Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Coreceptor-Based Hematopoietic Stem Cell Gene Therapy for HIV Disease

Author(s): JinTing Hu, YeWen Feng, Ping Ma and Yu Lai*

Volume 14, Issue 7, 2019

Page: [591 - 597] Pages: 7

DOI: 10.2174/1574888X14666190523094556

Price: $65

Abstract

Combination antiretroviral therapy (cART) has significantly reduced the mortality rate and morbidity, and has increased the life expectancy of the human immunodeficiency virus (HIV) infected patients. However, the current cART is incapable of eradicating viruses from the human body, and HIV remains one of the most notorious viruses mankind has ever faced. HIV-1 enters target cells through the binding of gp120 viral protein to a CD4 receptor and then to a coreceptor, C-C chemokine receptor 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4). Individuals homozygous for a 32-bp deletion in the CCR5 allele, CCR5Δ32, are almost completely resistant to HIV-1 acquisition. Moreover, several of natural CXCR4 mutants which have been identified can reduce HIV-1 entry without impairing either ligand binding or signaling. In order to get rid of indefinite treatment for HIV patients, there is a growing interest in creating an HIV-resistant immune system through the use of CCR5 and CXCR4-modified hematopoietic stem cells (HSCs). Proof of concept for this approach has been provided in the instance of “Berlin patient” transplanted with allogeneic stem cells from a donor with homozygosity for the CCR5Δ32 deletion. Here, we review the progress of coreceptor-based HSC gene therapy for HIV disease and present new strategies.

Keywords: HIV, CCR5, CXCR4, coreceptor, hematopoietic stem cell, gene therapy.

