[2]
Zatoński, W.A.; Sulkowska, U.; Didkowska, J. Cancer epidemiology in Poland. Warsaw: Nowotwory. J. Oncol., 2015, 65, 179-196.
[3]
Cichoż-Lach, H.; Szumiło, J.; Celiński, K.; Kasztelan-Szczerbińska, B.; Szczerbiński, M.; Swatek, J.; Wronecki, L.; Wargocki, J.; Słomka, M. Results of screening in Lublin Province, Poland, for colorectal cancer and neoplastic polyps - the role of environmental factors. Ann. Agric. Environ. Med., 2017, 24(1), 108-112. [http://dx.doi.org/10.5604/12321966.1227648]. [PMID: 28378966].
[4]
Bubko, I.; Gruber, B.M.; Anuszewska, E.L. The role of the proteasome for therapy of incurable diseases. Postepy Hig. Med. Dosw., 2010, 64, 314-325. [PMID: 20679687].
[5]
Kwon, Y.T.; Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci., 2017, 42(11), 873-886. [http://dx.doi.org/10.1016/j.tibs.2017.09.002]. [PMID: 28947091].
[6]
Sujashvili, R. Advantages of extracellular ubiquitin in modulation
of immune responses. In. Mediat Inflamm., 1-6., 2016; pp. [http://dx.doi.org/10.1155/2016/4190390].
[7]
Huang, X.; Dixit, V.M. Drugging the undruggables: Exploring the ubiquitin system for drug development. Cell Res., 2016, 26(4), 484-498. [http://dx.doi.org/10.1038/cr.2016.31]. [PMID: 27002218].
[8]
Xu, D.; Shan, B.; Lee, B.; Zhu, K.; Zhang, T.; Sun, H. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. eLife, 2015, 1-16.
[9]
Zhong, J.L.; Huang, C.Z. Ubiquitin proteasome system research in gastrointestinal cancer. World J. Gastrointest. Oncol., 2016, 8(2), 198-206. [http://dx.doi.org/10.4251/wjgo.v8.i2.198]. [PMID: 26909134].
[10]
Lee, H.; Park, J.; Kim, E.E.; Yoo, Y.S.; Song, E.J. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells. BMB Rep., 2016, 49(5), 270-275. [http://dx.doi.org/10.5483/BMBRep.2016.49.5.187]. [PMID: 26592933].
[11]
Gadhave, K.; Bolshette, N.; Ahire, A.; Pardeshi, R.; Thakur, K.; Trandafir, C.; Istrate, A.; Ahmed, S.; Lahkar, M.; Muresanu, D.F.; Balea, M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J. Cell. Mol. Med., 2016, 20(7), 1392-1407. [http://dx.doi.org/10.1111/jcmm.12817]. [PMID: 27028664].
[12]
Hamacher-Brady, A.; Brady, N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci., 2016, 73(4), 775-795. [http://dx.doi.org/10.1007/s00018-015-2087-8]. [PMID: 26611876].
[13]
Kaushik, S.; Massey, A.C.; Cuervo, A.M. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J., 2006, 25(17), 3921-3933. [http://dx.doi.org/10.1038/sj.emboj.7601283]. [PMID: 16917501].
[14]
Zhao, Y.; Li, X.; Ma, K.; Yang, J.; Zhou, J.; Fu, W.; Wei, F.; Wang, L.; Zhu, W.G. The axis of MAPK1/3-XBP1u-FOXO1 controls autophagic dynamics in cancer cells. Autophagy, 2013, 9(5), 794-796. [http://dx.doi.org/10.4161/auto.23918]. [PMID: 23426330].
[15]
Füllgrabe, J.; Ghislat, G.; Cho, D.H.; Rubinsztein, D.C. Transcriptional regulation of mammalian autophagy at a glance. J. Cell Sci., 2016, 129(16), 3059-3066. [http://dx.doi.org/10.1242/jcs.188920]. [PMID: 27528206].
[16]
Zhang, Y.; Zhang, L.; Sun, H.; Lv, Q.; Qiu, C.; Che, X.; Liu, Z.; Jiang, J. Forkhead transcription factor 1 inhibits endometrial cancer cell proliferation via sterol regulatory element-binding protein 1. Oncol. Lett., 2017, 13(2), 731-737. [http://dx.doi.org/10.3892/ol.2016.5480]. [PMID: 28356952].
[17]
Whitehouse, C.A.; Waters, S.; Marchbank, K.; Horner, A.; McGowan, N.W.; Jovanovic, J.V.; Xavier, G.M.; Kashima, T.G.; Cobourne, M.T.; Richards, G.O.; Sharpe, P.T.; Skerry, T.M.; Grigoriadis, A.E.; Solomon, E. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc. Natl. Acad. Sci. USA, 2010, 107(29), 12913-12918. [http://dx.doi.org/10.1073/pnas.0913058107]. [PMID: 20616007].
[18]
Behrends, C.; Fulda, S. Receptor proteins in selective autophagy. Int. J. Cell Biol., 2012, •••, 2012673290. [http://dx.doi.org/10.1155/2012/673290]. [PMID: 22536250].
[19]
Xiao, W.; Xiong, Z.; Yuan, C.; Bao, L.; Liu, D.; Yang, X. Low neighbour of BRCA1 gene expression predicts poor clinical outcome and resistance of sunitinib in clear cell renal cell carcinoma. Oncotarget, 2017, 8(55), 94819-94833.
[20]
Lisak, D.A.; Schacht, T.; Enders, V.; Habicht, J.; Kiviluoto, S.; Schneider, J.; Henke, N.; Bultynck, G.; Methner, A. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA2+-filling state. Biochim. Biophys. Acta, 2015, 1853(9), 2104-2114. [http://dx.doi.org/10.1016/j.bbamcr.2015.03.002]. [PMID: 25764978].
[21]
Grzmil, M.; Thelen, P.; Hemmerlein, B.; Schweyer, S.; Voigt, S.; Mury, D.; Burfeind, P. Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am. J. Pathol., 2003, 163(2), 543-552. [http://dx.doi.org/10.1016/S0002-9440(10)63682-6]. [PMID: 12875974].
[22]
Liu, Q. TMBIM-mediated Ca2+ homeostasis and cell death. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(6), 850-857. [http://dx.doi.org/10.1016/j.bbamcr.2016.12.023]. [PMID: 28064000].
[23]
Sun, T.; Li, X.; Zhang, P.; Chen, W.D.; Zhang, H.L.; Li, D.D.; Deng, R.; Qian, X.J.; Jiao, L.; Ji, J.; Li, Y.T.; Wu, R.Y.; Yu, Y.; Feng, G.K.; Zhu, X.F. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun., 2015, 6(7215), 7215. [http://dx.doi.org/10.1038/ncomms8215]. [PMID: 26008601].
[24]
Rohatgi, R.A.; Shaw, L.M. An autophagy-independent function for Beclin 1 in cancer. Mol. Cell. Oncol., 2016, 3(1), e1030539. [http://dx.doi.org/10.1080/23723556.2015.1030539]. [PMID: 26998512].
[25]
Tang, H.; Sebti, S.; Titone, R.; Zhou, Y.; Isidoro, C.; Ross, T.S.; Hibshoosh, H.; Xiao, G.; Packer, M.; Xie, Y.; Levine, B. Decreased BECN1 mRNA expression in human breast cancer is associated with estrogen receptor-negative subtypes and poor prognosis. EBioMedicine, 2015, 2(3), 255-263. [http://dx.doi.org/10.1016/j.ebiom.2015.01.008]. [PMID: 25825707].
[26]
Hervouet, E.; Claude-Taupin, A.; Gauthier, T.; Perez, V.; Fraichard, A.; Adami, P.; Despouy, G.; Monnien, F.; Algros, M.P.; Jouvenot, M.; Delage-Mourroux, R.; Boyer-Guittaut, M. The autophagy GABARAPL1 gene is epigenetically regulated in breast cancer models. BMC Cancer, 2015, 15(729), 729. [http://dx.doi.org/10.1186/s12885-015-1761-4]. [PMID: 26474850].
[27]
Salah, F.S.; Ebbinghaus, M.; Muley, V.Y.; Zhou, Z.; Al-Saadi, K.R.; Pacyna-Gengelbach, M.; O’Sullivan, G.A.; Betz, H.; König, R.; Wang, Z.Q.; Bräuer, R.; Petersen, I. Tumor suppression in mice
lacking GABARAP, an Atg8/LC3 family member implicated in
autophagy, is associated with alterations in cytokine secretion and
cell death. Cell Death Dis., 2016, 7, e2205. [http://dx.doi.org/10.1038/cddis.2016.93]. [PMID: 27124579].
[28]
Steffen, J.; Vashisht, A.A.; Wan, J.; Jen, J.C.; Claypool, S.M.; Wohlschlegel, J.A.; Koehler, C.M. Rapid degradation of mutant SLC25A46 by the ubiquitin-proteasome system results in MFN1/2-mediated hyperfusion of mitochondria. Mol. Biol. Cell, 2017, 28(5), 600-612. [http://dx.doi.org/10.1091/mbc.e16-07-0545]. [PMID: 28057766].
[29]
Chu, C.T. Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism. Biochim. Biophys. Acta, 2010, 1802(1), 20-28. [http://dx.doi.org/10.1016/j.bbadis.2009.06.012]. [PMID: 19595762].
[30]
Arena, G.; Gelmetti, V.; Torosantucci, L.; Vignone, D.; Lamorte, G.; De Rosa, P.; Cilia, E.; Jonas, E.A.; Valente, E.M. PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ., 2013, 20(7), 920-930. [http://dx.doi.org/10.1038/cdd.2013.19]. [PMID: 23519076].
[31]
O’Flanagan, C.H.; O’Neill, C. PINK1 signalling in cancer biology. Biochim. Biophys. Acta, 2014, 1846(2), 590-598. [PMID: 25450579].
[32]
Qian, H.; Chao, X.; Ding, W.X.A.A. PINK1-mediated mitophagy pathway decides the fate of tumors-to be benign or malignant? Autophagy, 2018, 14(4), 563-566. [http://dx.doi.org/10.1080/15548627.2018.1425057]. [PMID: 29313453].
[33]
Wong, Y.C.; Holzbaur, E.L. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria. Autophagy, 2015, 11(2), 422-424. [http://dx.doi.org/10.1080/15548627.2015.1009792]. [PMID: 25801386].
[34]
Heo, J.M.; Ordureau, A.; Paulo, J.; Rinehart, J.; Harper, J. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of TBK1 activation and recruitment of OPTN and NDP52 to promote mitophagy. Mol. Cell, 2015, 60(1), 7-20. [http://dx.doi.org/10.1016/j.molcel.2015.08.016]. [PMID: 26365381].
[35]
Slowicka, K.; Vereecke, L.; Mc Guire, C.; Sze, M.; Maelfait, J.; Kolpe, A.; Saelens, X.; Beyaert, R.; van Loo, G. Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur. J. Immunol., 2016, 46(4), 971-980. [http://dx.doi.org/10.1002/eji.201545863]. [PMID: 26677802].
[36]
Moore, A.; Holzbaur, E. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl. Acad. Sci. USA, 2016, 113(24), E3349-E3358. [https://doi.org/10.1073/pnas.1523810113]. [PMID: 27247382].
[37]
La Spada, A.R. PPARGC1A/PGC-1α, TFEB and enhanced proteostasis in Huntington disease: Defining regulatory linkages between energy production and protein-organelle quality control. Autophagy, 2012, 8(12), 1845-1847. [http://dx.doi.org/10.4161/auto.21862]. [PMID: 22932698].
[38]
Yang, C.S.; Kim, J.J.; Lee, H.M.; Jin, H.S.; Lee, S.H.; Park, J.H.; Kim, S.J.; Kim, J.M.; Han, Y.M.; Lee, M.S.; Kweon, G.R.; Shong, M.; Jo, E.K. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy, 2014, 10(5), 785-802. [http://dx.doi.org/10.4161/auto.28072]. [PMID: 24598403].
[39]
Mastropasqua, F.; Girolimetti, G.; Shoshan, M. PGC1alpha: Friend or foe in cancer? Genes., 2018, 9(1), pii: E48. [https://www.mdpi.com/2073-4425/9/1/48]. [PMID: 29361779].
[40]
Nelson, D.E.; Randle, S.J.; Laman, H. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol., 2013, 3(10), 130-131. [http://dx.doi.org/10.1098/rsob.130131]. [PMID: 24107298].
[41]
Randle, S.J.; Nelson, D.E.; Patel, S.P.; Laman, H. Defective erythropoiesis in a mouse model of reduced Fbxo7 expression due to decreased p27 expression. J. Pathol., 2015, 237(2), 263-272. [http://dx.doi.org/10.1002/path.4571]. [PMID: 26095538].
[42]
Radici, L.; Bianchi, M.; Crinelli, R.; Magnani, M. Ubiquitin C gene: Structure, function, and transcriptional regulation. Adv. Biosci. Biotechnol., 2013, 4, 1057-1062. [http://dx.doi.org/10.4236/abb.2013.412141].
[43]
Kedves, A.T.; Gleim, S.; Liang, X.; Bonal, D.M.; Sigoillot, F.; Harbinski, F.; Sanghavi, S.; Benander, C.; George, E.; Gokhale, P.C.; Nguyen, Q.D.; Kirschmeier, P.T.; Distel, R.J.; Jenkins, J.; Goldberg, M.S.; Forrester, W.C. Recurrent ubiquitin B silencing in gynecological cancers establishes dependence on ubiquitin C. J. Clin. Invest., 2017, 127(12), 4554-4568. [http://dx.doi.org/10.1172/JCI92914]. [PMID: 29130934].
[44]
Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.; Pantel, S.; Krill-Burger, J.M.; Meyers, R.M.; Ali, L.; Goodale, A.; Lee, Y.; Jiang, G.; Hsiao, J.; Gerath, W.F.J.; Howell, S.; Merkel, E.; Ghandi, M.; Garraway, L.A.; Root, D.E.; Golub, T.R.; Boehm, J.S.; Hahn, W.C. Defining a cancer dependency map. Cell, 2017, 170(3), 564-576.e16. [http://dx.doi.org/10.1016/j.cell.2017.06.010]. [PMID: 28753430].
[45]
Oh, C.; Park, S.; Lee, E.K.; Yoo, Y.J. Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Sci. Rep., 2013, 3, 2623. [http://dx.doi.org/10.1038/srep02623]. [PMID: 24022007].
[46]
Loeffler, D.A.; Klaver, A.C.; Coffey, M.P.; Aasly, J.O.; LeWitt, P.A. Age-related decrease in heat shock 70-kDa protein 8 in cerebrospinal fluid is associated with increased oxidative stress. Front. Aging Neurosci., 2016, 8(178), 178. [http://dx.doi.org/10.3389/fnagi.2016.00178]. [PMID: 27507943].
[47]
Tian, Y.; Xu, H.; Farooq, A.A.; Nie, B.; Chen, X.; Su, S.; Yuan, R.; Qiao, G.; Li, C.; Li, X.; Liu, X.; Lin, X. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother. Res., 2018, 32(7), 1320-1331. [http://dx.doi.org/10.1002/ptr.6064]. [PMID: 29516568].
[48]
Azuma, K.; Shichijo, S.; Takedatsu, H.; Komatsu, N.; Sawamizu, H.; Itoh, K. Heat shock cognate protein 70 encodes antigenic epitopes recognised by HLA-B4601-restricted cytotoxic T lymphocytes from cancer patients. Br. J. Cancer, 2003, 89(6), 1079-1085. [http://dx.doi.org/10.1038/sj.bjc.6601203]. [PMID: 12966429].
[49]
Kubota, H.; Yamamoto, S.; Itoh, E.; Abe, Y.; Nakamura, A.; Izumi, Y.; Okada, H.; Iida, M.; Nanjo, H.; Itoh, H.; Yamamoto, Y. Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress Chaperones, 2010, 15(6), 1003-1011. [http://dx.doi.org/10.1007/s12192-010-0211-0]. [PMID: 20617406].
[50]
Spalinger, M.R.; Lang, S.; Vavricka, S.R.; Fried, M.; Rogler, G.; Scharl, M. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy. PLoS One, 2013, 8(8), e72384. [http://dx.doi.org/10.1371/journal.pone.0072384]. [PMID: 23991106].
[51]
Nowakowska, D.J.; Kissler, S. PTPN22 modifies regulatory T cell homeostasis via GITR upregulation. J. Immunol., 2016, 196(5), 2145-2152. [http://dx.doi.org/10.4049/jimmunol.1501877]. [PMID: 26810223].
[52]
Shaid, S.; Brandts, C.H.; Serve, H.; Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ., 2013, 20(1), 21-30. [http://dx.doi.org/10.1038/cdd.2012.72]. [PMID: 22722335].
[53]
Zhou, H.; Yuan, M.; Yu, Q.; Zhou, X.; Min, W.; Gao, D. Autophagy regulation and its role in gastric cancer and colorectal cancer. Cancer Biomark., 2016, 17(1), 1-10. [http://dx.doi.org/10.3233/CBM-160613]. [PMID: 27314289].
[54]
Ågesen, T.H.; Sveen, A.; Merok, M.A.; Lind, G.E.; Nesbakken, A.; Skotheim, R.I.; Lothe, R.A. ColoGuideEx: A robust gene classifier specific for stage II colorectal cancer prognosis. Gut, 2012, 61(11), 1560-1567. [http://dx.doi.org/10.1136/gutjnl-2011-301179]. [PMID: 22213796].
[55]
Clark-Langone, K.M.; Sangli, C.; Krishnakumar, J.; Watson, D. Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX Colon Cancer Assay. BMC Cancer, 2010, 10, 691. [http://dx.doi.org/10.1186/1471-2407-10-691]. [PMID: 21176237].
[56]
Levin, A.A. Targeting therapeutic oligonucleotides. N. Engl. J. Med., 2017, 376(1), 86-88. [http://dx.doi.org/10.1056/NEJMcibr1613559]. [PMID: 28052219].
[57]
Farhan, M.; Wang, H.; Gaur, U.; Little, P.J.; Xu, J.; Zheng, W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int. J. Biol. Sci., 2017, 13(7), 815-827. [http://dx.doi.org/10.7150/ijbs.20052]. [PMID: 28808415].
[58]
Shan, N.; Zhou, W.; Zhang, S.; Zhang, Y. Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis. OncoTargets Ther., 2016, 9, 2169-2179. [https://doi.org/10.2147/OTT.S97983]. [PMID: 27110132]