[1]
Bunnik, E.M.; Le Roch, K.G. An introduction to functional genomics and systems biology. Adv. Wound Care (New Rochelle), 2013, 2(9), 490-498.
[2]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J.P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, Y.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J.C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R.H.; Wilson, R.K.; Hillier, L.W.; McPherson, J.D.; Marra, M.A.; Mardis, E.R.; Fulton, L.A.; Chinwalla, A.T.; Pepin, K.H.; Gish, W.R.; Chissoe, S.L.; Wendl, M.C.; Delehaunty, K.D.; Miner, T.L.; Delehaunty, A.; Kramer, J.B.; Cook, L.L.; Fulton, R.S.; Johnson, D.L.; Minx, P.J.; Clifton, S.W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J.F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R.A.; Muzny, D.M.; Scherer, S.E.; Bouck, J.B.; Sodergren, E.J.; Worley, K.C.; Rives, C.M.; Gorrell, J.H.; Metzker, M.L.; Naylor, S.L.; Kucherlapati, R.S.; Nelson, D.L.; Weinstock, G.M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Smith, D.R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H.M.; Dubois, J.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R.W.; Federspiel, N.A.; Abola, A.P.; Proctor, M.J.; Myers, R.M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D.R.; Olson, M.V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G.A.; Athanasiou, M.; Schultz, R.; Roe, B.A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W.R.; de la Bastide, M.; Dedhia, N.; Blöcker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J.A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D.G.; Burge, C.B.; Cerutti, L.; Chen, H.C.; Church, D.; Clamp, M.; Copley, R.R.; Doerks, T.; Eddy, S.R.; Eichler, E.E.; Furey, T.S.; Galagan, J.; Gilbert, J.G.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L.S.; Jones, T.A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W.J.; Kitts, P.; Koonin, E.V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T.M.; McLysaght, A.; Mikkelsen, T.; Moran, J.V.; Mulder, N.; Pollara, V.J.; Ponting, C.P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A.F.; Stupka, E.; Szustakowki, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y.I.; Wolfe, K.H.; Yang, S.P.; Yeh, R.F.; Collins, F.; Guyer, M.S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K.A.; Patrinos, A.; Morgan, M.J.; de Jong, P.; Catanese, J.J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y.J.; Szustakowki, J. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822), 860-921.
[3]
Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; Gocayne, J.D.; Amanatides, P.; Ballew, R.M.; Huson, D.H.; Wortman, J.R.; Zhang, Q.; Kodira, C.D.; Zheng, X.H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P.D.; Zhang, J.; Gabor, M.G.L.; Nelson, C.; Broder, S.; Clark, A.G.; Nadeau, J.; McKusick, V.A.; Zinder, N.; Levine, A.J.; Roberts, R.J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Halpern, A.; Hannenhalli, S. Kravitz, S.; Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; Chaturvedi, K.; Deng, Z.; Di Francesco, V.; Dunn, P.; Eilbeck, K.; Evangelista, C.; Gabrielian, A.E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T.J.; Higgins, M.E.; Ji, R.R.; Ke, Z.; Ketchum, K.A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; Lu, F.; Merkulov, G.V.; Milshina, N.; Moore, H.M.; Naik, A.K.; Narayan, V.A.; Neelam, B.; Nusskern, D.; Rusch, D.B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, Z.; Wang, A.; Wang, X.; Wang, J.; Wei, M.; Wides, R.; Xiao, C.; Yan, C.; Yao, A.; Ye, J.; Zhan, M.; Zhang, W.; Zhang, H.; Zhao, Q.; Zheng, L.; Zhong, F.; Zhong, W.; Zhu, S.; Zhao, S.; Gilbert, D.; Baumhueter, S.; Spier, G.; Carter, C.; Cravchik, A.; Woodage, T.; Ali, F.; An, H.; Awe, A.; Baldwin, D.; Baden, H.; Barnstead, M.; Barrow, I.; Beeson, K.; Busam, D.; Carver, A.; Center, A.; Cheng, M.L.; Curry, L.; Danaher, S.; Davenport, L.; Desilets, R.; Dietz, S.; Dodson, K.; Doup, L.; Ferriera, S.; Garg, N.; Gluecksmann, A.; Hart, B.; Haynes, J.; Haynes, C.; Heiner, C.; Hladun, S.; Hostin, D.; Houck, J.; Howland, T.; Ibegwam, C.; Johnson, J.; Kalush, F.; Kline, L.; Koduru, S.; Love, A.; Mann, F.; May, D.; McCawley, S.; McIntosh, T.; McMullen, I.; Moy, M.; Moy, L.; Murphy, B.; Nelson, K.; Pfannkoch, C.; Pratts, E.; Puri, V.; Qureshi, H.; Reardon, M.; Rodriguez, R.; Rogers, Y.H.; Romblad, D.; Ruhfel, B.; Scott, R.; Sitter, C.; Smallwood, M.; Stewart, E.; Strong, R.; Suh, E.; Thomas, R.; Tint, N.N.; Tse, S.; V.C.; Wang, G.; Wetter, J.; Williams, S.; Williams, M.; Windsor, S.; Winn-Deen, E.; Wolfe, K.; Zaveri, J.; Zaveri, K.; Abril, J.F.; Guigó, R.; Campbell, M.J.; Sjolander, K.V.; Karlak, B.; Kejariwal, A.; Mi, H.; Lazareva, B.; Hatton, T.; Narechania, A.; Diemer, K.; Muruganujan, A.; Guo, N.; Sato, S.; Bafna, V.; Istrail, S.; Lippert, R.; Schwartz, R.; Walenz, B.; Yooseph, S.; Allen, D.; Basu, A.; Baxendale, J.; Blick, L.; Caminha, M.; Carnes-Stine, J.; Caulk, P.; Chiang, Y.H.; Coyne, M.; Dahlke, C.; Mays, A.; Dombroski, M.; Donnelly, M.; Ely, D.; Esparham, S.; Fosler, C.; Gire, H.; Glanowski, S.; Glasser, K.; Glodek, A.; Gorokhov, M.; Graham, K.; Gropman, B.; Harris, M.; Heil, J.; Henderson, S.; Hoover, J.; Jennings, D.; Jordan, C.; Jordan, J.; Kasha, J.; Kagan, L.; Kraft, C.; Levitsky, A.; Lewis, M.; Liu, X.; Lopez, J.; Ma, D.; Majoros, W.; McDaniel, J.; Murphy, S.; Newman, M.; Nguyen, T.; Nguyen, N.; Nodell, M.; Pan, S.; Peck, J.; Peterson, M.; Rowe, W.; Sanders, R.; Scott, J.; Simpson, M.; Smith, T.; Sprague, A.; Stockwell, T.; Turner, R.; Venter, E.; Wang, M.; Wen, M.; Wu, D.; Wu, M.; Xia, A.; Zandieh, A.; Zhu, X. The sequence of the human genome. Science, 2001, 291(5507), 1304-1351.
[4]
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408(6814), 796-815.
[5]
Chen, F.; Dong, W.; Zhang, J.; Guo, X.; Chen, J.; Wang, Z.; Lin, Z.; Tang, H.; Zhang, L. The sequenced angiosperm genomes and genome databases. Front. Plant Sci., 2018, 9, 418.
[6]
Moorhead, G.B.G.; De Wever, V.; Templeton, G.; Kerk, D. Evolution of protein phosphatases in plants and animals. Biochem. J., 2009, 417(2), 401-409.
[7]
Barford, D. Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem. Sci., 1996, 21(11), 407-412.
[8]
Hunter, T. Protein phosphorylation: what does the future hold?In: Life Sciences for the 21st Century; Ehud Keinan, I.S.; Sela, M., Eds.; Wiley: Hoboken, NJ, 2004, pp. 191-223.
[9]
Hubbard, M.J.; Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci., 1993, 18(5), 172-177.
[10]
Olsen, J.V.; Vermeulen, M.; Santamaria, A.; Kumar, C.; Miller, M.L.; Jensen, L.J.; Gnad, F.; Cox, J.; Jensen, T.S.; Nigg, E.A.; Brunak, S.; Mann, M. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal., 2010, 3(104), ra3.
[11]
Sharma, K.; D’Souza, R.C.J.; Tyanova, S.; Schaab, C.; Wiśniewski, J.R.; Cox, J.; Mann, M. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Reports, 2014, 8(5), 1583-1594.
[12]
Nakagami, H.; Sugiyama, N.; Mochida, K.; Daudi, A.; Yoshida, Y.; Toyoda, T.; Tomita, M.; Ishihama, Y.; Shirasu, K. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol., 2010, 153(3), 1161-1174.
[13]
Sugiyama, N.; Nakagami, H.; Mochida, K.; Daudi, A.; Tomita, M.; Shirasu, K.; Ishihama, Y. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in arabidopsis. Mol. Syst. Biol., 2008, 4(1), 193.
[14]
Nguyen, T.H.N.; Brechenmacher, L.; Aldrich, J.T.; Clauss, T.R.; Gritsenko, M.A.; Hixson, K.K.; Libault, M.; Tanaka, K.; Yang, F.; Yao, Q.; Pasa-Tolić, L.; Xu, D.; Nguyen, H.T.; Stacey, G. Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol. Cell. Proteomics, 2012, 11(11), 1140-1155.
[15]
Grimsrud, P.A.; den Os, D.; Wenger, C.D.; Swaney, D.L.; Schwartz, D.; Sussman, M.R.; Ane, J-M.; Coon, J.J. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol., 2010, 152(1), 19-28.
[16]
Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006, 127(3), 635-648.
[17]
Tonks, N.K. Protein tyrosine phosphatases-from housekeeping enzymes to master regulators of signal transduction. FEBS J., 2013, 280(2), 346-378.
[18]
Kerk, D.; Templeton, G.; Moorhead, G.B.G. Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiol., 2008, 146(2), 351-367.
[19]
Uhrig, R.G.; Labandera, A-M.; Moorhead, G.B. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. Trends Plant Sci., 2013, 18(9), 505-513.
[20]
Keyse, S.M. An emerging family of dual specificity MAP kinase phosphatases. Biochim. Biophys. Acta, 1995, 1265(2-3), 152-160.
[21]
Brautigan, D.L. Protein Ser/ Thr phosphatases - the ugly ducklings of cell signalling. FEBS J., 2013, 280(2), 324-325.
[22]
Andreeva, A.V.; Kutuzov, M.A. Widespread presence of “Bacterial-like” PPP phosphatases in eukaryotes. BMC Evol. Biol., 2004, 4(1), 47.
[23]
Das, A.K.; Helps, N.R.; Cohen, P.T.; Barford, D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J., 1996, 15(24), 6798-6809.
[24]
Ingebritsen, T.S.; Foulkes, J.G.; Cohen, P. The protein phosphatases involved in cellular regulation. 2. glycogen metabolism. Eur. J. Biochem., 1983, 132, 263-274.
[25]
Tonks, N.K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol., 2006, 7(11), 833-846.
[26]
Mayer-Jaekel, R.E.; Hemmings, B.A. Protein phosphatase 2A - a
“Ménage à Trois.” In. Trends in Cell Biology., Elsevier Current
Trends; 1994, Vol. 4(8), pp. 287-291.
[27]
Groves, M.R.; Hanlon, N.; Turowski, P.; Hemmings, B.A.; Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell, 1999, 96(1), 99-110.
[28]
Farkas, I.; Dombrádi, V.; Miskei, M.; Szabados, L.; Koncz, C. Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci., 2007, 12(4), 169-176.
[29]
Slabas, A.R.; Fordham-Skelton, A.P.; Fletcher, D.; Martinez-Rivas, J.M.; Swinhoe, R.; Croy, R.R.D.; Evans, I.M. Characterisation of CDNA and genomic clones encoding homologues of the 65 KDa regulatory subunit of protein phosphatase 2A in Arabidopsis thaliana. Plant Mol. Biol., 1994, 26(4), 1125-1138.
[30]
Zhou, H-W.; Nussbaumer, C.; Chao, Y.; DeLong, A. Disparate roles for the regulatory a subunit isoforms in arabidopsis protein phosphatase 2A. Plant Cell, 2004, 16(3), 709-722.
[31]
Ariño, J.; Pérez-Callejón, E.; Cunillera, N.; Camps, M.; Posas, F.; Ferrer, A. Protein phosphatases in higher plants: multiplicity of type 2A phosphatases in Arabidopsis thaliana. Plant Mol. Biol., 1993, 21(3), 475-485.
[32]
Ballesteros, I.; Domínguez, T.; Sauer, M.; Paredes, P.; Duprat, A.; Rojo, E.; Sanmartín, M.; Sánchez-Serrano, J.J. Specialized functions of the PP2A subfamily II catalytic subunits PP2A-C3 and PP2A-C4 in the distribution of auxin fluxes and development in arabidopsis. Plant J., 2013, 73(5), 862-872.
[33]
Corum, J.W.; Hartung, A.J.; Stamey, R.T.; Rundle, S.J. Characterization of DNA sequences encoding a novel isoform of the 55 KDa B regulatory subunit of the type 2A protein serine/threonine phosphatase of Arabidopsis thaliana. Plant Mol. Biol., 1996, 31(2), 419-427.
[34]
Janssens, V.; Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J., 2001, 353(Pt 3), 417-439.
[35]
White, R.J.; Davis, M.; Esmon, C.A.; Myrick, T.L.; Cochran, D.S.; Rundle, S.J. Functional analysis of the B′ subunit of arabidopsis protein phosphatase type 2A. Plant Sci., 2002, 162(2), 201-209.
[36]
Camilleri, C.; Azimzadeh, J.; Pastuglia, M.; Bellini, C.; Grandjean, O.; Bouchez, D. The arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell, 2002, 14(4), 833-845.
[37]
Terol, J.; Bargues, M.; Carrasco, P.; Pérez-Alonso, M.; Paricio, N. Molecular characterization and evolution of the protein phosphatase 2A B’ regulatory subunit family in plants. Plant Physiol., 2002, 129(2), 808-822.
[38]
Booker, M.A.; DeLong, A. Atypical protein phosphatase 2A gene families do not expand via paleopolyploidization. Plant Physiol., 2017, 173(2), 1283-1300.
[39]
Kerk, D.; Bulgrien, J.; Smith, D.W.; Barsam, B.; Veretnik, S.; Gribskov, M. The complement of protein phosphatase catalytic subunits encoded in the genome of arabidopsis. Plant Physiol., 2002, 129(2), 908-925.
[40]
Burge, C.; Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol., 1997, 268(1), 78-94.
[41]
Lukashin, A.V.; Borodovsky, M. GeneMark. Hmm: new solutions for gene finding. Nucleic Acids Res., 1998, 26(4), 1107-1115.
[42]
Xue, T.; Wang, D.; Zhang, S.; Ehlting, J.; Ni, F.; Jakab, S.; Zheng, C.; Zhong, Y. Genome-wide and expression analysis of protein phosphatase 2C in rice and arabidopsis. BMC Genomics, 2008, 9, 550.
[43]
Kim, S.; Park, M.; Yeom, S.I.; Kim, Y.M.; Lee, J.M.; Lee, H.A.; Seo, E.; Choi, J.; Cheong, K.; Kim, K.T.; Jung, K.; Lee, G.W.; Oh, S.K.; Bae, C.; Kim, S.B.; Lee, H.Y.; Kim, S.Y.; Kim, M.S.; Kang, B.C.; Jo, Y.D.; Yang, H.B.; Jeong, H.J.; Kang, W.H.; Kwon, J.K.; Shin, C.; Lim, J.Y.; Park, J.H.; Huh, J.H.; Kim, J.S.; Kim, B.D.; Cohen, O.; Paran, I.; Suh, M.C.; Lee, S.B.; Kim, Y.K.; Shin, Y.; Noh, S.J.; Park, J.; Seo, Y.S.; Kwon, S.Y.; Kim, H.A.; Park, J.M.; Kim, H.J.; Choi, S.B.; Bosland, P.W.; Reeves, G.; Jo, S.H.; Lee, B.W.; Cho, H.T.; Choi, H.S.; Lee, M.S.; Yu, Y.; Do Choi, Y.; Park, B.S.; van Deynze, A.; Ashrafi, H.; Hill, T.; Kim, W.T.; Pai, H.S.; Ahn, H.K.; Yeam, I.; Giovannoni, J.J.; Rose, J.K.; Sørensen, I.; Lee, S.J.; Kim, R.W.; Choi, I.Y.; Choi, B.S.; Lim, J.S.; Lee, Y.H.; Choi, D. Genome sequence of the hot pepper provides insights into the evolution of pungency in capsicum species. Nat. Genet., 2014, 46(3), 270-278.
[44]
Singh, A.; Giri, J.; Kapoor, S.; Tyagi, A.K.; Pandey, G.K. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics, 2010, 11(1), 435.
[45]
Van Hoof, C.; Goris, J. Phosphatases in apoptosis: to be or not to be, PP2A is in the heart of the question. Biochim. Biophys. Acta, 2003, 1640(2-3), 97-104.
[46]
Codreanu, S.G.; Adams, D.G.; Dawson, E.S.; Wadzinski, B.E.; Liebler, D.C. Inhibition of protein phosphatase 2A activity by selective electrophile alkylation damage. Biochemistry, 2006, 45(33), 10020-10029.
[47]
Turowski, P.; Fernandez, A.; Favre, B.; Lamb, N.J.; Hemmings, B.A. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J. Cell Biol., 1995, 129(2), 397-410.
[48]
Perrotti, D.; Neviani, P. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol., 2013, 14(6), e229-e238.
[49]
Sontag, J-M.; Sontag, E. Protein phosphatase 2A dysfunction in alzheimer’s disease. Front. Mol. Neurosci., 2014, 7, 16.
[50]
Samofalova, D.A.; Karpov, P.A.; Nuporko, A.Y.; Blume, Y.B. Reconstruction of the spatial structure of plant phosphatases types 1 and 2A in complexes with okadaic acid. Cytol. Genet., 2011, 45(3), 153-162.
[51]
Cho, U.S.; Xu, W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 2007, 445(7123), 53-57.
[52]
Magnusdottir, A.; Stenmark, P.; Flodin, S.; Nyman, T.; Kotenyova, T.; Gräslund, S.; Ogg, D.; Nordlund, P. The structure of the PP2A regulatory subunit B56γ: the remaining piece of the PP2A jigsaw puzzle. Proteins Struct. Funct. Bioinforma., 2009, 74(1), 212-221.
[53]
Wang, J.; Pei, L.; Jin, Z.; Zhang, K.; Zhang, J. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize. PLoS One, 2017, 12(4), e0176538.
[54]
Yang, J.; Roe, S.M.; Prickett, T.D.; Brautigan, D.L.; Barford, D. The structure of Tap42/A4 reveals a tetratricopeptide repeat-like fold and provides insights into PP2A regulation. Biochemistry, 2007, 46(30), 88078815.
[55]
Xing, Y.; Li, Z.; Chen, Y.; Stock, J.B.; Jeffrey, P.D.; Shi, Y. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell, 2008, 133(1), 154-163.
[56]
Wu, G.; Wang, X.; Li, X.; Kamiya, Y.; Otegui, M.S.; Chory, J. Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci. Signal., 2011, 4(172), ra29.
[57]
Sents, W.; Ivanova, E.; Lambrecht, C.; Haesen, D.; Janssens, V. The biogenesis of active 2A Holoenzymes: a tightly regulated process creating protein phosphatase phosphatase specificity. FEBS J., 2013, 280(2), 644-661.
[58]
Chen, J.; Hu, R.; Zhu, Y.; Shen, G.; Zhang, H. Arabidopsis phosphotyrosyl phosphatase activator is essential for protein phosphatase 2A holoenzyme assembly and plays important roles in hormone signaling, salt stress response, and plant development. Plant Physiol., 2014, 166(3), 1519-1534.
[59]
Tang, W.; Yuan, M.; Wang, R.; Yang, Y.; Wang, C.; Oses-Prieto, J.A.; Kim, T.W.; Zhou, H.W.; Deng, Z.; Gampala, S.S.; Gendron, J.M.; Jonassen, E.M.; Lillo, C.; DeLong, A.; Burlingame, A.L.; Sun, Y.; Wang, Z.Y. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat. Cell Biol., 2011, 13(2), 124-131.
[60]
Csordás, T.É.; Vissi, E.; Kovács, I.; Szöke, A.; Ariño, J.; Gergely, P.; Dudits, D.; Dombrádi, V. Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa. Plant Mol. Biol., 2000, 43(4), 527-536.
[61]
Yu, R.; Zhou, Y.; Xu, Z-F.; Chye, M-L.; Kong, R.Y.C. Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Mol. Biol., 2003, 51(3), 295-311.
[62]
Yu, R.M.K.; Wong, M.M.L.; Jack, R.W.; Kong, R.Y.C. Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L.). Planta, 2005, 222(5), 757-768.
[63]
País, S.M.; González, M.A.; Téllez-Iñón, M.T.; Capiati, D.A. Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses. Planta, 2009, 230(1), 13-25.
[64]
Garbers, C.; DeLong, A.; Deruére, J.; Bernasconi, P.; Söll, D. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in arabidopsis. EMBO J., 1996, 15(9), 2115-2124.
[65]
Deruère, J.; Jackson, K.; Garbers, C.; Söll, D.; Delong, A. The RCN1-encoded a subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J., 1999, 20(4), 389-399.
[66]
Larsen, P.B.; Cancel, J.D. Enhanced ethylene responsiveness in the arabidopsis Eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1. Plant J., 2003, 34(5), 709-718.
[67]
Rashotte, A.M.; DeLong, A.; Muday, G.K. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. Plant Cell, 2001, 13(7), 1683-1697.
[68]
Kwak, J.M.; Moon, J-H.; Murata, Y.; Kuchitsu, K.; Leonhardt, N.; DeLong, A.; Schroeder, J.I. Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in arabidopsis. Plant Cell, 2002, 14(11), 2849-2861.
[69]
Blakeslee, J.J.; Zhou, H-W.; Heath, J.T.; Skottke, K.R.; Barrios, J.A.R.; Liu, S-Y.; DeLong, A. Specificity of RCN1-mediated protein phosphatase 2A regulation in meristem organization and stress response in roots. Plant Physiol., 2007, 146(2), 539-553.
[70]
Michniewicz, M.; Zago, M.K.; Abas, L.; Weijers, D.; Schweighofer, A.; Meskiene, I.; Heisler, M.G.; Ohno, C.; Zhang, J.; Huang, F.; Schwab, R.; Weigel, D.; Meyerowitz, E.M.; Luschnig, C.; Offringa, R.; Friml, J. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell, 2007, 130(6), 1044-1056.
[71]
Heidari, B.; Matre, P.; Nemie-Feyissa, D.; Meyer, C.; Rognli, O.A.; Moller, S.G.; Lillo, C. Protein phosphatase 2A B55 and A regulatory subunits interact with nitrate reductase and are essential for nitrate reductase activation. Plant Physiol., 2011, 156(1), 165-172.
[72]
Leivar, P.; Antolín-Llovera, M.; Ferrero, S.; Closa, M.; Arró, M.; Ferrer, A.; Boronat, A.; Campos, N. Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A. Plant Cell, 2011, 23(4), 1494-1511.
[73]
Rasool, B.; Karpinska, B.; Konert, G.; Durian, G.; Denessiouk, K.; Kangasj, Ã.S.; Foyer, C.H. Effects of light and the regulatory b-subunit composition of protein phosphatase 2A on the susceptibility of Arabidopsis thaliana to Aphid (Myzus persicae) infestation. Front. Plant Sci., 2014, 5, 405.
[74]
Heidari, B.; Nemie-Feyissa, D.; Kangasjärvi, S.; Lillo, C. Antagonistic regulation of flowering time through distinct regulatory subunits of protein phosphatase 2A. PLoS One, 2013, 8(7), e67987.
[75]
Konert, G.; Rahikainen, M.; Trotta, A.; Durian, G.; Salojärvi, J.; Khorobrykh, S.; Tyystjärvi, E.; Kangasjärvi, S. Subunits B′ γ and B′ ζ of protein phosphatase 2A regulate photo-oxidative stress responses and growth in Arabidopsis thaliana. Plant Cell Environ., 2015, 38(12), 2641-2651.
[76]
Trotta, A.; Wrzaczek, M.; Scharte, J.; Tikkanen, M.; Konert, G.; Rahikainen, M.; Holmstrom, M.; Hiltunen, H-M.; Rips, S.; Sipari, N.; Mulo, P.; Weis, E.; von Schaewen, A.; Aro, E.M.; Kangasjärvi, S. Regulatory subunit B′ of protein phosphatase 2A prevents unnecessary defense reactions under low light in arabidopsis. Plant Physiol., 2011, 156(3), 1464-1480.
[77]
Kataya, A.; Heidari, B.; Hagen, L.; Kommedal, R.; Slupphaug, G.; Lillo, C. Protein phosphatase 2A holoenzyme is targeted to peroxisomes by piggybacking and positively affects peroxisomal β-oxidation. Plant Physiol., 2015, 167(2), 493-506.
[78]
Kataya, A.; Heidari, B.; Lillo, C. Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time – joint functions among B’η subfamily members. Plant Signal. Behav., 2015, 10(5), e1026024.
[79]
Harris, D.M.; Myrick, T.L.; Rundle, S.J. The arabidopsis homolog of yeast TAP42 and mammalian alpha4 binds to the catalytic subunit of protein phosphatase 2A and is induced by chilling. Plant Physiol., 1999, 121(2), 609-617.
[80]
Binh, le T.; Oono, K. Molecular cloning and characterization of genes related to chilling tolerance in Rice. Plant Physiol., 1992, 99(3), 1146-1150.
[81]
Ahn, C.S.; Han, J-A.; Lee, H-S.; Lee, S.; Pai, H-S. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell, 2011, 23(1), 185-209.
[82]
Hu, R.; Zhu, Y.; Shen, G.; Zhang, H. TAP46 plays a positive role in the Abscisic Acid Insensitive5-Regulated gene expression in arabidopsis. Plant Physiol., 2014, 164(2), 721-734.
[83]
Hu, R.; Zhu, Y.; Shen, G.; Zhang, H. Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana. Plant Signal. Behav., 2017, 12(2), e1276687.
[84]
Hu, R.; Zhu, Y.; Wei, J.; Chen, J.; Shi, H.; Shen, G.; Zhang, H. Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in arabidopsis confers better root and shoot development under salt conditions. Plant Cell Environ., 2017, 40(1), 150-164.
[85]
Sun, W.; Deng, D.; Yang, L.; Zheng, X.; Yu, J.; Pan, H.; Zhuge, Q. Overexpression of the chloride channel gene (GmCLC1) from soybean increases salt tolerance in transgenic Populus deltoides × P. Euramericana “Nanlin895”. Plant Omics, 2013, 6(5), 347-354.
[86]
Wei, P.; Wang, L.; Liu, A.; Yu, B.; Lam, H-M. GmCLC1 confers enhanced salt tolerance through regulating chloride accumulation in soybean. Front. Plant Sci., 2016, 7, 1082.
[87]
Jossier, M.; Kroniewicz, L.; Dalmas, F.; Le Thiec, D.; Ephritikhine, G.; Thomine, S.; Barbier-Brygoo, H.; Vavasseur, A.; Filleur, S.; Leonhardt, N. The arabidopsis vacuolar anion transporter, atclcc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J., 2010, 64(4), 563-576.
[88]
Pernas, M.; García-Casado, G.; Rojo, E.; Solano, R.; Sánchez-Serrano, J.J. A protein phosphatase 2A catalytic subunit is a negative regulator of abscisic acid signalling1. Plant J., 2007, 51(5), 763-778.
[89]
Xu, C.; Jing, R.; Mao, X.; Jia, X.; Chang, X. A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann. Bot., 2007, 99(3), 439-450.
[90]
Liu, D.; Li, A.; Mao, X.; Jing, R. Cloning and characterization of TaPP2AbB”-α, a member of the PP2A regulatory subunit in wheat. PLoS One, 2014, 9(4), e94430.
[91]
He, X.; Anderson, J.C.; Del Pozo, O.; Gu, Y.Q.; Tang, X.; Martin, G.B. Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. Plant J., 2004, 38(4), 563-577.
[92]
Dai, M.; Zhang, C.; Kania, U.; Chen, F.; Xue, Q.; Mccray, T.; Li, G.; Qin, G.; Wakeley, M.; Terzaghi, W.; Wan, J.; Zhao, Y.; Xu, J.; Friml, J.; Deng, X.W.; Wang, H.A. PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in arabidopsis. Plant Cell, 2012, 24(6), 2497-2514.
[93]
Waadt, R.; Manalansan, B.; Rauniyar, N.; Munemasa, S.; Booker, M.A.; Brandt, B.; Waadt, C.; Nusinow, D.A.; Kay, S.A.; Kunz, H-H.; Schumacher, K.; DeLong, A.; Yates, J.R.; Schroeder, J.I. Identification of open stomata1-interacting proteins reveals interactions with sucrose non-fermenting1-related protein kinases2 and with type 2A protein phosphatases that function in abscisic acid responses. Plant Physiol., 2015, 169(1), 760-779.
[94]
Li, K.; Xu, C.; Fan, W.; Zhang, H.; Hou, J.; Yang, A.; Zhang, K. Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Plant Physiol. Biochem., 2014, 83, 232-242.
[95]
Trotta, A.; Konert, G.; Rahikainen, M.; Aro, E.M.; Kangasjärvi, S. Knock-down of protein phosphatase 2a subunit b’γ promotes phosphorylation of calreticulin 1 in Arabidopsis thaliana. Plant Signal. Behav., 2011, 6(11), 1665-1668.
[96]
Konert, G.; Trotta, A.; Kouvonen, P.; Rahikainen, M.; Durian, G.; Blokhina, O.; Fagerstedt, K.; Muth, D.; Corthals, G.L.; Kangasjärvi, S. Protein phosphatase 2A (PP2A) regulatory subunit B′γ interacts with cytoplasmic ACONITASE 3 and modulates the abundance of AOX1A and AOX1D in Arabidopsis thaliana. New Phytol., 2015, 205(3), 1250-1263.
[97]
Li, S.; Mhamdi, A.; Trotta, A.; Kangasjärvi, S.; Noctor, G. The protein phosphatase subunit PP2A-B′γ is required to suppress day length-dependent pathogenesis responses triggered by intracellular oxidative stress. New Phytol., 2014, 202(1), 145-160.