[1]
Yarchoan R, Uldrick TS. HIV-Associated Cancers and Related Diseases. N Engl J Med 2018; 378(11): 1029-41.
[2]
Collaboration TATC. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: A collaborative analysis of 14 cohort studies. The Lancet 2008; 372(9635): 293-9.
[3]
Kiem HP, Jerome KR, Deeks SG, McCune JM. Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell 2012; 10(2): 137-47.
[4]
Lai Y. CCR5-targeted hematopoietic stem cell gene approaches for HIV disease: current progress and future prospects. Curr Stem Cell Res Ther 2012; 7(4): 310-7.
[5]
Pernet O, Yadav SS, An DS. Stem cell-based therapies for HIV/AIDS. Adv Drug Deliv Rev 2016; 103: 187-201.
[6]
Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17: 657-700.
[7]
Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens. Science 1998; 280(5371): 1884-8.
[8]
Shaik MM, Peng H, Lu J, et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 2018; 565(7739): 318-23.
[9]
Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1. Nature 1998; 391(6664): 240.
[10]
Gorry PR, Ancuta P. Coreceptors and HIV-1 pathogenesis. Curr HIV/AIDS Rep 2011; 8(1): 45-53.
[11]
Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382(6593): 722-5.
[12]
Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 1997; 16(1): 100-3.
[13]
Hutter G, Bodor J, Ledger S, et al. CCR5 Targeted cell therapy for HIV and prevention of viral escape. Viruses 2015; 7(8): 4186-203.
[14]
Meyer L, Magierowska M, Hubert JB, et al. Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: Relationship with viral load. The SEROCO Study Group. AIDS 1997; 11(11): F73-8.
[15]
Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009; 360(7): 692-8.
[16]
Yukl SA, Boritz E, Busch M, et al. Challenges in detecting HIV persistence during potentially curative interventions: A study of the Berlin patient. PLoS Pathog 2013; 9(5)e1003347
[17]
Allers K, Hutter G, Hofmann J, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 2011; 117(10): 2791-9.
[18]
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901-10.
[19]
Rein LAM, Yang H, Chao NJ. Applications of gene editing technologies to cellular therapies. Biol Blood Marrow Transplant 2018; 24(8): 1537-45.
[20]
Drake MJ, Bates P. Application of gene-editing technologies to HIV-1. Curr Opin HIV AIDS 2015; 10(2): 123-7.
[21]
Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28(8): 839-47.
[22]
Hofer U, Henley JE, Exline CM, Mulhern O, Lopez E, Cannon PM. Pre-clinical modeling of CCR5 knockout in human hematopoietic stem cells by zinc finger nucleases using humanized mice. J Infect Dis 2013; 208(Suppl. 2): S160-4.
[23]
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302(5644): 415-9.
[24]
Li L, Krymskaya L, Wang J, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther 2013; 21(6): 1259-69.
[25]
Wang J, Exline CM, DeClercq JJ, et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 2015; 33(12): 1256-63.
[26]
Nalla AK, Trobridge GD. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy. Biomedicines 2016; 4(2)E8
[27]
DiGiusto DL, Cannon PM, Holmes MC, et al. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther Methods Clin Dev 2016; 9(3): 16067.
[28]
Boring L, Gosling J, Chensue SW, et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 1997; 100(10): 2552-61.
[29]
Lim JK, Obara CJ, Rivollier A, Pletnev AG, Kelsall BL, Murphy PM. Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J Immunol 2011; 186(1): 471-8.
[30]
Ricciardi AS, Quijano E, Putman R, Saltzman WM, Glazer PM. Peptide nucleic acids as a tool for site-specific gene editing. Molecules 2018; 23(3)E632
[31]
Schleifman EB, Bindra R, Leif J, et al. Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 2011; 18(9): 1189-98.
[32]
Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26(7): 808-16.
[33]
Mandal PK, Ferreira LM, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 2014; 15(5): 643-52.
[34]
Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31(7): 397-405.
[35]
Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther 2017; 25(8): 1782-9.
[36]
Li C, Guan X, Du T, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol 2015; 96(8): 2381-93.
[37]
Evans DT, Silvestri G. Nonhuman primate models in AIDS research. Curr Opin HIV AIDS 2013; 8(4): 255-61.
[38]
Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32(4): 364-72.
[39]
Peterson CW, Wang J, Norman KK, et al. Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood 2016; 127(20): 2416-26.
[40]
Sheppard HW, Celum C, Michael NL, et al. HIV-1 infection in individuals with the CCR5-Delta32/Delta32 genotype: Acquisition of syncytium-inducing virus at seroconversion. J Acquir Immune Defic Syndr 2002; 29(3): 307-13.
[41]
Gorry PR, Zhang C, Wu S, et al. Persistence of dual-tropic HIV-1 in an individual homozygous for the CCR5 Delta 32 allele. Lancet 2002; 359(9320): 1832-4.
[42]
Verheyen J, Thielen A, Lubke N, et al. Rapid rebound of a preexisting CXCR4-tropic HIV variant after allogeneic transplantation with CCR5 delta32 homozygous stem cells. Clin Infect Dis 2018; 68(4): 684-7.
[43]
Wilen CB, Wang J, Tilton JC, et al. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog 2011; 7(4)e1002020
[44]
Yuan J, Wang J, Crain K, et al. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther 2012; 20(4): 849-59.
[45]
Hou P, Chen S, Wang S, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 2015; 5: 15577.
[46]
Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91.
[47]
Wang Q, Chen S, Xiao Q, et al. Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection. Retrovirology 2017; 14(1): 51.
[48]
Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 2006; 34(8): 967-75.
[49]
Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95(16): 9448-53.
[50]
Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382(6592): 635-8.
[51]
Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393(6685): 595-9.
[52]
Didigu CA, Wilen CB, Wang J, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood 2014; 123(1): 61-9.
[53]
Liu Z, Chen S, Jin X, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4(+) T cells from HIV-1 infection. Cell Biosci 2017; 7: 47.
[54]
Tian S, Choi WT, Liu D, et al. Distinct functional sites for human immunodeficiency virus type 1 and stromal cell-derived factor 1alpha on CXCR4 transmembrane helical domains. J Virol 2005; 79(20): 12667-73.
[55]
Liu Y, Zhou J, Pan JA, Mabiala P, Guo D. A novel approach to block HIV-1 coreceptor CXCR4 in non-toxic manner. Mol Biotechnol 2014; 56(10): 890-902.
[56]
Liu S, Wang Q, Yu X, et al. HIV-1 inhibition in cells with CXCR4 mutant genome created by CRISPR-Cas9 and piggyBac recombinant technologies. Sci Rep 2018; 8(1): 8573.
[57]
Finzi D, Blankson J, Siliciano JD, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 1999; 5(5): 512-7.
[58]
Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 2019; 37(6): 657-66.
[59]
Wang Y, Wang B, Xie H, et al. Efficient human genome editing using SaCas9 ribonucleoprotein complexes. Biotechnol J 2019.e1800689
[60]
Wang Q, Liu S, Liu Z, et al. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res 2018; 250: 21-30.
[61]
Yin J, Liu M, Liu Y, et al. Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discov 2019; 5: 18.
[62]
Deleage C, Chan CN, Busman-Sahay K, Estes JD. Next-generation in situ hybridization approaches to define and quantify HIV and SIV reservoirs in tissue microenvironments. Retrovirology 2018; 15(1): 4.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy