PMID: 23007957]
[106]
Adjei, M.D.; Heinze, T.M.; Deck, J.; Freeman, J.P.; Williams, A.J.; Sutherland, J.B. Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl. Environ. Microbiol., 2006, 72(9), 5790-5793.
[http://dx.doi.org/10.1128/AEM.03032-05] [PMID: 16957195]
[107]
Kim, D.W.; Heinze, T.M.; Kim, B.S.; Schnackenberg, L.K.; Woodling, K.A.; Sutherland, J.B. Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant. Appl. Environ. Microbiol., 2011, 77(17), 6100-6108.
[http://dx.doi.org/10.1128/AEM.00545-11] [PMID: 21724893]
[108]
Shang, Z.; Salim, A.A.; Khalil, Z.; Bernhardt, P.V.; Capon, R.J.; Capon, R.J. Fungal biotransformation of tetracycline antibiotics. J. Org. Chem., 2016, 81(15), 6186-6194.
[http://dx.doi.org/10.1021/acs.joc.6b01272] [PMID: 27419475]
[109]
Wetzstein, H.G.; Stadler, M.; Tichy, H.V.; Dalhoff, A.; Karl, W. Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl. Environ. Microbiol., 1999, 65(4), 1556-1563.
[PMID: 10103250]
[110]
Parshikov, I.A.; Freeman, J.P.; Lay, J.O., Jr; Beger, R.D.; Williams, A.J.; Sutherland, J.B. Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol. Lett., 1999, 177(1), 131-135.
[http://dx.doi.org/10.1111/j.1574-6968.1999.tb13723.x] [PMID: 10436931]
[111]
Williams, A.J.; Deck, J.; Freeman, J.P.; Paul Chiarelli, M.; Adjei, M.D.; Heinze, T.M.; Sutherland, J.B. Biotransformation of flumequine by the fungus Cunninghamella elegans. Chemosphere, 2007, 67(2), 240-243.
[http://dx.doi.org/10.1016/j.chemosphere.2006.10.016] [PMID: 17123578]
[112]
Parshikov, I.A.; Freeman, J.P.; Lay, J.O., Jr; Beger, R.D.; Williams, A.J.; Sutherland, J.B. Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl. Environ. Microbiol., 2000, 66(6), 2664-2667.
[http://dx.doi.org/10.1128/AEM.66.6.2664-2667.2000] [PMID: 10831454]
[113]
Parshikov, I.A.; Freeman, J.P.; Lay, J.O., Jr; Moody, J.D.; Williams, A.J.; Beger, R.D.; Sutherland, J.B. Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J. Ind. Microbiol. Biotechnol., 2001, 26(3), 140-144. b
[http://dx.doi.org/10.1038/sj.jim.7000077] [PMID: 11420653]
[114]
Parshikov, I.A.; Heinze, T.M.; Moody, J.D.; Freeman, J.P.; Williams, A.J.; Sutherland, J.B. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin.. Appl. Microbiol. Biotechnol., 2001, 56(3-4), 474-477.
[http://dx.doi.org/10.1007/s002530100672] [PMID: 11549022]
[115]
Williams, A.J.; Parshikov, I.A.; Moody, J.D.; Heinze, T.M.; Sutherland, J.B. Fungal transformation of an antimicrobial fluoroquinolone drug during growth on poultry litter materials. J. Appl. Poult. Res., 2004, 13, 235-240.
[http://dx.doi.org/10.1093/japr/13.2.235]
[116]
Cvančarová, M.; Křesinová, Z.; Filipová, A.; Covino, S.; Cajthaml, T. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere, 2012, 88(11), 1317-1323.
[http://dx.doi.org/10.1016/j.chemosphere.2012.03.107] [PMID: 22546633]
[117]
Křesinová, Z.; Moeder, M.; Ezechiáš, M.; Svobodová, K.; Cajthaml, T. Mechanistic study of 17α-ethinylestradiol biodegradation by Pleurotus ostreatus: Tracking of extracelullar and intracelullar degradation mechanisms. Environ. Sci. Technol., 2012, 46(24), 13377-13385.
[http://dx.doi.org/10.1021/es3029507] [PMID: 23150991]
[118]
Marengo, J.R.; Kok, R.A.; O’Brien, K.; Velagaleti, R.R.; Stamm, J.M. Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environ. Toxicol. Chem., 1997, 16, 462-471.
[http://dx.doi.org/10.1002/etc.5620160311]
[119]
Prieto, A.; Möder, M.; Rodil, R.; Adrian, L.; Marco-Urrea, E. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour. Technol., 2011, 102(23), 10987-10995.
[http://dx.doi.org/10.1016/j.biortech.2011.08.055] [PMID: 21937221]
[120]
Edrees, W.H.A.; Abdullah, Q.Y.M. AL-Kaf, A.G.; Naji, K.M. A review on comparative study between the physicochemical and biological processes for paracetamol degradation. Univ. J. Pharmac. Res., 2017, 2(2), 12-21.
[http://dx.doi.org/10.22270/ujpr.v2i2.RW4]
[121]
Mayabhate, S.P.; Gupta, S.K.; Joshi, S.G. Biological treatment of pharmaceutical Wastewater. Water Air Soil Pollut., 1988, 38(1–2), 189-197.
[122]
Deegan, A.M.; Shaik, B.; Nolan, K.; Urell, K.; Oelgemӧller, M.; Tobin, J.; Morrissey, A. Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol., 2011, 8(3), 649-666.
[http://dx.doi.org/10.1007/BF03326250]
[123]
Vanerkar, A.P.; Satyanarayan, S.; Dharmadhikari, D.M. Full scale treatment of herbal pharmaceutical industry wastewater. Int. J. Chem. Phys. Sci., 2013, 2, 52-62.
[124]
Madukasi, E.I.; Dai, X.; He, C.; Zhou, J. Potentials of phototrophic bacteria in treating pharmaceutical wastewater. Int. J. Environ. Sci. Technol., 2010, 7(1), 165-174.
[http://dx.doi.org/10.1007/BF03326128]
[125]
Spina, F.; Anastasi, A.; Prigione, V.; Tigini, V.; Varese, G.C. Biological treatment of industrial wastewaters: A fungal approach. Chem. Eng. Trans., 2012, 27, 175-180.
[126]
Mohammad, P.; Azarmidokht, H.; Fatollah, M.; Mahboubeh, B. Application of response surface methodology for optimization of important parameters in decolorizing treated distillery wastewater using Aspergillus fumigatus UB2.60. Int. Biodeterior. Biodegradation, 2006, 57, 195-199.
[http://dx.doi.org/10.1016/j.ibiod.2006.02.001]
[127]
Angayarkanni, J.; Palaniswamy, M.; Swaminathan, K. Biotreatment of distillery effluent using Aspergillus niveus. Bull. Environ. Contam. Toxicol., 2003, 70(2), 268-277.
[http://dx.doi.org/10.1007/s00128-002-0187-2] [PMID: 12545358]
[128]
Ng, K.K.; Lin, C.F.; Panchangam, S.C.; Hong, A.P.K.; Yang, P.Y. The effect of soluble microbial products on membrane fouling in a fixed carrier biological system. Separ. Purif. Tech., 2010, 72, 98-104.
[http://dx.doi.org/10.1016/j.seppur.2010.01.011]
[129]
Ng, K.K.; Shi, X.; Melvin, K.Y.T.; Ng, H.Y. A novel application of anaerobic bioentrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Separ. Purif. Tech., 2014, 132, 634-643.
[http://dx.doi.org/10.1016/j.seppur.2014.06.021]
[130]
Skouteris, G.; Hermosilla, D.; Lόpez, P.; Negro, C.; Bianco, Á. Anaerobic membrane bioreactors for wastewater treatment: A review. Chem. Eng. J., 2012, 198-199, 138-148.
[http://dx.doi.org/10.1016/j.cej.2012.05.070]
[131]
Chen, Z.; Wang, Y.; Li, K.; Zhou, H. Effects of increasing organic loading rate on performance and microbial community shift of an up-flow anaerobic sludge blanket reactor treating diluted pharmaceutical wastewater. J. Biosci. Bioeng., 2014, 118(3), 284-288.
[http://dx.doi.org/10.1016/j.jbiosc.2014.02.027] [PMID: 24725962]
[132]
Yi, Q.; Zhang, Y.; Gao, Y.; Tian, Z.; Yang, M. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs. Water Res., 2017, 110, 211-217.
[http://dx.doi.org/10.1016/j.watres.2016.12.020] [PMID: 28006711]
[133]
Cetecioglu, Z.; Ince, B.; Orhon, D.; Ince, O. Anaerobic sulfamethoxazole degradation is driven by homoacetogenesis coupled with hydrogenotrophic methanogenesis. Water Res., 2016, 90, 79-89.
[http://dx.doi.org/10.1016/j.watres.2015.12.013] [PMID: 26724442]
[134]
Sponza, D.T.; Demirden, P. Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes. Separ. Purif. Tech., 2007, 56, 108-117.
[http://dx.doi.org/10.1016/j.seppur.2006.07.013]
[135]
Petsas, A.S.; Vagi, M.C. Effects on the photosynthetic activity of algae after exposure to various organic and inorganic pollutants: Review.IntechOpen;; Chlorophyll, E.J-L, Ed.; Croatia,, 2017, pp. 37-77.https://www.intechopen.com/books/chlorophyll/effects-on-the-photosynthetic-activity-of-algae-after-exposure-to-various-organic-and-inorganic-poll
[http://dx.doi.org/10.5772/67991]
[136]
Pehkonen, S.O.; Zhang, Q. The degradation of organophosphorus pesticides in natural waters: A critical review. Crit. Rev. Environ. Sci. Technol., 2002, 32(1), 17-72.
[http://dx.doi.org/10.1080/10643380290813444]
[137]
United States Environmental Protection Agency (2011) Pesticide news story: EPA releases report containing latest estimates of pesticide use in the United States. 2011.https://archive.epa.gov/pesticides/news/web/html/sales-usage06-07.html
[138]
Food and Agriculture Organization of the United Nations (FAO). Where are the stocks of obsolete-pesticides, 2014.http://www.fao.org/agriculture/crops/obsolete-pesticides/where-stocks/en/
[139]
Pieterse, B.; Rijk, I.J.C.; Simon, E.; van Vugt-Lussenburg, B.M.A.; Fokke, B.F.H.; van der Wijk, M.; Besselink, H.; Weber, R.; van der Burg, B. Effect-based assessment of persistent organic pollutant and pesticide dumpsite using mammalian CALUX reporter cell lines. Environ. Sci. Pollut. Res. Int., 2015, 22(19), 14442-14454.
[http://dx.doi.org/10.1007/s11356-015-4739-5] [PMID: 26022396]
[140]
Doolotkeldieva, T.; Maxabat Konurbaeva, M.; Bobusheva, S. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environ. Sci. Pollut. Res., 2017.
[141]
Supreeth, M.; Raju, N.S. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi. Appl. Microbiol. Biotechnol., 2017, 101(15), 5961-5971.
[http://dx.doi.org/10.1007/s00253-017-8401-7] [PMID: 28702792]
[142]
Ahmed, F.E. Analyses of pesticides and their metabolites in foods and drinks. Trends Analyt. Chem., 2001, 20(11), 649-661.
[http://dx.doi.org/10.1016/S0165-9936(01)00121-2]
[143]
Biziuk, M.; Stocka, J. Multiresidue methods for determination of currently used pesticides in fruits and vegetables using QuEChERS technique. Int. J. Environ. Sci. Dev., 2015, 6(1), 18-22.
[http://dx.doi.org/10.7763/IJESD.2015.V6.554]
[144]
European Commission, Health and Food Safety, Plants, Pesticides, Maximum Residues Levels, EU legislation on MRLs. https://ec.europa.eu/food/plant/pesticides/max_residue_levels_en
[146]
Lacorte, S.; Fernandez-Alba, A.R. Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrom. Rev., 2006, 25(6), 866-880.
[http://dx.doi.org/10.1002/mas.20094] [PMID: 16752429]
[147]
Ridgway, K.; Lalljie, S.P.D.; Smith, R.M. Sample preparation techniques for the determination of trace residues and contaminants in foods. J. Chromatogr. A, 2007, 1153(1-2), 36-53. [Review]
[http://dx.doi.org/10.1016/j.chroma.2007.01.134] [PMID: 17313955]
[148]
Beyer, A.; Biziuk, M. Applications of sample preparation techniques in the analysis of pesticides and PCBs in food. Food Chem., 2008, 108(2), 669-680.
[http://dx.doi.org/10.1016/j.foodchem.2007.11.024] [PMID: 26059147]
[149]
Boricha, H.; Fulekar, M.H. Pseudomonas plecoglossida as a novel organism for the bioremediation of cypermethrin. Biol. Med. (Aligarh), 2009, 1(4), 1-10.
[150]
Velázquez-Fernández, J.B.; Martínez-Rizo, A.B.; Ramírez-Sandoval, M.; Domínguez-Ojeda, D. Biodegradation and Bioremediation of Organic Pesticides.Pesticides-Recent Trends in Pesticide Residue Assay; Soundararajan, R.P., Ed.; IntechOpen: Croatia, 2012, pp. 253-272.https://www.intechopen.com/books/pesticides-recent-trends-in-pesticide-residue-assay/biodegradation-and-bioremediation-of-organic-pesticides
[151]
Uqab, B.; Mudasir, S.; Nazir, R. Review on bioremediation of pesticides. J. Bioremediat. Biodegrad., 2016, 7, 343.
[http://dx.doi.org/10.4172/2155-6199.1000343]
[152]
Prabha, R.; Verma, M.K. Microbial interactions and perspectives for bioremediation of pesticides in the soils.Plant-Microbe Interactions in Agro-Ecological Perspectives; Singh, D.P., Ed.; Springer Nature Singapore Pte Ltd., 2017, pp. 649-671.https://link.springer.com/content/pdf/10.1007%2F978-981-10-6593-4_27.pdf
[153]
Maqbool, Z.; Hussain, S.; Imran, M.; Mahmood, F.; Shahzad, T.; Ahmed, Z.; Azeem, F.; Muzammil, S. Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: A critical review. Environ. Sci. Pollut. Res. Int., 2016, 23(17), 16904-16925.
[http://dx.doi.org/10.1007/s11356-016-7003-8] [PMID: 27272922]
[154]
Sene, L.; Converti, A.; Secchi, G.A.R.; Simão, R.C.G. New aspects on atrazine biodegradation. Braz. Arch. Biol. Technol., 2010, 53(2), 487-496.
[http://dx.doi.org/10.1590/S1516-89132010000200030]
[155]
Mohamed, A.T.; El-Hussain, A.A.; El-Siddig, M.A.; Osman, A.G. Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology , 2011, 10(3), 274-279.
[http://dx.doi.org/10.3923/biotech.2011.274.279]
[156]
Peng, X.; Huang, J.; Liu, C.; Xiang, Z.; Zhou, J.; Zhong, G. Biodegradation of bensulphuron-methyl by a novel Penicillium pinophilum strain, BP-H-02. J. Hazard. Mater., 2012, 213-214, 216-221.
[http://dx.doi.org/10.1016/j.jhazmat.2012.01.077] [PMID: 22365387]
[157]
Chrinside, A.E.; Ritter, W.F.; Radosevich, M. Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Appl. Environ. Soil. Sci. Article ID, 2011, 658569, 1-10.
[158]
Bastos, A.C.; Magan, N. Trametes versicolor: Potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int. Biodeterior. Biodegradation, 2009, 63(4), 389-394.
[http://dx.doi.org/10.1016/j.ibiod.2008.09.010]
[159]
Nwachukwu, E.O.; Osuji, J.O. Bioremedial degradation of some herbicides by indigenous white rot fungus, Lentinus subnudus. J. Plant Sci., 2007, 2, 619-624.
[http://dx.doi.org/10.3923/jps.2007.619.624]
[160]
Badawi, N.; Rønhede, S.; Olsson, S.; Kragelund, B.B.; Johnsen, A.H.; Jacobsen, O.S.; Aamand, J. Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ. Pollut., 2009, 157(10), 2806-2812.
[http://dx.doi.org/10.1016/j.envpol.2009.04.019] [PMID: 19464778]
[161]
Don, R.H.; Pemberton, J.M. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol., 1981, 145(2), 681-686.
[PMID: 6257648]
[162]
Kwon, G.S.; Sohn, H.Y.; Shin, K.S.; Kim, E.; Seo, B.I. Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl. Microbiol. Biotechnol., 2005, 67(6), 845-850.
[http://dx.doi.org/10.1007/s00253-004-1879-9] [PMID: 15700124]
[163]
Sonkong, K.; Prasertsan, P.; Sobhon, V. Screening and identification of p, p2 –DDT degrading soil isolates. Songklanakarin J. Sci. Technol., 2008, 30(1), 103-110.
[164]
Barragan-Huerta, B.E.; Costa-Perez, C.; Peralta-Cruz, J.; Barrera-Cortes, J.; Esparza-Garcia, F.; Rodriguez-Vazquez, R. Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. Int. Biodeterior. Biodegradation, 2007, 59(3), 239-244.
[http://dx.doi.org/10.1016/j.ibiod.2006.11.001]
[165]
El-Bestawy, E.; Mansy, A.H.; Attia, A.M.; Zahran, H. Biodegradation of persistent chlorinated hydrocarbons using selected freshwater bacteria. J. Bioremediat. Biodegrad., 2014, 5, 226.
[http://dx.doi.org/10.4172/2155-6199.1000226]
[166]
Carrillo-Pérez, E.; Ruiz-Manriquez, A.; Yeomans-Reina, H. Isolation, identification and evaluation of a mixed culture of microorganisms with capability to degrade DDT. Rev. Int. Contam. Ambient., 2004, 20(2), 69-75.
[167]
Fang, H.; Dong, B.; Yan, H.; Tang, F.; Yu, Y. Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J. Hazard. Mater., 2010, 184(1-3), 281-289.
[http://dx.doi.org/10.1016/j.jhazmat.2010.08.034] [PMID: 20828928]
[168]
Smith, A.G. DDT and other chlorinated insecticides.Mammalian Toxicology of Insecticides; Marrs, T., Ed.; Royal Society of Chemistry, 2012, pp. 37-103.http://pubs.rsc.org/en/content/chapter/bk9781849731911-00037/978-1-84973-191-1
[http://dx.doi.org/10.1039/9781849733007-00037]
[169]
Jayashree, R.; Vasudevan, N. Organochlorine pesticide residues in ground water of Thiruvallur district, India. Environ. Monit. Assess., 2007, 128(1-3), 209-215.
[http://dx.doi.org/10.1007/s10661-006-9306-6] [PMID: 17016752]
[170]
Jayashree, R.; Vasudevan, N. Persistence and distribution of endosulfan under field condition. Environ. Monit. Assess., 2007, 131(1-3), 475-487.
[http://dx.doi.org/10.1007/s10661-006-9493-1] [PMID: 17171258]
[171]
Kafilzadeh, F.; Ebrahimnezhad, M.; Tahery, Y. Isolation and identification of endosulfan-degrading bacteria and evaluation of their bioremediation in kor river, iran. Osong Public Health Res. Perspect., 2015, 6(1), 39-46.
[http://dx.doi.org/10.1016/j.phrp.2014.12.003] [PMID: 25737830]
[172]
Lee, S.E.; Kim, J.S.; Kennedy, I.R.; Park, J.W.; Kwon, G.S.; Koh, S.C.; Kim, J.E. Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. J. Agric. Food Chem., 2003, 51(5), 1336-1340.
[http://dx.doi.org/10.1021/jf0257289] [PMID: 12590478]
[173]
Hussain, S.; Arshad, M.; Saleem, M.; Khalid, A. Biodegradation of alpha- and beta-endosulfan by soil bacteria. Biodegradation, 2007, 18(6), 731-740.
[http://dx.doi.org/10.1007/s10532-007-9102-1] [PMID: 17252313]
[174]
Senthilkumar, S.; Anthonisamy, A.; Arunkumar, S.; Sivakumari, V. Biodegradation of methyl parathion and endosulfan using Pseudomonas aeruginosa and Trichoderma viridae. J. Environ. Sci. Eng., 2011, 53(1), 115-122.
[PMID: 22324156]
[175]
Prabakaran, V.; Peterson, A. Effect of Pseudomonas on biodegradation of pesticide in the fish Cyprinus carpio. J. Ecotoxicol. Environ. Monit., 2006, 16(5), 475-479.
[176]
Matsumoto, E.; Kawanaka, Y.; Yun, S.J.; Oyaizu, H. Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Appl. Microbiol. Biotechnol., 2009, 84(2), 205-216.
[http://dx.doi.org/10.1007/s00253-009-2094-5] [PMID: 19578846]
[177]
Phillips, T.M.; Seech, A.G.; Lee, H.; Trevors, J.T. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation, 2005, 16(4), 363-392.
[http://dx.doi.org/10.1007/s10532-004-2413-6] [PMID: 15865341]
[178]
Murthy, H.M.; Manonmani, H.K. Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. J. Hazard. Mater., 2007, 149(1), 18-25.
[http://dx.doi.org/10.1016/j.jhazmat.2007.03.053] [PMID: 17502125]
[179]
Rodríguez-Garrido, B.; Lú-Chau, T.A.; Feijoo, G.; Macías, F.; Monterrroso, M.C. Reductive dechlorination of α-, β-, γ-, and δ-hexachlorocyclohexane isomers with hydroxocobalamin, in soil slurry systems. Environ. Sci. Technol., 2010, 44(18), 7063-7069.
[http://dx.doi.org/10.1021/es1012438] [PMID: 20715766]
[180]
Pućko, M.; Stern, G.A.; Barber, D.G.; Macdonald, R.W.; Warner, K.A.; Fuchs, C. Mechanisms and implications of α-HCH enrichment in melt pond water on Arctic sea ice. Environ. Sci. Technol., 2012, 46(21), 11862-11869.
[http://dx.doi.org/10.1021/es303039f] [PMID: 23039929]
[181]
Gupta, A.; Kaushik, C.P.; Kaushik, A. Degradation of hexachlorocyclohexane isomers by two strains of Alcaligenes faecalis isolated from a contaminated site. Bull. Environ. Contam. Toxicol., 2001, 66(6), 794-800.
[http://dx.doi.org/10.1007/s001280078] [PMID: 11353383]
[182]
El-Bestawy, E.A.; Abd El-Salam, A.Z.; Mansy, A.E.R.H. Potential use of environmental cyanobacterial species in bioremediation on lindane-contaminated effluents. Int. Biodeterior. Biodegradation, 2007, 59, 180-192.
[http://dx.doi.org/10.1016/j.ibiod.2006.12.005]
[183]
Abdul Salam, J.; Lakshmi, V.; Das, D.; Das, N. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J. Microbiol. Biotechnol., 2013, 29(3), 475-487.
[http://dx.doi.org/10.1007/s11274-012-1201-4] [PMID: 23108665]
[184]
Nagata, Y.; Ohtsubo, Y.; Endo, R.; Ichikawa, N.; Ankai, A.; Oguchi, A.; Fukui, S.; Fujita, N.; Tsuda, M. Complete genome sequence of the representative γ-hexachlorocyclohexane-degrading bacterium Sphingobium japonicum UT26. J. Bacteriol., 2010, 192(21), 5852-5853.
[http://dx.doi.org/10.1128/JB.00961-10] [PMID: 20817768]
[185]
Cao, X.; Yang, C.; Liu, R.; Li, Q.; Zhang, W.; Liu, J.; Song, C.; Qiao, C.; Mulchandani, A. Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase. Biodegradation, 2013, 24(2), 295-303.
[http://dx.doi.org/10.1007/s10532-012-9587-0] [PMID: 22910813]
[186]
Hussain, S.; Arshad, M.; Saleem, M.; Zahir, Z.A. Screening of soil fungi for in vitro degradation of endosulfan. World J. Microbiol. Biotechnol., 2007, 23, 939-945. b
[http://dx.doi.org/10.1007/s11274-006-9317-z]
[187]
Goswami, S.; Vig, K.; Singh, D.K. Biodegradation of α and β endosulfan by Aspergillus sydoni. Chemosphere, 2009, 75(7), 883-888.
[http://dx.doi.org/10.1016/j.chemosphere.2009.01.057] [PMID: 19237186]
[188]
Kamei, I.; Takagi, K.; Kondo, R. Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsuta. J. Wood Sci., 2011, 57, 317-322.
[http://dx.doi.org/10.1007/s10086-011-1176-z]
[189]
Bhalerao, T.S. Bioremediation of endosulfan-contaminated soil by using bioaugmentation treatment of fungal inoculants Aspergillus niger. Turk. J. Biol., 2012, 36, 561-567.
[190]
Ulčnik, A.; Kralj Cigić, I.; Pohleven, F. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J. Microbiol. Biotechnol., 2013, 29(12), 2239-2247.
[http://dx.doi.org/10.1007/s11274-013-1389-y] [PMID: 23736895]
[191]
Bhalerao, T.S.; Puranik, P.R. Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int. Biodeterior. Biodegradation, 2007, 59(4), 315-321.
[http://dx.doi.org/10.1016/j.ibiod.2006.09.002]
[192]
Javaid, M.K.; Ashiq, M.; Tahir, M. Potential of biological agents in decontamination of agricultural soil. Scientifica (Cairo), 2016.20161598325
[http://dx.doi.org/10.1155/2016/1598325] [PMID: 27293964]
[193]
Kataoka, R.; Takagi, K.; Sakakibara, F. A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J. Pestic. Sci., 2010, 35(3), 326-332.
[http://dx.doi.org/10.1584/jpestics.G10-10]
[194]
Guillén-Jiménez, F.D.M.; Cristiani-Urbina, E.; Cancino-Díaz, J.C.; Flores-Moreno, J.L.; Barragán-Huerta, B.E. Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: Kinetic study and identification of metabolites. Int. Biodeterior. Biodegradation, 2012, 74, 36-47.
[http://dx.doi.org/10.1016/j.ibiod.2012.04.020]
[195]
Pinto, A.P.; Serrano, C.; Pires, T.; Mestrinho, E.; Dias, L.; Teixeira, D.M.; Caldeira, A.T. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci. Total Environ., 2012, 435-436, 402-410.
[http://dx.doi.org/10.1016/j.scitotenv.2012.07.027] [PMID: 22878100]
[196]
Ortega, S.N.; Nitschke, M.; Mouad, A.M.; Landgraf, M.D.; Rezende, M.O.; Seleghim, M.H.; Sette, L.D.; Porto, A.L. Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegradation, 2011, 22(1), 43-50.
[http://dx.doi.org/10.1007/s10532-010-9374-8] [PMID: 20533078]
[197]
Bending, G.D.; Friloux, M.; Walker, A. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol. Lett., 2002, 212(1), 59-63.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11245.x] [PMID: 12076788]
[198]
Rani, K.; Dhania, G. Bioremediation and biodegradation of pesticide from contaminated soil and water- a noval approach. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(10), 23-33.
[199]
Sutherland, T.D.; Horne, I.; Harcourt, R.L.; Russell, R.J.; Oakeshott, J.G. Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J. Appl. Microbiol., 2002, 93(3), 380-389.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01728.x] [PMID: 12174035]
[200]
Weir, K.M.; Sutherland, T.D.; Horne, I.; Russell, R.J.; Oakeshott, J.G. A single monooxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl. Environ. Microbiol., 2006, 72(5), 3524-3530.
[http://dx.doi.org/10.1128/AEM.72.5.3524-3530.2006] [PMID: 16672499]
[201]
Singh, B.K.; Kuhad, R.C.; Singh, A.; Lal, R.; Tripathi, K.K. Biochemical and molecular basis of pesticide degradation by microorganisms. Crit. Rev. Biotechnol., 1999, 19(3), 197-225.
[http://dx.doi.org/10.1080/0738-859991229242] [PMID: 10526405]
[202]
Kumari, R.; Subudhi, S.; Suar, M.; Dhingra, G.; Raina, V.; Dogra, C.; Lal, S.; van der Meer, J.R.C.; Holliger, C.; Lal, R. Cloning and characterization of lin genes responsible for the degradation of Hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl. Environ. Microbiol., 2002, 68(12), 6021-6028.
[http://dx.doi.org/10.1128/AEM.68.12.6021-6028.2002] [PMID: 12450824]
[203]
Böltner, D.; Moreno-Morillas, S.; Ramos, J.L. 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ. Microbiol., 2005, 7(9), 1329-1338.
[http://dx.doi.org/10.1111/j.1462-5822.2005.00820.x] [PMID: 16104856]
[204]
Cérémonie, H.; Boubakri, H.; Mavingui, P.; Simonet, P.; Vogel, T.M. Plasmid-encoded γ-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). FEMS Microbiol. Lett., 2006, 257(2), 243-252.
[http://dx.doi.org/10.1111/j.1574-6968.2006.00188.x] [PMID: 16553860]
[205]
Lal, R.; Dogra, C.; Malhotra, S.; Sharma, P.; Pal, R. Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol., 2006, 24(3), 121-130.
[http://dx.doi.org/10.1016/j.tibtech.2006.01.005] [PMID: 16473421]
[206]
Wu, J.; Hong, Q.; Sun, Y.; Hong, Y.; Yan, Q.; Li, S. Analysis of the role of LinA and LinB in biodegradation of delta-hexachlorocyclohexane. Environ. Microbiol., 2007, 9(9), 2331-2340.
[http://dx.doi.org/10.1111/j.1462-2920.2007.01350.x] [PMID: 17686029]
[207]
Manickam, N.; Mau, M.; Schlömann, M. Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Appl. Microbiol. Biotechnol., 2006, 69(5), 580-588.
[http://dx.doi.org/10.1007/s00253-005-0162-z] [PMID: 16315057]
[208]
Sharma, P.; Raina, V.; Kumari, R.; Malhotra, S.; Dogra, C.; Kumari, H.; Kohler, H.P.E.; Buser, H.R.; Holliger, C.; La, R. Haloalkane dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Arthrobacter aurescens B90A. Appl. Environ. Microbiol., 2006, 72(9), 5720-5727.
[http://dx.doi.org/10.1128/AEM.00192-06] [PMID: 16957186]
[209]
Suar, M.; Hauser, A.; Poiger, T.; Buser, H.R.; Müller, M.D.; Dogra, C.; Raina, V.; Holliger, C.; van der Meer, J.R.; Lal, R.; Kohler, H.P.E. Enantioselective transformation of α-hexachlorocyclohexane by the dehydrochlorinases LinA1 and LinA2 from the soil bacterium Sphingomonas paucimobilis B90A. Appl. Environ. Microbiol., 2005, 71(12), 8514-8518.
[http://dx.doi.org/10.1128/AEM.71.12.8514-8518.2005] [PMID: 16332842]
[210]
Irshad, A.; Massod, A. Bioremediation of Pesticides Biodegradation and Bioremediation, Publisher: Studium Press LLC, U.S.A,, 2014; Chapter: 5, pp. 125-165.
[211]
Ang, E.L.; Zhao, H.M.; Obbard, J.P. Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb. Technol., 2005, 37, 487-496.
[http://dx.doi.org/10.1016/j.enzmictec.2004.07.024]
[212]
Hong, M.S.; Rainina, E.; Grimsley, J.K.; Dale, B.E.; Wild, J.R. Neurotoxic organophosphate degradation with polyvinyl alcohol gel-immobilized microbial cells. Bioremediat. J., 1998, 2(2), 145-157.
[http://dx.doi.org/10.1080/10889869891214277]
[213]
Gao, Y.; Chen, S.; Hu, M.; Hu, Q.; Luo, J.; Li, Y. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One, 2012, 7(6)e38137
[http://dx.doi.org/10.1371/journal.pone.0038137] [PMID: 22693630]
[214]
Theriot, C.M.; Grunden, A.M. Hydrolysis of organophosphorus compounds by microbial enzymes. Appl. Microbiol. Biotechnol., 2011, 89(1), 35-43.
[http://dx.doi.org/10.1007/s00253-010-2807-9] [PMID: 20890601]
[215]
Cheng, T.C.; Harvey, S.P.; Stroup, A.N. Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl. Environ. Microbiol., 1993, 59(9), 3138-3140.
[PMID: 16349054]
[216]
Chino-Flores, C.; Dantán-González, E.; Vázquez-Ramos, A.; Tinoco-Valencia, R.; Díaz-Méndez, R.; Sánchez-Salinas, E.; Castrejón-Godínez, M.L.; Ramos-Quintana, F.; Ortiz-Hernández, M.L. Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides. Biodegradation, 2012, 23(3), 387-397.
[http://dx.doi.org/10.1007/s10532-011-9517-6] [PMID: 22065283]
[217]
Gilani, R.A.; Rafique, M.; Rehman, A.; Munis, M.F.H.; Rehman, S.U.; Chaudhary, H.J. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J. Basic Microbiol., 2016, 56(2), 105-119.
[http://dx.doi.org/10.1002/jobm.201500336] [PMID: 26837064]
[218]
Kumar, S.; Kaushik, G.; Dar, M.A.; Nimesh, S.; López-Chuken, U.J.; Villarreal-Chiu, J.F. Microbial degradation of organophosphate pesticides: A review. Pedosphere, 2018, 28(2), 190-208.
[http://dx.doi.org/10.1016/S1002-0160(18)60017-7]
[219]
Das, S.; Singh, D.K. Purification and characterization of phosphotriesterases from Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL11. Can. J. Microbiol., 2006, 52(2), 157-168.
[http://dx.doi.org/10.1139/w05-113] [PMID: 16541152]
[220]
Singh, B.K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev., 2006, 30(3), 428-471.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00018.x] [PMID: 16594965]
[221]
Serdar, C.M.; Gibson, D.T.; Munnecke, D.M.; Lancaster, J.H. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl. Environ. Microbiol., 1982, 44(1), 246-249.
[PMID: 16346063]
[222]
Somara, S.; Siddavattam, D. Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem. Mol. Biol. Int., 1995, 36(3), 627-631.
[PMID: 7549962]
[223]
Horne, I.; Harcourt, R.L.; Sutherland, T.D.; Russell, R.J.; Oakeshott, J.G. Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol. Lett., 2002, 206(1), 51-55.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb10985.x] [PMID: 11786256]
[224]
Horne, I.; Sutherland, T.D.; Harcourt, R.L.; Russell, R.J.; Oakeshott, J.G. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol., 2002, 68(7), 3371-3376.
[http://dx.doi.org/10.1128/AEM.68.7.3371-3376.2002] [PMID: 12089017]
[225]
Cheng, T.C.; Harvey, S.P.; Chen, G.L. Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl. Environ. Microbiol., 1996, 62(5), 1636-1641.
[PMID: 8633861]
[226]
Cheng, T.; Liu, L.; Wang, B.; Wu, J.; DeFrank, J.J.; Anderson, D.M.; Rastogi, V.K.; Hamilton, A.B. Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzyme from Alteromonas haloplanktis. J. Ind. Microbiol. Biotechnol., 1997, 18(1), 49-55.
[http://dx.doi.org/10.1038/sj.jim.2900358] [PMID: 9079288]
[227]
Zhongli, C.; Shunpeng, L.; Guoping, F. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Environ. Microbiol., 2001, 67(10), 4922-4925.
[http://dx.doi.org/10.1128/AEM.67.10.4922-4925.2001] [PMID: 11571204]
[228]
Wang, L.; Wen, Y.; Guo, X.; Wang, G.; Li, S.; Jiang, J. Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation, 2010, 21(4), 513-523.
[http://dx.doi.org/10.1007/s10532-009-9320-9] [PMID: 19960233]
[229]
Zhang, R.; Cui, Z.; Zhang, X.; Jiang, J.; Gu, J.D.; Li, S. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation, 2006, 17(5), 465-472.
[http://dx.doi.org/10.1007/s10532-005-9018-6] [PMID: 16477356]
[230]
Anzai, J. Use of biosensors for detecting organophosphorus agents. Yakugaku Zasshi, 2006, 126(12), 1301-1308.
[http://dx.doi.org/10.1248/yakushi.126.1301] [PMID: 17139155]
[231]
Yañez-Ocampo, G.; Penninckx, M.; Jiménez-Tobon, G.A.; Sánchez-Salinas, E.; Ortiz-Hernández, M.L. Removal of two organophosphate pesticides employing a bacteria consortium immobilized in either alginate or tezontle. J. Hazard. Mater., 2009, 168, 1554-1561.
[http://dx.doi.org/10.1016/j.jhazmat.2009.03.047] [PMID: 19362771]
[232]
Xie, S.; Liu, J.; Li, L.; Qiao, C. Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J. Environ. Sci. (China), 2009, 21(1), 76-82.
[http://dx.doi.org/10.1016/S1001-0742(09)60014-0] [PMID: 19402403]
[233]
Akbar, S.; Sultan, S. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz. J. Microbiol., 2016, 47(3), 563-570.
[http://dx.doi.org/10.1016/j.bjm.2016.04.009] [PMID: 27266625]
[234]
Briceño, G.; Fuentes, M.S.; Palma, G.; Jorquera, M.A.; Amoroso, M.J.; Diez, M.C. Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int. Biodeter. Biodegrad., 2012, 73, 1-7.
[http://dx.doi.org/10.1016/j.ibiod.2012.06.002]
[235]
Fulekar, M.H.; Geetha, M. Bioremediation of chlorpyrifos by Pseudomonas aeruginosa using scale up technique. J. Appl. Biosci., 2008, 12, 657-660.http://m.elewa.org/JABS/2008/12/6.pdf
[236]
Lahkshmi, C.V.; Kumar, M.; Khanna, S. Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int. Biodeter. Biodegrad., 2008, 62, 204-209.
[http://dx.doi.org/10.1016/j.ibiod.2007.12.005]
[237]
Li, X.; Jiang, J.; Gu, L.; Ali, S.W.; He, J.; Li, S. Diversity of chlorpyrifos-degrading bacteria isolated from chlorpyrifos-contaminated samples. Int. Biodeter. Biodegrad., 2008, 6, 331-335.
[http://dx.doi.org/10.1016/j.ibiod.2008.03.001]
[238]
Harishankar, M.K.; Sasikala, C.; Ramya, M. Efficiency of the intestinal bacteria in the degradation of the toxic pesticide, chlorpyrifos. 3 Biotech, 2013, 3(2), 137-142.
[http://dx.doi.org/10.1007/s13205-012-0078-0] [PMID: 28324568]
[239]
Mishra, D.; Bhuyan, S.; Adhya, T.K.; Sethunathan, N. Accelerated degradation of methyl parathion, parathion and fenitrothion by suspensions from methyl parathion and p- nitrophenol treated soils. Soil Biol. Biochem., 1992, 24, 1035-1042.
[http://dx.doi.org/10.1016/0038-0717(92)90033-T]
[240]
Mishra, A.; Jamaluddin, K.; Pandey, A.K. A Review on microbial degradation of organophosphorous pesticide: methyl parathion., 2017.
[241]
Mishra, A.; Khan, J.; Pandey, A.K. Degradation of methyl parathion by a soil bacterial isolate: A Pot Study. J. Experim. Sci., 2017, 8, 1-7.
[242]
Supreeth, M.; Raju, N.S. Bio-mineralization of organophosphorous insecticide-chlorpyrifos and its hydrolyzed product 3,5,6-trichloro-2-pyridinol by Staphylococcus sp. ES-2. Curr. World Environ., 2016, 11, 486-491.
[http://dx.doi.org/10.12944/CWE.11.2.17]
[243]
Jimenez-Torres, C.; Ortiz, I.; San-Martin, P.; Hernandez-Herrera, R.I. Biodegradation of malathion, α- and β-endosulfan by bacterial strains isolated from agricultural soil in Veracruz, Mexico. J. Environ. Sci. Health B, 2016, 51(12), 853-859.
[http://dx.doi.org/10.1080/03601234.2016.1211906] [PMID: 27715499]
[244]
Malghani, S.; Chatterjee, N.; Yu, H.X.; Luo, Z. Isolation and identification of Profenofos degrading bacteria. Braz. J. Microbiol., 2009, 40(4), 893-900.
[http://dx.doi.org/10.1590/S1517-83822009000400021] [PMID: 24031438]
[245]
Zeinat, K.; Nashwa, A.H.; Ibrahim, M. Biodegradation and detoxification of malathion by of Bacillus thuringiensis MOS-5. Aust. J. Basic Appl. Sci., 2008, 2(3), 724-732.
[246]
Karpouzas, D.G.; Fotopoulou, A.; Menkissoglu-Spiroudi, U.; Singh, B.K. Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol. Ecol., 2005, 53(3), 369-378.
[http://dx.doi.org/10.1016/j.femsec.2005.01.012] [PMID: 16329956]
[247]
Sabdono, A.; Radjasa, O.K. Phylogenetic diversity of organophosphorous pesticide-degrading coral bacteria from Mid-West Coast of Indonesia. Biotechnol., 2008, 7(4), 694-701.
[http://dx.doi.org/10.3923/biotech.2008.694.701]
[248]
Savadogo, P.W.; Savadogo, A.; Ouattara, A.S.; Sedogo, M.P.; Traoré, S. Anaerobic biodegradation of sumithion an organophosphorus insecticide used in Burkina Faso agriculture by acclimatized indigenous bacteria. Pak. J. Biol. Sci., 2007, 10(11), 1896-1905.
[http://dx.doi.org/10.3923/pjbs.2007.1896.1905] [PMID: 19086557]
[249]
Zhang, X.; Wu, W.; Zhang, Y.; Wang, J.; Liu, Q.; Geng, C.; Lu, J. Screening of efficient hydrocarbon-degrading strains and study on influence factors of degradation of refinery oily sludge. Ind. Eng. Chem. Res., 2007, 46(26), 8910-8917.
[http://dx.doi.org/10.1021/ie061376+]
[250]
Chishti, Z.; Hussain, S.; Arshad, K.R.; Khalid, A.; Arshad, M. Microbial degradation of chlorpyrifos in liquid media and soil. J. Environ. Manage., 2013, 114, 372-380.
[http://dx.doi.org/10.1016/j.jenvman.2012.10.032] [PMID: 23176983]
[251]
Verma, J.; Kumar, D.; Sagar, R. Pesticide relevance and their microbial degradation: a-state-of-art. Rev. Environ. Sci. Biotechnol., 2014, 13, 429-466.
[http://dx.doi.org/10.1007/s11157-014-9341-7]
[252]
Briceño, G.; Schalchli, H.; Mutis, A.; Benimeli, C.S.; Palma, G.; Tortella, G.R.; Diez, M.C. Use of pure and mixed culture of diazinon-degrading Streptomyces to remove other organophosphorus pesticides. Int. Biodeter. Biodegrad., 2016, 114, 193-201.
[http://dx.doi.org/10.1016/j.ibiod.2016.06.018]
[253]
Abraham, J.; Silambarasan, S. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic. Biochem. Physiol., 2016, 126, 13-21.
[http://dx.doi.org/10.1016/j.pestbp.2015.07.001] [PMID: 26778429]
[254]
Deng, S.; Chen, Y.; Wang, D.; Shi, T.; Wu, X.; Ma, X.; Li, X.; Hua, R.; Tang, X.; Li, Q.X. Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J. Hazard. Mater., 2015, 297, 17-24.
[http://dx.doi.org/10.1016/j.jhazmat.2015.04.052] [PMID: 25938642]
[255]
Jabeen, H.; Iqbal, S.; Anwar, S. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a novel rhizobial strain Mesorhizobium sp. HN3. Water Environ. J., 2015, 29, 151-160.
[http://dx.doi.org/10.1111/wej.12081]
[256]
Naveena, B.; Annalakshmi, G.; Partha, N. An efficacious degradation of pesticide by salt tolerant Streptomyces venezuelae ACT 1. Bioresour. Technol., 2013, 132, 378-382.
[http://dx.doi.org/10.1016/j.biortech.2012.11.019] [PMID: 23206806]
[257]
Foster, L.J.R.; Kwan, B.H.; Vancov, T. Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiol. Lett., 2004, 240(1), 49-53.
[http://dx.doi.org/10.1016/j.femsle.2004.09.010] [PMID: 15500978]
[258]
Cáceres, T.P.; Megharaj, M.; Naidu, R. Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr. Microbiol., 2008, 57(6), 643-646.
[http://dx.doi.org/10.1007/s00284-008-9293-7] [PMID: 18923866]
[259]
Lan, W.S.; Gu, J.D.; Zang, J.L.; Shen, B.C.; Jiang, H.; Mulchandari, A.; Chen, W.; Qiao, C.L. Co-expression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. Int. Biodeter. Biodegrad., 2006, 58(2), 70-76.
[http://dx.doi.org/10.1016/j.ibiod.2006.07.008]
[260]
Maloney, S.E.; Maule, A.; Smith, A.R.W. Microbial transformation of the pyrethroid insecticides: Permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl. Environ. Microbiol., 1988, 54(11), 2874-2876.
[PMID: 3145715]
[261]
Grant, R.J.; Daniell, T.J.; Betts, W.B. Isolation and identification of synthetic pyrethroid-degrading bacteria. J. Appl. Microbiol., 2002, 92(3), 534-540.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01558.x] [PMID: 11872130]
[262]
Chen, S.; Lai, K.; Li, Y.; Hu, M.; Zhang, Y.; Zeng, Y. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl. Microbiol. Biotechnol., 2011, 90(4), 1471-1483.
[http://dx.doi.org/10.1007/s00253-011-3136-3] [PMID: 21327411]
[263]
Paingankar, M.; Jain, M.; Deobagkar, D. Biodegradation of allethrin, a pyrethroid insecticide, by an acidomonas sp. Biotechnol. Lett., 2005, 27(23-24), 1909-1913.
[http://dx.doi.org/10.1007/s10529-005-3902-3] [PMID: 16328989]
[264]
Liang, W.Q.; Wang, Z.Y.; Li, H.; Wu, P.C.; Hu, J.M.; Luo, N.; Cao, L.X.; Liu, Y.H. Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J. Agric. Food Chem., 2005, 53(19), 7415-7420.
[http://dx.doi.org/10.1021/jf051460k] [PMID: 16159167]
[265]
Saikia, N.; Das, S.K.; Patel, B.K.C.; Niwas, R.; Singh, A.; Gopal, M. Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1. Biodegradation, 2005, 16(6), 581-589.
[http://dx.doi.org/10.1007/s10532-005-0211-4] [PMID: 15865349]
[266]
Mendoza, J.C.; Perea, Y.; Salvador, J.A. Bacterial biodegradation of permetrina and cipermetrina pesticides in a culture assemblage. Avances en Ciencias e Ingenieria, 2011, 2(3), 45-55.
[267]
Ha, J.; Engler, C.R.; Wild, J.R. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour. Technol., 2009, 100(3), 1138-1142.
[http://dx.doi.org/10.1016/j.biortech.2008.08.022] [PMID: 18845433]
[268]
Deng, W.; Lin, D.; Yao, K.; Yuan, H.; Wang, Z.; Li, J.; Zou, L.; Han, X.; Zhou, K.; He, L.; Hu, X.; Liu, S. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Appl. Microbiol. Biotechnol., 2015, 99(19), 8187-8198. b
[http://dx.doi.org/10.1007/s00253-015-6690-2] [PMID: 26022858]
[269]
Parekh, N.R.; Hartmann, A.; Charnay, M.P.; Fournier, J.C. Diversity of carbofuran–degrading soil bacteria and detection of plasmid–encoded sequences homologous to the mcd gene. FEMS Microbiol. Ecol., 1995, 17, 149-160.
[http://dx.doi.org/10.1111/j.1574-6941.1995.tb00138.x]
[270]
Tomasek, P.H.; Karns, J.S. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in gram-negative bacteria. J. Bacteriol., 1989, 171(7), 4038-4044.
[http://dx.doi.org/10.1128/jb.171.7.4038-4044.1989] [PMID: 2661544]
[271]
Desaint, S.; Hartmann, A.; Parekh, N.R.; Fournier, J. Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol. Ecol., 2000, 34(2), 173-180.
[http://dx.doi.org/10.1111/j.1574-6941.2000.tb00767.x] [PMID: 11102695]
[272]
Desaint, S.; Arrault, S.; Siblot, S.; Fournier, J.C. Genetic transfer of the mcd gene in soil. J. Appl. Microbiol., 2003, 95(1), 102-108.
[http://dx.doi.org/10.1046/j.1365-2672.2003.01965.x] [PMID: 12807459]
[273]
Hayatsu, M.; Mizutani, A.; Hashimoto, M.; Sato, K.; Hayano, K. Purification and characterization of carbaryl hydrolase from Arthrobacter sp. RC100. FEMS Microbiol. Lett., 2001, 201(1), 99-103.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10739.x] [PMID: 11445174]
[274]
Cheesman, M.J.; Horne, I.; Weir, K.M.; Pandey, G.; Williams, M.R.; Scott, C.; Russell, R.J.; Oakeshott, J.G. 2017, American Chemical Society (ACS Symposium Series, 2007Vol. 966, pp. 288-305.
[http://dx.doi.org/10.1021/bk-2007-0966.ch018]
[275]
Slaoui, M.; Ouhssine, M.; Berny, E.; Elyachioui, M. Biodegradation of the carbofuran by a fungus isolated from treated soil. Afr. J. Biotechnol., 2007, 6, 419-423.
[276]
Yang, L.; Chen, S.; Hu, M.; Hao, W.; Geng, P.; Zhang, Y. Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils. Biol. Fertil. Soils, 2011, 47, 17-923.
[http://dx.doi.org/10.1007/s00374-011-0602-0]
[277]
Hussain, S.; Devers-Lamrani, M.; El Azhari, N.; Martin-Laurent, F. Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation, 2011, 22(3), 637-650.
[http://dx.doi.org/10.1007/s10532-010-9437-x] [PMID: 21110068]
[278]
Hernández, M.; Villalobos, P.; Morgante, V.; González, M.; Reiff, C.; Moore, E.; Seeger, M. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41. FEMS Microbiol. Lett., 2008, 286(2), 184-190. a
[http://dx.doi.org/10.1111/j.1574-6968.2008.01274.x] [PMID: 18647357]
[279]
Hernández, M.; Morgante, V.; Ávila, M.; Villalobos, P.; Miralles, P.; González, M.; Seeger, M. Novel s-triazine-degrading bacteria isolated from agricultural soils of central Chile for herbicide bioremediation. Electron. J. Biotechnol., 11(5)http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v11n5-4/6672018,
[http://dx.doi.org/10.2225/vol11-issue5-fulltext-4]
[280]
Iwasaki, A.; Takagi, K.; Yoshioka, Y.; Fujii, K.; Kojima, Y.; Harada, N. Isolation and characterization of a novel simazine-degrading β-proteobacterium and detection of genes encoding s-triazine-degrading enzymes. Pest Manag. Sci., 2007, 63(3), 261-268.
[http://dx.doi.org/10.1002/ps.1334] [PMID: 17304635]
[281]
Satsuma, K. Characterisation of new strains of atrazine-degrading Nocardioides sp. isolated from Japanese riverbed sediment using naturally derived river ecosystem. Pest Manag. Sci., 2006, 62(4), 340-349.
[http://dx.doi.org/10.1002/ps.1172] [PMID: 16493696]
[282]
Smith, D.; Alvey, S.; Crowley, D.E. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. FEMS Microbiol. Ecol., 2005, 53(2), 265-273.
[http://dx.doi.org/10.1016/j.femsec.2004.12.011] [PMID: 16329946]
[283]
Yanze-Kontchou, C.; Gschwind, N. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl. Environ. Microbiol., 1994, 60(12), 4297-4302.
[PMID: 7811069]
[284]
Rousseaux, S.; Hartmann, A.; Soulas, G. Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol. Ecol., 2001, 36(2-3), 211-222.
[http://dx.doi.org/10.1111/j.1574-6941.2001.tb00842.x] [PMID: 11451526]
[285]
Topp, E. A comparison of three atrazine-degrading bacteria for soil bioremediation. Biol. Fertil. Soils, 2001, 33, 529-534.
[http://dx.doi.org/10.1007/s003740100371]
[286]
Strong, L.C.; Rosendahl, C.; Johnson, G.; Sadowsky, M.J.; Wackett, L.P. Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl. Environ. Microbiol., 2002, 68(12), 5973-5980.
[http://dx.doi.org/10.1128/AEM.68.12.5973-5980.2002] [PMID: 12450818]
[287]
Wyss, A.; Boucher, J.; Montero, A.; Marison, I. Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzyme Microb. Technol., 2006, 40(1), 25-31.
[http://dx.doi.org/10.1016/j.enzmictec.2005.10.033]
[288]
Villaverde, J.; Rubio-Bellido, M.; Lara-Moreno, A.; Merchan, F.; Morillo, E. Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Chemosphere, 2018, 193, 118-125.
[http://dx.doi.org/10.1016/j.chemosphere.2017.10.172] [PMID: 29127836]
[289]
Sørensen, S.R.; Holtze, M.S.; Simonsen, A.; Aamand, J. Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Appl. Environ. Microbiol., 2007, 73(2), 399-406.
[http://dx.doi.org/10.1128/AEM.01498-06] [PMID: 17114317]
[290]
Harada, N.; Takagi, K.; Harazono, A.; Fujii, K.; Iwasaki, A. Isolation and characterization of microorganisms capable of hydrolyzing the herbicide mefenacet. Soil Biol. Biochem., 2006, 38(1), 173-179.
[http://dx.doi.org/10.1016/j.soilbio.2005.04.015]
[291]
Peng, R.H.; Xiong, A.S.; Xue, Y.; Fu, X.Y.; Gao, F.; Zhao, W.; Tian, Y.S.; Yao, Q.H. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev., 2008, 32(6), 927-955.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00127.x] [PMID: 18662317]
[292]
Okai, M.; Kihara, I.; Yokoyama, Y.; Ishida, M.; Urano, N. Isolation and characterization of benzo[a]pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiol. Lett., 2015, 362(18)fnv143
[http://dx.doi.org/10.1093/femsle/fnv143] [PMID: 26316544]
[293]
Darmawan, R.; Nakata, H.; Ohta, H.; Niidome, T.; Takikawa, K.; Morimura, S. Isolation and evaluation of PAH degrading bacteria. J. Bioremediat. Biodegrad., 2015, 6(3), 283.
[294]
Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Petrol., 2016, 25(1), 107-123.
[295]
Zelinkova, Z.; Wenzl, T. The occurrence of 16 EPA PAHs in foods-A review. Polycycl. Aromat. Compd., 2015, 35(2-4), 248-284.
[http://dx.doi.org/10.1080/10406638.2014.918550] [PMID: 26681897]
[296]
Moreda, W.; Pérez-Camino, M.C.; Cert, A. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J. Chromatogr. A, 2001, 936(1-2), 159-171.
[http://dx.doi.org/10.1016/S0021-9673(01)01222-5] [PMID: 11760997]
[297]
Jira, W. A GC/MS Method for the determination of carcinogenic polycyclic aromatic hydrocarbons (PAH) in smoked meat products and liquid smokes. Eur. Food Res. Technol., 2004, 218, 208-212.
[http://dx.doi.org/10.1007/s00217-003-0827-8]
[298]
Lee, D.W.; Lee, H.; Lee, A.H.; Kwon, B.O.; Khim, J.S.; Yim, U.H.; Kim, B.S.; Kim, J.J. Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environ. Pollut., 2018, 234, 503-512.
[http://dx.doi.org/10.1016/j.envpol.2017.11.097] [PMID: 29216488]
[299]
Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 2017, 168, 944-968.
[http://dx.doi.org/10.1016/j.chemosphere.2016.10.115] [PMID: 27823779]
[300]
Jin, H.M.; Kim, J.M.; Lee, H.J.; Madsen, E.L.; Jeon, C.O. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ. Sci. Technol., 2012, 46(14), 7731-7740.
[http://dx.doi.org/10.1021/es3018545] [PMID: 22709320]
[301]
Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Naidu, R. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings - Assessments in liquid- and slurry-phase systems. Int. Biodeter. Biodegrad., 2016, 108, 149-157.
[http://dx.doi.org/10.1016/j.ibiod.2015.12.013]
[302]
Duan, L.; Naidu, R.; Thavamani, P.; Meaklim, J.; Megharaj, M. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: A risk-based approach. Environ. Sci. Pollut. Res. Int., 2013, 1-15.
[PMID: 24271723]
[303]
Juhasz, A.L.; Naidu, R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeterior. Biodegr., 2000, 45, 57-88.
[http://dx.doi.org/10.1016/S0964-8305(00)00052-4]
[304]
Li, J.; Sun, H.; Zhang, Y. Desorption of pyrene from freshly-amended and aged soils and its relationship to bioaccumulation in earthworms. Soil Sediment Contam., 2007, 16, 79-87.
[http://dx.doi.org/10.1080/15320380601079665]
[305]
Wanapaisan, P.; Laothamteep, N.; Vejarano, F.; Chakraborty, J.; Shintani, M.; Muangchinda, C.; Morita, T.; Suzuki-Minakuchi, C.; Inoue, K.; Nojiri, H.; Pinyakong, O. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J. Hazard. Mater., 2018, 342, 561-570.
[http://dx.doi.org/10.1016/j.jhazmat.2017.08.062] [PMID: 28886568]
[306]
Crampon, M.; Bureau, F.; Akpa-Vinceslas, M.; Bodilis, J.; Machour, N.; Le Derf, F.; Portet-Koltalo, F. Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Environ. Sci. Pollut. Res. Int., 2014, 21(13), 8133-8145.
[http://dx.doi.org/10.1007/s11356-014-2799-6] [PMID: 24671402]
[307]
Xu, X.; Li, X-G.; Sun, S.W. A QSAR study on the biodegradation activity of PAHs in aged contaminated sediments. Chemom. Intell. Lab. Syst., 2012, 114, 50-55.
[http://dx.doi.org/10.1016/j.chemolab.2012.03.002]
[308]
Wang, C.; Sun, H.; Li, J.; Li, Y.; Zhang, Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere, 2009, 77(6), 733-738.
[http://dx.doi.org/10.1016/j.chemosphere.2009.08.028] [PMID: 19751947]
[309]
Gill, K.; Arora, S. Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. J. Ind. Microbiol. Biotechnol., 2003, 30(1), 28-33.
[http://dx.doi.org/10.1007/s10295-002-0002-4] [PMID: 12545383]
[310]
Singh, P.; Tiwary, B.N. Optimization of conditions for polycyclic aromatic hydrocarbons (PAHs) degradation by Pseudomonas stutzeri P2 isolated from Chirimiri coal mines. Biocatal. Agric. Biotechnol., 2017, 10, 20-29.
[http://dx.doi.org/10.1016/j.bcab.2017.02.001]
[311]
Pugazhendi, A.; Qari, H.; Basahi, J.M.; Godon, J.J.; Dhavamani, J. Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. Int. Biodeter. Biodegrad., 2017, 121, 44-54.
[http://dx.doi.org/10.1016/j.ibiod.2017.03.015]
[312]
Wang, F.; Li, C.; Wang, H.; Chen, W.; Huang, Q. Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment. Int. Biodeter. Biodegrad., 2016, 115, 286-292.
[http://dx.doi.org/10.1016/j.ibiod.2016.08.028]
[313]
Cébron, A.; Beguiristain, T.; Bongoua-Devisme, J.; Denonfoux, J.; Faure, P.; Lorgeoux, C.; Ouvrard, S.; Parisot, N.; Peyret, P.; Leyval, C. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environ. Sci. Pollut. Res. Int., 2015, 22(18), 13724-13738.
[http://dx.doi.org/10.1007/s11356-015-4117-3] [PMID: 25616383]
[314]
Ferreira, L.; Rosales, E.; Sanromán, M.A.; Pazos, M. Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by Pseudomonas stutzeri CECT 930 immobilized in hydrogel matrices. J. Chem. Technol. Biotechnol., 2015, 90, 500-506.
[http://dx.doi.org/10.1002/jctb.4338]
[315]
Sun, K.; Liu, J.; Gao, Y.; Jin, L.; Gu, Y.; Wang, W. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci. Rep., 2014, 4, 5462.
[http://dx.doi.org/10.1038/srep05462] [PMID: 24964867]
[316]
Hamamura, N.; Ward, D.M.; Inskeep, W.P. Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiol. Ecol., 2013, 85(1), 168-178.
[http://dx.doi.org/10.1111/1574-6941.12108] [PMID: 23488682]
[317]
Wongwongsee, W.; Chareanpat, P.; Pinyakong, O. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. Mar. Pollut. Bull., 2013, 74(1), 95-104.
[http://dx.doi.org/10.1016/j.marpolbul.2013.07.025] [PMID: 23928000]
[318]
Mao, J.; Luo, Y.; Teng, Y.; Li, Z. Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int. Biodeter. Biodegrad., 2012, 70, 141-147.
[http://dx.doi.org/10.1016/j.ibiod.2012.03.002]
[319]
Arulazhagan, P.; Vasudevan, N. Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain. J. Environ. Sci. (China), 2011, 23(2), 282-287.
[http://dx.doi.org/10.1016/S1001-0742(10)60404-4] [PMID: 21517002]
[320]
Dandie, C.E.; Thomas, S.M.; Bentham, R.H.; McClure, N.C. Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons. J. Appl. Microbiol., 2004, 97(2), 246-255.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02087.x] [PMID: 15239690]
[321]
Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science. Section: Environmental Chemistry Pollution & Waste Management, 2017, 31339841.
[http://dx.doi.org/10.1080/23311843.2017.1339841]
[322]
Wick, L.Y.; Ruiz de Munain, A.; Springael, D.; Harms, H. de, MA. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl. Microbiol. Biotechnol., 2002, 58(3), 378-385.
[http://dx.doi.org/10.1007/s00253-001-0898-z] [PMID: 11935191]
[323]
Kasai, Y.; Shindo, K.; Harayama, S.; Misawa, N. Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl. Environ. Microbiol., 2003, 69(11), 6688-6697.
[http://dx.doi.org/10.1128/AEM.69.11.6688-6697.2003] [PMID: 14602629]
[324]
Head, I.M.; Jones, D.M.; Röling, W.F. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol., 2006, 4(3), 173-182.
[http://dx.doi.org/10.1038/nrmicro1348] [PMID: 16489346]
[325]
Yakimov, M.M.; Timmis, K.N.; Golyshin, P.N. Obligate oil-degrading marine bacteria. Curr. Opin. Biotechnol., 2007, 18(3), 257-266.
[http://dx.doi.org/10.1016/j.copbio.2007.04.006] [PMID: 17493798]
[326]
Dutta, K.; Shityakov, S.; Das, P.P.; Ghosh, C. Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste. Biotech., 2017, 7(6)https://link.springer.com/article/10.1007%2Fs13205-017-0940-1
[327]
Cunliffe, M.; Kertesz, M.A. Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol., 2006, 72(5), 1083-1089.
[http://dx.doi.org/10.1007/s00253-006-0374-x] [PMID: 16568318]
[328]
Pagnout, C.; Frache, G.; Poupin, P.; Maunit, B.; Muller, J.F.; Férard, J.F. Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: expression in Mycobacterium smegmatis mc(2)155. Res. Microbiol., 2007, 158(2), 175-186.
[http://dx.doi.org/10.1016/j.resmic.2006.11.002] [PMID: 17258432]
[329]
Annweiler, E.; Richnow, H.H.; Antranikian, G.; Hebenbrock, S.; Garms, C.; Franke, S.; Francke, W.; Michaelis, W. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl. Environ. Microbiol., 2000, 66(2), 518-523.
[http://dx.doi.org/10.1128/AEM.66.2.518-523.2000] [PMID: 10653712]
[330]
Pinyakong, O.; Habe, H.; Omori, T. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J. Gen. Appl. Microbiol., 2003, 49(1), 1-19.
[http://dx.doi.org/10.2323/jgam.49.1] [PMID: 12682862]
[331]
Pinyakong, O.; Habe, H.; Yoshida, T.; Nojiri, H.; Omori, T. Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem. Biophys. Res. Commun., 2003, 301(2), 350-357.
[http://dx.doi.org/10.1016/S0006-291X(02)03036-X] [PMID: 12565867]
[332]
Dean-Ross, D.; Moody, J.D.; Freeman, J.P.; Doerge, D.R.; Cerniglia, C.E. Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol. Lett., 2001, 204(1), 205-211.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10886.x] [PMID: 11682202]
[333]
Pinyakong, O.; Habe, H.; Kouzuma, A.; Nojiri, H.; Yamane, H.; Omori, T. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol. Lett., 2004, 238(2), 297-305.
[PMID: 15358414]
[334]
Casellas, M.; Grifoll, M.; Bayona, J.M.; Solanas, A.M. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl. Environ. Microbiol., 1997, 63(3), 819-826.
[PMID: 9055403]
[335]
Casellas, M.; Grifoll, M.; Sabate, J.; Solanas, A.M. Isolation and characterization of a 9-fluorenone-degrading bacterial strain and its role in synergistic degradation of fluorene by a consortium. Can. J. Microbiol., 1998, 44, 734-742.
[336]
Habe, H.; Chung, J.S.; Kato, H.; Ayabe, Y.; Kasuga, K.; Yoshida, T.; Nojiri, H.; Yamane, H.; Omori, T. Characterization of the upper pathway genes for fluorene metabolism in Terrabacter sp. strain DBF63. J. Bacteriol., 2004, 186(17), 5938-5944.
[http://dx.doi.org/10.1128/JB.186.17.5938-5944.2004] [PMID: 15317800]
[337]
Wattiau, P.; Bastiaens, L.; van Herwijnen, R.; Daal, L.; Parsons, J.R.; Renard, M.E.; Springael, D.; Cornelis, G.R. Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: A genetic analysis. Res. Microbiol., 2001, 152(10), 861-872.
[http://dx.doi.org/10.1016/S0923-2508(01)01269-4] [PMID: 11766961]
[338]
Pieper, D.H.; Martins dos Santos, V.A.; Golyshin, P.N. Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr. Opin. Biotechnol., 2004, 15(3), 215-224.
[http://dx.doi.org/10.1016/j.copbio.2004.03.008] [PMID: 15193329]
[339]
Neilson, A.H. Organic Chemicals: An Environmental Perspective; CRC Press LLC: Boca Raton, Florida, 2000.
[340]
Doyle, E.; Muckian, L.; Hickey, A.M.; Clipson, N. Microbial PAH degradation. Adv. Appl. Microbiol., 2008, 65, 27-66.
[http://dx.doi.org/10.1016/S0065-2164(08)00602-3] [PMID: 19026861]
[341]
Meckenstock, R.U.; Boll, M.; Mouttaki, H.; Koelschbach, J.S.; Cunha Tarouco, P.; Weyrauch, P.; Dong, X.; Himmelberg, A.M. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. Biotechnol., 2016, 26(1-3), 92-118.
[http://dx.doi.org/10.1159/000441358] [PMID: 26960214]
[342]
Meckenstock, R.U.; Mouttaki, H. Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr. Opin. Biotechnol., 2011, 22(3), 406-414.
[http://dx.doi.org/10.1016/j.copbio.2011.02.009] [PMID: 21398107]
[343]
Kimes, N.E.; Callaghan, A.V.; Suflita, J.M.; Morris, P.J. Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives. Front. Microbiol., 2014, 5, 603.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235408/
[http://dx.doi.org/10.3389/fmicb.2014.00603] [PMID: 25477866]
[344]
McGenity, T.J. Hydrocarbon biodegradation in intertidal wetland sediments. Curr. Opin. Biotechnol., 2014, 27, 46-54.
[http://dx.doi.org/10.1016/j.copbio.2013.10.010] [PMID: 24863896]
[345]
Zhang, D.; Li, Z.; Bao, X.; Li, J.; Liang, H.; Duan, K.; Shen, L. [Recent advances in bacterial biodegradation of naphthalene, phenanthrene by bacteria: A review] Sheng Wu Gong Cheng Xue Bao, 2010, 26(6), 726-734.
[PMID: 20815251]
[346]
Rabus, R.; Boll, M.; Heider, J.; Meckenstock, R.U.; Buckel, W.; Einsle, O.; Ermler, U.; Golding, B.T.; Gunsalus, R.P.; Kroneck, P.M.; Krüger, M.; Lueders, T.; Martins, B.M.; Musat, F.; Richnow, H.H.; Schink, B.; Seifert, J.; Szaleniec, M.; Treude, T.; Ullmann, G.M.; Vogt, C.; von Bergen, M.; Wilkes, H. Anaerobic microbial degradation of hydrocarbons: From enzymatic reactions to the environment. J. Mol. Microbiol. Biotechnol., 2016, 26(1-3), 5-28.
[http://dx.doi.org/10.1159/000443997] [PMID: 26960061]
[347]
Hamann, C.; Hegemann, J.; Hildebrandt, A. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett., 1999, 173(1), 255-263.
[http://dx.doi.org/10.1111/j.1574-6968.1999.tb13510.x] [PMID: 10220903]
[348]
Kweon, O.; Kim, S.J.; Baek, S.; Chae, J.C.; Adjei, M.D.; Baek, D.H.; Kim, Y.C.; Cerniglia, C.E. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem., 2008, 9, 11.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358900/
[http://dx.doi.org/10.1186/1471-2091-9-11] [PMID: 18387195]
[349]
Wu, P.; Wang, Y.S.; Sun, F.L.; Wu, M.L.; Peng, Y.L. Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases in the sediments from the Pearl River estuary, China. Appl. Microbiol. Biotechnol., 2014, 98(2), 875-884.
[http://dx.doi.org/10.1007/s00253-013-4854-5] [PMID: 23558584]
[350]
Brezna, B.; Khan, A.A.; Cerniglia, C.E. Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol. Lett., 2003, 223(2), 177-183.
[http://dx.doi.org/10.1016/S0378-1097(03)00328-8] [PMID: 12829283]
[351]
Peng, J.J.; Cai, C.; Qiao, M.; Li, H.; Zhu, Y.G. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils. Environ. Pollut., 2010, 158(9), 2872-2879.
[http://dx.doi.org/10.1016/j.envpol.2010.06.020] [PMID: 20615597]
[352]
Buchan, A.; Neidle, E.L.; Moran, M.A. Diversity of the ring-cleaving dioxygenase gene pcaH in a salt marsh bacterial community. Appl. Environ. Microbiol., 2001, 67(12), 5801-5809.
[http://dx.doi.org/10.1128/AEM.67.12.5801-5809.2001] [PMID: 11722937]
[353]
Ohlendorf, D.H.; Orville, A.M.; Lipscomb, J.D. Structure of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa at 2.15 A resolution. J. Mol. Biol., 1994, 244(5), 586-608.
[http://dx.doi.org/10.1006/jmbi.1994.1754] [PMID: 7990141]
[354]
DeBruyn, J.M.; Mead, T.J.; Sayler, G.S. Horizontal transfer of PAH catabolism genes in Mycobacterium: Evidence from comparative genomics and isolated pyrene-degrading bacteria. Environ. Sci. Technol., 2012, 46(1), 99-106.
[http://dx.doi.org/10.1021/es201607y] [PMID: 21899303]
[355]
Kim, S.J.; Kweon, O.; Jones, R.C.; Freeman, J.P.; Edmondson, R.D.; Cerniglia, C.E. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J. Bacteriol., 2007, 189(2), 464-472.
[http://dx.doi.org/10.1128/JB.01310-06] [PMID: 17085566]
[356]
Leahy, J.G.; Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev., 1990, 54(3), 305-315.
[PMID: 2215423]
[357]
Barkay, T.; Pritchard, H. Adaptation of aquatic microbial communities to pollutant stress. Microbiol. Sci., 1988, 5(6), 165-169.
[PMID: 3079233]
[358]
Stevens, H.; Brinkhoff, T.; Rink, B.; Vollmers, J.; Simon, M. Diversity and abundance of Gram positive bacteria in a tidal flat ecosystem. Environ. Microbiol., 2007, 9(7), 1810-1822.
[http://dx.doi.org/10.1111/j.1462-2920.2007.01302.x] [PMID: 17564614]
[359]
Zhuang, W.Q.; Tay, J.H.; Maszenan, A.M.; Krumholz, L.R.; Tay, S.T. Importance of Gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments. Lett. Appl. Microbiol., 2003, 36(4), 251-257.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01297.x] [PMID: 12641721]
[360]
Gontang, E.A.; Fenical, W.; Jensen, P.R. Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl. Environ. Microbiol., 2007, 73(10), 3272-3282.
[http://dx.doi.org/10.1128/AEM.02811-06] [PMID: 17400789]
[361]
Sayler, G.S.; Shields, M.S.; Tedford, E.T.; Breen, A.; Hooper, S.W.; Sirotkin, K.M.; Davis, J.W. Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl. Environ. Microbiol., 1985, 49(5), 1295-1303.
[PMID: 4004244]
[362]
Leys, N.M.; Ryngaert, A.; Bastiaens, L.; Verstraete, W.; Top, E.M.; Springael, D. Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol., 2004, 70(4), 1944-1955.
[http://dx.doi.org/10.1128/AEM.70.4.1944-1955.2004] [PMID: 15066784]
[363]
Ní Chadhain, S.M.; Norman, R.S.; Pesce, K.V.; Kukor, J.J.; Zylstra, G.J. Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl. Environ. Microbiol., 2006, 72(6), 4078-4087.
[http://dx.doi.org/10.1128/AEM.02969-05] [PMID: 16751518]
[364]
Bogan, B.W.; Lamar, R.T. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol., 1995, 61(7), 2631-2635.
[PMID: 7618875]
[365]
Novotný, Č.; Svobodová, K.; Erbanová, P.; Cajthaml, T.; Kasinath, A.; Lang, E.; Šašek, V. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol. Biochem., 2004, 36, 1545-1551.
[http://dx.doi.org/10.1016/j.soilbio.2004.07.019]
[366]
Huesemann, M.H.; Hausmann, T.S.; Fortman, T.J. Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environ. Toxicol. Chem., 2003, 22(12), 2853-2860.
[http://dx.doi.org/10.1897/02-611] [PMID: 14713024]
[367]
Dudhagara, D.R.; Rajpara, R.K.; Bhatt, J.K.; Gosai, H.B.; Sachaniya, B.K.; Dave, B.P. Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ. Pollut., 2016, 213, 338-346.
[http://dx.doi.org/10.1016/j.envpol.2016.02.030] [PMID: 26925756]
[368]
Festa, S.; Coppotelli, B.M.; Morelli, I.S. Bacterial diversity and functionalinteractions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil. Int. Biodeterior. Biodegradation, 2013, 85, 42-51.
[http://dx.doi.org/10.1016/j.ibiod.2013.06.006]
[369]
Auffret, M.D.; Yergeau, E.; Labbé, D.; Fayolle-Guichard, F.; Greer, C.W. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Appl. Microbiol. Biotechnol., 2015, 99(5), 2419-2430.
[http://dx.doi.org/10.1007/s00253-014-6159-8] [PMID: 25343979]
[370]
Bacosa, H.P.; Inoue, C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J. Hazard. Mater., 2015, 283, 689-697.
[http://dx.doi.org/10.1016/j.jhazmat.2014.09.068] [PMID: 25464311]
[371]
Janbandhu, A.; Fulekar, M.H. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. J. Hazard. Mater., 2011, 187(1-3), 333-340.
[http://dx.doi.org/10.1016/j.jhazmat.2011.01.034] [PMID: 21281999]
[372]
Barin, R.; Talebi, M.; Biria, D.; Beheshti, M. Fast bioremediation of petroleum-contaminated soils by a consortium of biosurfactant/bioemulsifierproducing bacteria. Int. J. Environ. Sci. Technol., 2014, 11, 1701-1710.
[http://dx.doi.org/10.1007/s13762-014-0593-0]
[373]
Pinedo-Rivilla, C.; Aleu, J.; Collad, I.G. Pollutants biodegradation by fungi. Curr. Org. Chem., 2009, 13(12), 1194-1214.
[http://dx.doi.org/10.2174/138527209788921774]
[374]
Zafra, G.; Cortés-Espinosa, D.V. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: A mini review. Environ. Sci. Pollut. Res. Int., 2015, 22(24), 19426-19433.
[http://dx.doi.org/10.1007/s11356-015-5602-4] [PMID: 26498812]
[375]
Cerniglia, C.E. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J. Ind. Microbiol. Biotechnol., 1997, 19(5-6), 324-333.
[http://dx.doi.org/10.1038/sj.jim.2900459] [PMID: 9451829]
[376]
Zheng, Z.; Obbard, J.P. Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium oxidation. J. Environ. Qual., 2002, 31(6), 1842-1847.
[http://dx.doi.org/10.2134/jeq2002.1842] [PMID: 12469833]
[377]
Zheng, Z.; Obbard, J.P. Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from an oil contaminated refinery soil. Environ. Sci. Pollut. Res. Int., 2003, 10(3), 173-176.
[http://dx.doi.org/10.1065/espr2002.07.126] [PMID: 12846378]
[378]
Cajthaml, T.; Svobodová, K. Biodegradation of aromatic pollutants by ligninolytic fungal strains.Microbial Degradation of Xenobiotics; Singh,, S-N., Ed.; Springer-Verlag Berlin: Heidelberg, 2011, pp. 291-316.
[379]
Balaji, V.; Arulazhagan, P.; Ebenezer, P. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J. Environ. Biol., 2014, 35(3), 521-529.
[PMID: 24813008]
[380]
Gu, H.; Luo, X.; Wang, H.; Wu, L.; Wu, J.; Xu, J. The characteristics of phenanthrene biosorption by chemically modified biomass of Phanerochaete chrysosporium. Environ. Sci. Pollut. Res. Int., 2015, 22(15), 11850-11861.
[http://dx.doi.org/10.1007/s11356-015-4451-5] [PMID: 25860550]
[381]
Syed, K.; Yadav, J.S. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit. Rev. Microbiol., 2012, 38(4), 339-363.
[http://dx.doi.org/10.3109/1040841X.2012.682050] [PMID: 22624627]
[382]
Andreoni, V.; Cavalca, L.; Rao, M.A.; Nocerino, G.; Bernasconi, S.; Dell’Amico, E.; Colombo, M.; Gianfreda, L. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 2004, 57(5), 401-412.
[http://dx.doi.org/10.1016/j.chemosphere.2004.06.013] [PMID: 15331267]
[383]
Tortella, G.; Durán, N.; Rubilar, O.; Parada, M.; Diez, M.C. Are white-rot fungi a real biotechnological option for the improvement of environmental health? Crit. Rev. Biotechnol., 2015, 35(2), 165-172.
[http://dx.doi.org/10.3109/07388551.2013.823597] [PMID: 24083453]
[384]
Wang, Y.; Vazquez-Duhalt, R.; Pickard, M.A. Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Curr. Microbiol., 2002, 45(2), 77-87.
[http://dx.doi.org/10.1007/s00284-001-0081-x] [PMID: 12070683]
[385]
Bogan, B.W.; Lamar, R.T.; Hammel, K.E. Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase dependent lipid peroxidation. Appl. Environ. Microbiol., 1996, 62(5), 1788-1792. a
[PMID: 16535320]
[386]
Bogan, B.W.; Schoenike, B.; Lamar, R.T.; Cullen, D. Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl. Environ. Microbiol., 1996, 62(10), 3697-3703.
[PMID: 8837425]
[387]
Bogan, B.W.; Lamar, R.T. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl. Environ. Microbiol., 1996, 62(5), 1597-1603.
[PMID: 8633857]
[388]
Cajthaml, T.; Möder, M.; Kacer, P.; Sasek, V.; Popp, P. Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J. Chromatogr. A, 2002, 974(1-2), 213-222.
[http://dx.doi.org/10.1016/S0021-9673(02)00904-4] [PMID: 12458938]
[389]
Silva, I.S.; Grossman, M.; Durrant, L.R. Degradation of polycyclic aromatic hydrocarbons (2-7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int. Biodeterior. Biodegradation, 2009, 63, 224-229.
[http://dx.doi.org/10.1016/j.ibiod.2008.09.008]
[390]
Hadibarata, T.; Kristanti, R.A. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene. Fungal Biol., 2014, 118(2), 222-227.
[http://dx.doi.org/10.1016/j.funbio.2013.11.013] [PMID: 24528643]
[391]
Wirasnita, R.; Hadibarata, T. Potential of the white-rot fungus Pleurotus pulmonarius F043 for degradation and transformation of fluoranthene. Pedosphere, 2016, 26(1), 49-54.
[http://dx.doi.org/10.1016/S1002-0160(15)60021-2]
[392]
Lee, H.; Jang, Y.; Choi, Y.S.; Kim, M.J.; Lee, J.; Lee, H.; Hong, J.H.; Lee, Y.M.; Kim, G.H.; Kim, J.J. Biotechnological procedures to select white rot fungi for the degradation of PAHs. J. Microbiol. Methods, 2014, 97, 56-62.
[http://dx.doi.org/10.1016/j.mimet.2013.12.007] [PMID: 24374215]
[393]
Moreira, P.R.; Bouillenne, F.; Almeida-Vara, E.; Malcata, F.X.; Frere, J.M.; Duarte, J.C. Purification, kinetics and spectral characterisation of a new versatile peroxidase from a Bjerkandera sp. isolate. Enzyme Microb. Technol., 2006, 38, 28-33.
[http://dx.doi.org/10.1016/j.enzmictec.2004.12.035]
[394]
Hofrichter, M.; Scheibner, K.; Schneegass, I.; Fritsche, W. Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl. Environ. Microbiol., 1998, 64(2), 399-404.
[PMID: 16349496]
[395]
Ali, S.; Huang, Z.; Ren, S.X.; Bashir, M.H.; Afzal, M.; Tong, L. Production and extraction of extracellular lipase from entomopathogenic fungus Metarhizium anisopliae (Clavicipitaceae: Hypocreales). Pak. J. Zool., 2009, 41, 341-347.
[396]
Acevedo, F.; Pizzul, L. Castillo, Mdel.P.; Cuevas, R.; Diez, M.C. Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J. Hazard. Mater., 2011, 185(1), 212-219.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.020] [PMID: 20934253]
[397]
Farnet, A.M.; Criquet, S.; Tagger, S.; Gil, G.; Le Petit, J. Purification, partial characterization, and reactivity with aromatic compounds of two laccases from Marasmius quercophilus strain 17. Can. J. Microbiol., 2000, 46(3), 189-194.
[http://dx.doi.org/10.1139/w99-138] [PMID: 10749532]
[398]
Jové, P.; Olivella, M.À.; Camarero, S.; Caixach, J.; Planas, C.; Cano, L.; De Las Heras, F.X. Fungal biodegradation of anthracene-polluted cork: A comparative study. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 2016, 51(1), 70-77.
[http://dx.doi.org/10.1080/10934529.2015.1079114] [PMID: 26540209]
[399]
Guiraud, P.; Bonnet, J.L.; Boumendjel, A.; Kadri-Dakir, M.; Dusser, M.; Bohatier, J.; Steiman, R. Involvement of Tetrahymena pyriformis and selected fungi in the elimination of anthracene, and toxicity assessment of the biotransformation products. Ecotoxicol. Environ. Saf., 2008, 69(2), 296-305.
[http://dx.doi.org/10.1016/j.ecoenv.2006.11.006] [PMID: 17257678]
[400]
D’Annibale, A.; Rosetto, F.; Leonardi, V.; Federici, F.; Petruccioli, M. Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl. Environ. Microbiol., 2006, 72(1), 28-36.
[http://dx.doi.org/10.1128/AEM.72.1.28-36.2006] [PMID: 16391021]
[401]
Hadibarata, T.; Tachibana, S.; Itoh, K. Biodegradation of phenanthrene by fungi screened from nature. Pak. J. Biol. Sci., 2007, 10(15), 2535-2543.
[http://dx.doi.org/10.3923/pjbs.2007.2535.2543] [PMID: 19070127]
[402]
Lisowska, K.; Bizukojc, M.; Dlugonski, J. An unstructured model for studies on phenanthrene bioconversion by filamentous fungus Cunninghamella elegans. Enzyme Microb. Technol., 2006, 39(7), 1464-1470.
[http://dx.doi.org/10.1016/j.enzmictec.2006.03.039]
[403]
Kim, J.D.; Lee, C.G. Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium-fungus co-cultures. Biotechnol. Bioprocess Eng.; BBE, 2007, 12(4), 410-416.
[http://dx.doi.org/10.1007/BF02931064]
[404]
Chen, F.; Liang, L.; Tang, Y.; Mao, L. Research on anthracene removal from water by immobilized Fusarium oxysporum. Zhongguo Jishui Paishui., 2007, 23(21), 77-80.
[405]
Chen, F.; Tang, Y.; Mao, L.; Liang, L. Research on biodegradation characteristics of phenanthrene by Fusarium solani strain. Jiangsu Keji Daxue Xuebao. Ziran Kexue Ban, 2008, 22(3), 72-76.
[406]
Li, P.; Li, H.; Stagnitti, F.; Wang, X.; Zhang, H.; Gong, Z.; Liu, W.; Xiong, X.; Li, L.; Austin, C.; Barry, D.A. Biodegradation of pyrene and phenanthrene in soil using immobilized fungi Fusarium sp. Bull. Environ. Contam. Toxicol., 2005, 75(3), 443-450.
[http://dx.doi.org/10.1007/s00128-005-0773-1] [PMID: 16385948]
[407]
Li, H.; Lan, W.; Lin, Y. Biotransformation of 1,2,3,4 tetrahydronaphthalene by marine fungus Hypoxylon oceanicum. Fenxi Ceshi Xuebao, 2005, 24(4), 45-47.
[408]
Arun, A.; Raja, P.P.; Arthi, R.; Ananthi, M.; Kumar, K.S.; Eyini, M. Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl. Biochem. Biotechnol., 2008, 151(2-3), 132-142.
[http://dx.doi.org/10.1007/s12010-008-8160-0] [PMID: 18975143]
[409]
Wang, X.; Gong, Z.; Li, P.; Zhang, L.; Hu, X. Degradation of pyrene and benzo(α)pyrene in contaminated soil by immobilized fungi. Environ. Eng. Sci., 2008, 25(5), 677-684.
[http://dx.doi.org/10.1089/ees.2007.0075]
[410]
Kästner, M. Degradation of aromatic and polyaromatic compounds. Biotechnology; Rehm, H.J.; Reed, G.; Pűhler, A; Stadler, P., Ed.; Wiley-VCH: Weinheim, Germany, 2000, pp. 212-239.
[411]
Moody, J.D.; Freeman, J.P.; Fu, P.P.; Cerniglia, C.E. Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Environ. Microbiol., 2004, 70(1), 340-345.
[http://dx.doi.org/10.1128/AEM.70.1.340-345.2004] [PMID: 14711661]
[412]
Hammel, K.E.; Green, B.; Gai, W.Z. Ring fission of anthracene by a eukaryote. Proc. Natl. Acad. Sci. USA, 1991, 88(23), 10605-10608.
[http://dx.doi.org/10.1073/pnas.88.23.10605] [PMID: 1961727]
[413]
Bezalel, L.; Hadar, Y.; Fu, P.P.; Freeman, J.P.; Cerniglia, C.E. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol., 1996, 62(7), 2547-2553.
[PMID: 8779594]
[414]
Moen, M.A.; Hammel, K.E. Lipid-peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl. Environ. Microbiol., 1994, 60(6), 1956-1961.
[PMID: 16349285]
[415]
Johannes, C.; Majcherczyk, A.; Huttermann, A. Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J. Biotechnol., 1998, 61, 151-156.
[http://dx.doi.org/10.1016/S0168-1656(98)00030-3]
[416]
Majcherczyk, A.; Johannes, C.; Huttermann, A. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb. Technol., 1998, 22, 335-341.
[http://dx.doi.org/10.1016/S0141-0229(97)00199-3]
[417]
Cerniglia, C.E.; Gibson, D.T.; Van Baalen, C. Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem. Biophys. Res. Commun., 1979, 88(1), 50-58.
[http://dx.doi.org/10.1016/0006-291X(79)91695-4] [PMID: 110329]
[418]
Cerniglia, C.E.; Baalen, C.V.; Gibson, D.T. Metabolism of naphthalene by cyanobacterium Oscillatoria sp. strain JCM. J. Gen. Microbiol., 1980, 116, 485-494.
[419]
Cerniglia, C.E.; Gibson, D.T.; Baalen, C.V. Oxidation of naphthalene by cyanobacteria and microalgae. J. Gen. Microbiol., 1980, 116, 495-500.
[420]
Narro, M.L.; Cerniglia, C.E.; Baalen, C.V.; Gibson, D.T. Evidence of NIH shift in naphthalene oxidation by the marine cyanobacterium, Oscillatoria species strain JCM. Appl. Environ. Microbiol., 1992, 58, 1360-1363.
[PMID: 1599253]
[421]
Narro, M.L.; Cerniglia, C.E.; Van Baalen, C.; Gibson, D.T. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl. Environ. Microbiol., 1992, 58(4), 1351-1359.
[PMID: 1599252]
[422]
Warshawsky, D.; Radike, M.; Jayasimhulu, K.; Cody, T. Metabolism of benzo(a)pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum. Biochem. Biophys. Res. Commun., 1988, 152(2), 540-544.
[http://dx.doi.org/10.1016/S0006-291X(88)80071-8] [PMID: 3365239]
[423]
Warshawsky, D.; Cody, T.; Radike, M.; Reilman, R.; Schumann, B.; LaDow, K.; Schneider, J. Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem. Biol. Interact., 1995, 97(2), 131-148.
[http://dx.doi.org/10.1016/0009-2797(95)03610-X] [PMID: 7606812]
[424]
Borde, X.; Guieysse, B.; Delgado, O.; Muñoz, R.; Hatti-Kaul, R.; Nugier-Chauvin, C.; Patin, H.; Mattiasson, B. Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour. Technol., 2003, 86(3), 293-300.
[http://dx.doi.org/10.1016/S0960-8524(02)00074-3] [PMID: 12688473]
[425]
Lei, A.P.; Hu, Z.L.; Wong, Y.S.; Tam, N.F.Y. Removal of fluoranthene and pyrene by different microalgal species. Bioresour. Technol., 2007, 98(2), 273-280.
[http://dx.doi.org/10.1016/j.biortech.2006.01.012] [PMID: 16517155]
[426]
Ueno, R.; Wada, S.; Urano, N. Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can. J. Microbiol., 2008, 54(1), 66-70.
[http://dx.doi.org/10.1139/W07-112] [PMID: 18388973]
[427]
Ueno, R.; Ureno, N.; Wada, S. Synergistic effect of cell immobilization in polyurethane foam and use of thermotolerant strain on mixed hydrocarbon substrate by Prototheca zopfii. Fish. Sci., 2006, 72, 1027-1033.
[http://dx.doi.org/10.1111/j.1444-2906.2006.01252.x]
[428]
Hong, Y.W.; Yuan, D.X.; Lin, Q.M.; Yang, T.L. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar. Pollut. Bull., 2008, 56(8), 1400-1405.
[http://dx.doi.org/10.1016/j.marpolbul.2008.05.003] [PMID: 18597790]
[429]
Luo, L.; Wang, P.; Lin, L.; Luan, T.; Ke, L.; Tam, N.F.Y. Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem., 2014, 49, 1723-1732.
[http://dx.doi.org/10.1016/j.procbio.2014.06.026]
[430]
Bisht, S.; Pandey, P.; Bhargava, B.; Sharma, S.; Kumar, V.; Sharma, K.D. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol., 2015, 46(1), 7-21.
[http://dx.doi.org/10.1590/S1517-838246120131354] [PMID: 26221084]
[431]
Breivik, K.; Sweetman, A.; Pacyna, J.M.; Jones, K.C. Towards a global historical emission inventory for selected PCB congeners--a mass balance approach. 1. Global production and consumption. Sci. Total Environ., 2002, 290(1-3), 181-198.
[http://dx.doi.org/10.1016/S0048-9697(01)01075-0] [PMID: 12083709]
[432]
Rossberg, M.; Lendle, W.; Pfleiderer, G.; Tögel, A.; Dreher, E.L.; Langer, E.; Rassaerts, H.; Kleinschmidt, P.; Strack, H. Cook. R.; Beck, U.; Lipper, K.A.; Torkelson, T.R.; Löser, E.; Beutel, K.K.; Mann, T. Chlorinated Hydrocarbons.Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2005.
[433]
Pivnenko, K.; Olsson, M.E.; Götze, R.; Eriksson, E.; Astrup, T.F. Quantification of chemical contaminants in the paper and board fractions of municipal solid waste. Waste Manag., 2016, 51, 43-54.
[http://dx.doi.org/10.1016/j.wasman.2016.03.008] [PMID: 26969284]
[434]
Lauby-Secretan, B.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol., 2013, 14(4), 287-288.
[http://dx.doi.org/10.1016/S1470-2045(13)70104-9] [PMID: 23499544]
[435]
Field, J.A.; Sierra-Alvarez, R. Microbial transformation and degradation of polychlorinated biphenyls. Environ. Pollut., 2008, 155(1), 1-12.
[http://dx.doi.org/10.1016/j.envpol.2007.10.016] [PMID: 18035460]
[436]
Ross, G. The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicol. Environ. Saf., 2004, 59(3), 275-291.
[http://dx.doi.org/10.1016/j.ecoenv.2004.06.003] [PMID: 15388267]
[437]
Svobodová, K.; Placková, M.; Novotná, V.; Cajthaml, T. Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays. Sci. Total Environ., 2009, 407(22), 5921-5925.
[http://dx.doi.org/10.1016/j.scitotenv.2009.08.011] [PMID: 19716585]
[438]
Furukawa, K. Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J. Gen. Appl. Microbiol., 2000, 46(6), 283-296.
[http://dx.doi.org/10.2323/jgam.46.283] [PMID: 12483570]
[439]
Borja, J.; Taleon, D.M.; Auresenia, J.; Gallardo, S. Polychlorinated biphenyls and their biodegradation. Process Biochem., 2005, 40, 1999-2013.
[http://dx.doi.org/10.1016/j.procbio.2004.08.006]
[440]
Pieper, D.H. Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol., 2005, 67(2), 170-191.
[http://dx.doi.org/10.1007/s00253-004-1810-4] [PMID: 15614564]
[441]
Lambo, A.J.; Patel, T.R. Isolation and characterization of a biphenyl-utilizing psychrotrophic bacterium, Hydrogenophaga taeniospiralis IA3-A, that cometabolize dichlorobiphenyls and polychlorinated biphenyl congeners in Aroclor 1221. J. Basic Microbiol., 2006, 46(2), 94-107.
[http://dx.doi.org/10.1002/jobm.200510006] [PMID: 16598832]
[442]
Sakai, M.; Miyauchi, K.; Kato, N.; Masai, E.; Fukuda, M. 2-Hydroxypenta-2,4-dienoate metabolic pathway genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol., 2003, 69(1), 427-433.
[http://dx.doi.org/10.1128/AEM.69.1.427-433.2003] [PMID: 12514024]
[443]
De, J.; Ramaiah, N.; Sarkar, A. Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World J. Microbiol. Biotechnol., 2006, 22, 1321-1327.
[http://dx.doi.org/10.1007/s11274-006-9179-4]
[444]
Abramowicz, D.A. Aerobic and anaerobic biodegradation of PCBs -a review. Crit. Rev. Biotechnol., 1990, 10, 241-249.
[http://dx.doi.org/10.3109/07388559009038210]
[445]
Covino, S.; Stella, T.; Cajtham, T. Mycoremediation of organic pollutants: principles, opportunities, and pitfalls.Sustainable Environmental Biotechnology, Fungal Biology, Fungal Applications; Purchase, D., Ed.; Springer International Publishing: Switzerland, 2016, pp. 185-231.
[http://dx.doi.org/10.1007/978-3-319-42852-9_8]
[446]
Kamei, I.; Kogura, R.; Kondo, R. Metabolism of 4,4′-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl. Microbiol. Biotechnol., 2006, 72(3), 566-575.
[http://dx.doi.org/10.1007/s00253-005-0303-4] [PMID: 16528513]
[447]
Cloete, T.E.; Celliers, L. Removal of Aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentration of Mn(IV) oxide. Int. Biodeter. Biodegrad., 1999, 44, 243-253.
[http://dx.doi.org/10.1016/S0964-8305(99)00085-2]
[448]
Ruiz-Aguilar, G.M.L.; Fernandez-Sanchez, J.M.; Rodrıguez-Vazquez, R.; Poggi-Varaldo, H. Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv. Environ. Res., 2002, 6, 559-568.
[http://dx.doi.org/10.1016/S1093-0191(01)00102-2]
[449]
Kamei, I.; Sonoki, S.; Haraguchi, K.; Kondo, R. Fungal Phlebia brevispora. Appl. Microbiol. Biotechnol., 2006, 73, 932-940.
[http://dx.doi.org/10.1007/s00253-006-0529-9] [PMID: 16862425]
[450]
Kubátová, A.; Erbanová, P.; Eichlerová, I.; Homolka, L.; Nerud, F.; Šašek, V. PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere, 2001, 43(2), 207-215.
[http://dx.doi.org/10.1016/S0045-6535(00)00154-5] [PMID: 11297400]
[451]
Moeder, M.; Cajthaml, T.; Koeller, G.; Erbanová, P.; Šašek, V. Structure selectivity in degradation and translocation of polychlorinated biphenyls (Delor 103) with a Pleurotus ostreatus (oyster mushroom) culture. Chemosphere, 2005, 61(9), 1370-1378.
[http://dx.doi.org/10.1016/j.chemosphere.2005.02.098] [PMID: 16291407]
[452]
Harms, H.; Schlosser, D.; Wick, L.Y. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol., 2011, 9(3), 177-192.
[http://dx.doi.org/10.1038/nrmicro2519] [PMID: 21297669]
[453]
Borazjani, H.; Wiltcher, D.; Diehl, S. Proceedings of the International Conference on Environmental Science and Technology, 2005, pp. 502-507.
[454]
Federici, E.; Giubilei, M.; Santi, G.; Zanaroli, G.; Negroni, A.; Fava, F.; Petruccioli, M.; D’Annibale, A. Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinus tigrinus. Microb. Cell Fact., 2012, 11, 35.
[http://dx.doi.org/10.1186/1475-2859-11-35] [PMID: 22443185]
[455]
Stellwang, E.J.; Brenchley, J.E. Genetical engineering of microorganisms for biotechnology. Microb. Ecol., 2011, 12, 3-13.
[http://dx.doi.org/10.1007/BF02153218]
[456]
Lovley, D.R. Cleaning up with genomics: Applying molecular biology to bioremediation. Nat. Rev. Microbiol., 2003, 1(1), 35-44.
[http://dx.doi.org/10.1038/nrmicro731] [PMID: 15040178]
[457]
Fulekar, M.H.; Singh, A.; Braduri, A.M. Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr. J. Biotechnol., 2009, 8(4), 529-535.
[458]
Menn, F.; Easter, J.P.; Sayler, G.S. Genetically engineered microorganisms and bioremediation. Biotechnology, 2001, 441-463.
[459]
Ripp, S.; Nivens, D.E.; Ahn, Y.; Werner, C.; Jarrell, J.; Easter, J.P.; Cox, C.D.; Burlage, R.S.; Sayler, G.S. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol., 2000, 34(5), 846-853.
[http://dx.doi.org/10.1021/es9908319]
[460]
Sayler, G.S.; Ripp, S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol., 2000, 11(3), 286-289.
[http://dx.doi.org/10.1016/S0958-1669(00)00097-5] [PMID: 10851144]
[461]
Davison, J. Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J. Ind. Microbiol. Biotechnol., 2005, 32(11-12), 639-650.
[http://dx.doi.org/10.1007/s10295-005-0242-1] [PMID: 15973534]
[462]
Brenner, V.; Arensdorf, J.J.; Focht, D.D. Genetic construction of PCB degraders. Biodegradation, 1994, 5(3-4), 359-377.
[http://dx.doi.org/10.1007/BF00696470] [PMID: 7765843]
[463]
Hrywna, Y.; Tsoi, T.V.; Maltseva, O.V.; Quensen, J.F., III; Tiedje, J.M. Construction and characterization of two recombinant bacteria that grow on ortho- and para-substituted chlorobiphenyls. Appl. Environ. Microbiol., 1999, 65(5), 2163-2169.
[PMID: 10224015]
[464]
McCullar, M.V.; Brenner, V.; Adams, R.H.; Focht, D.D. Construction of a novel polychlorinated biphenyl-degrading bacterium: Utilization of 3,4′ dichlorobiphenyl by Pseudomonas acidovorans M3GY. Appl. Environ. Microbiol., 1994, 60(10), 3833-3839.
[PMID: 16349419]
[465]
Potrawfke, T.; Lohnert, T.H.; Timmis, K.N.; Wittich, R.M. Mineralizationof low-chlorinated biphenyls by Burkholderia sp. strain LB400 and by a two membered consortium upon directed interspecies transfer of chlorocatechol pathway genes. Appl. Environ. Microbiol., 1998, 50, 440-446.
[466]
Stratford, J.; Wright, M.A.; Reineke, W.; Mokross, H.; Havel, J.; Knowles, C.J.; Robinson, G.K. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains. Arch. Microbiol., 1996, 165(3), 213-218.
[http://dx.doi.org/10.1007/BF01692864] [PMID: 8599540]
[467]
Newby, D.T.; Gentry, T.J.; Pepper, I.L. Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl. Environ. Microbiol., 2000, 66(8), 3399-3407.
[http://dx.doi.org/10.1128/AEM.66.8.3399-3407.2000] [PMID: 10919798]
[468]
Newby, D.T.; Josephson, K.L.; Pepper, I.L. Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl. Environ. Microbiol., 2000, 66(1), 290-296.
[http://dx.doi.org/10.1128/AEM.66.1.290-296.2000] [PMID: 10618238]
[469]
de la Peña Mattozzi, M.; Tehara, S.K.; Hong, T.; Keasling, J.D. Mineralization of paraoxon and its use as a sole C and P source by a rationally designed catabolic pathway in Pseudomonas putida. Appl. Environ. Microbiol., 2006, 72(10), 6699-6706.
[http://dx.doi.org/10.1128/AEM.00907-06] [PMID: 17021221]
[470]
Haugland, R.A.; Schlemm, D.J.; Lyons, R.P., III; Sferra, P.R.; Chakrabarty, A.M. Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl. Environ. Microbiol., 1990, 56(5), 1357-1362.
[PMID: 2339889]
[471]
Lu, P.; Li, Q.; Liu, H.; Feng, Z.; Yan, X.; Hong, Q.; Li, S. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour. Technol., 2013, 127, 337-342.
[http://dx.doi.org/10.1016/j.biortech.2012.09.116] [PMID: 23131657]
[472]
Wang, A.A.; Mulchandani, A.; Chen, W. Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. Appl. Environ. Microbiol., 2002, 68(4), 1684-1689.
[http://dx.doi.org/10.1128/AEM.68.4.1684-1689.2002] [PMID: 11916685]
[473]
Kwak, Y.; Kim, J.E.; Lee, I.J.; Kim, J.G.; Rhee, I.K.; Shin, J.H. Biodegradation of tolclofos-methyl by extracellular secreted organophosphorus hydrolase in recombinant Escherichia coli. J. Korean Soc. Appl. Biol. Chem., 2012, 55, 377-384.
[http://dx.doi.org/10.1007/s13765-012-2008-6]
[474]
Yang, C.; Song, C.; Mulchandani, A.; Qiao, C. Genetic engineering of Stenotrophomonas strain YC-1 to possess a broader substrate range for organophosphates. J. Agric. Food Chem., 2010, 58(11), 6762-6766.
[http://dx.doi.org/10.1021/jf101105s] [PMID: 20455565]
[475]
Zhou, X.; Xu, S.; Liu, L.; Chen, J. Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresour. Technol., 2007, 98(15), 2958-2962.
[http://dx.doi.org/10.1016/j.biortech.2006.09.047] [PMID: 17112721]
[476]
Tang, J.; Liu, L.; Hu, S.; Chen, Y.; Chen, J. Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI). Bioresour. Technol., 2009, 100(1), 480-483.
[http://dx.doi.org/10.1016/j.biortech.2008.05.022] [PMID: 18585910]
[477]
He, X.; Wubie, A.J.; Diao, Q.; Li, W.; Xue, F.; Guo, Z.; Zhou, T.; Xu, S. Biodegradation of neonicotinoid insecticide, imidacloprid by restriction enzyme mediated integration (REMI) generated Trichoderma mutants. Chemosphere, 2014, 112, 526-530.
[http://dx.doi.org/10.1016/j.chemosphere.2014.01.023] [PMID: 24589300]
[478]
Elmore, M.H.; McGary, K.L.; Wisecaver, J.H.; Slot, J.C.; Geiser, D.M.; Sink, S.; O’Donnell, K.; Rokas, A. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages. Genome Biol. Evol., 2015, 7(3), 789-800.
[http://dx.doi.org/10.1093/gbe/evv025] [PMID: 25663439]
[479]
Rodrigues, J.L.M.; Kachel, C.A.; Aiello, M.R.; Quensen, J.F.; Maltseva, O.V.; Tsoi, T.V.; Tiedje, J.M. Degradation of aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb). Appl. Environ. Microbiol., 2006, 72(4), 2476-2482.
[http://dx.doi.org/10.1128/AEM.72.4.2476-2482.2006] [PMID: 16597946]
[480]
Ohtsubo, Y.; Shimura, M.; Delawary, M.; Kimbara, K.; Takagi, M.; Kudo, T.; Ohta, A.; Nagata, Y. Novel approach to the improvement of biphenyl and polychlorinated biphenyl degradation activity: promoter implantation by homologous recombination. Appl. Environ. Microbiol., 2003, 69(1), 146-153.
[http://dx.doi.org/10.1128/AEM.69.1.146-153.2003] [PMID: 12513989]
[481]
Lee, J.Y.; Jung, K.H.; Choi, S.H.; Kim, H.S. Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture. Appl. Environ. Microbiol., 1995, 61(6), 2211-2217.
[PMID: 7793941]
[482]
Schroll, R.; Brahushi, F.; Dörfler, U.; Kühn, S.; Fekete, J.; Munch, J.C. Biomineralisation of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environ. Pollut., 2004, 127(3), 395-401.
[http://dx.doi.org/10.1016/j.envpol.2003.08.012] [PMID: 14638300]
[483]
Porto, A.L.M.; Melgar, G.Z.; Kasemodel, M.C.; Nitschke, M. Biodegradation of pesticides, pesticides in the modern world.Pesticides use and management; Stoytcheva, M., Ed.; InTech, Croatia, 2011, pp. 407-438.
[484]
Velkov, V.V. Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment. J. Biosci., 2001, 26(5), 667-683.
[http://dx.doi.org/10.1007/BF02704764] [PMID: 11807296]
[485]
Sayler, G.S.; Ripp, S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol., 2000, 11(3), 286-289.
[http://dx.doi.org/10.1016/S0958-1669(00)00097-5] [PMID: 10851144]
[486]
Pieper, D.H.; Reineke, W. Engineering bacteria for bioremediation. Curr. Opin. Biotechnol., 2000, 11(3), 262-270.
[http://dx.doi.org/10.1016/S0958-1669(00)00094-X] [PMID: 10851148]
[487]
Sharp, R.R.; Bryers, J.D.; Jones, W.G.; Shields, M.S. Activity and stability of a recombinant plasmid-borne TCE degradative pathway in suspended cultures. Biotechnol. Bioeng., 1998, 57(3), 287-296.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19980205)57:3<287:AID-BIT5>3.0.CO;2-D] [PMID: 10099205]
[488]
Strong, L.C.; McTavish, H.; Sadowsky, M.J.; Wackett, L.P. Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ. Microbiol., 2000, 2(1), 91-98.
[http://dx.doi.org/10.1046/j.1462-2920.2000.00079.x] [PMID: 11243266]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy