[1]
Huisgen, R.; Padwa, A. 1,3-Dipolar cycloaddition chemistry; Wiley: New York, 1984.
[2]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599. [http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4]. [PMID: 12203546].
[3]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021. [http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5]. [PMID: 11433435].
[4]
Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999. [http://dx.doi.org/10.1021/ja054114s]. [PMID: 16287266].
[5]
Ackermann, L.; Potukuchi, H.K. Regioselective syntheses of fully-substituted 1,2,3-triazoles: The CuAAC/C-H bond functionalization nexus. Org. Biomol. Chem., 2010, 8(20), 4503-4513. [http://dx.doi.org/10.1039/c0ob00212g]. [PMID: 20733972].
[6]
Shirame, S.P.; Jadhav, S.Y.; Bhosale, R.B. Design and synthesis of 1,2,3-triazole quinoline analogues via click chemistry approach and their antimicrobial, antioxidant activities. Asian. J. Pharm. Clin. Res., 2014, 7, 163-165.
[7]
Li, X.; Liu, C.; Tang, S.; Wu, Q.; Hu, H.; Zhao, Q.; Zou, Y. Synthesis, in vitro biological evaluation and molecular docking of new triazoles as potent antifungal agents. Arch. Pharm. Chem. Arch. Pharm. (Weinheim), 2016, 349(1), 42-49. [http://dx.doi.org/10.1002/ardp.201500313]. [PMID: 26641629].
[8]
Su, N.N.; Li, Y.; Yu, S.J.; Zhang, X.; Liu, X.H.; Zhao, W.G. Microwave-assisted synthesis of some novel 1,2,3-triazoles by click chemistry and their biological activity. Res. Chem. Intermed., 2013, 39, 759-766. [http://dx.doi.org/10.1007/s11164-012-0595-9].
[9]
Garudachari, B.; Isloor, A.M.; Satyanarayana, M.N.; Fun, H.K.; Hegde, G. Click chemistry approach: Regioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur. J. Med. Chem., 2014, 74, 324-332. [http://dx.doi.org/10.1016/j.ejmech.2014.01.008]. [PMID: 24486415].
[10]
Alam, M.S.; Ozoe, Y.; Lee, D.U. Structure-antimicrobial activity relationship of 4- or 5-substituted 1-(2,6-Dichloro-4-trifluoromethylphenyl)-1H-1,2,3-triazole analogues. J. Korean Soc. Appl. Biol. Chem., 2011, 54, 149-153. [http://dx.doi.org/10.3839/jksabc.2011.024].
[11]
Pereira, D.; Fernandes, P. Synthesis and antibacterial activity of novel 4-aryl-[1,2,3]-triazole containing macrolides. Bioorg. Med. Chem. Lett., 2011, 21(1), 510-513. [http://dx.doi.org/10.1016/j.bmcl.2010.10.091]. [PMID: 21084187].
[12]
Chunyoung, P.; Chunwei, X.; Jainfa, L.; Dan, J.; Xiurong, B.; Junrui, L. Synthesis and biological activities of 1-(4-Methyl)phenyl-5-substituted phenylimino-1,2,3-triazole carboxylic acid/caboxylic acid amide. Youji Huaxue, 2013, 33, 383-388. [http://dx.doi.org/10.6023/cjoc201209039].
[13]
Lal, K.; Kaushik, C.P.; Kumar, A. Antimicrobial evaluation, QSAR and docking studies of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med. Chem. Res., 2015, 24, 3258-3271. [http://dx.doi.org/10.1007/s00044-015-1378-9].
[14]
Genin, M.J.; Allwine, D.A.; Anderson, D.J.; Barbachyn, M.R.; Emmert, D.E.; Garmon, S.A.; Graber, D.R.; Grega, K.C.; Hester, J.B.; Hutchinson, D.K.; Morris, J.; Reischer, R.J.; Ford, C.W.; Zurenko, G.E.; Hamel, J.C.; Schaadt, R.D.; Stapert, D.; Yagi, B.H. Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem., 2000, 43(5), 953-970. [http://dx.doi.org/10.1021/jm990373e]. [PMID: 10715160].
[15]
Sukerkar, P.A.; MacRenaris, K.W.; Townsend, T.R.; Ahmed, R.A.; Burdette, J.E.; Meade, T.J. Synthesis and biological evaluation of water-soluble progesterone-conjugated probes for magnetic resonance imaging of hormone related cancers. Bioconjug. Chem., 2011, 22(11), 2304-2316. [http://dx.doi.org/10.1021/bc2003555]. [PMID: 21972997].
[16]
Ma, L.Y.; Pang, L.P.; Wang, B.; Zhang, M.; Hu, B.; Xue, D.Q.; Shao, K.P.; Zhang, B.L.; Liu, Y.; Zhang, E.; Liu, H.M. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur. J. Med. Chem., 2014, 86, 368-380. [http://dx.doi.org/10.1016/j.ejmech.2014.08.010]. [PMID: 25180925].
[17]
Whiting, M.; Muldoon, J.; Lin, Y.C.; Silverman, S.M.; Lindstrom, W.; Olson, A.J.; Kolb, H.C.; Finn, M.G.; Sharpless, K.B.; Elder, J.H.; Fokin, V.V. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. Engl., 2006, 45(9), 1435-1439. [http://dx.doi.org/10.1002/anie.200502161]. [PMID: 16425339].
[18]
Whiting, M.; Tripp, J.C.; Lin, Y.C.; Lindstrom, W.; Olson, A.J.; Elder, J.H.; Sharpless, K.B.; Fokin, V.V. Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J. Med. Chem., 2006, 49(26), 7697-7710. [http://dx.doi.org/10.1021/jm060754+]. [PMID: 17181152].
[19]
Csuk, R.; Barthel, A.; Sczepek, R.; Siewert, B.; Schwarz, S. Synthesis, encapsulation and antitumor activity of new betulin derivatives. Arch. Pharm. Chem. Life Sci., 2011, 1, 37-49.
[20]
Zou, Y.; Zhao, Q.; Hu, H.; Hu, L.; Yu, S.; Xu, M.; Wu, Q. Synthesis and in vitro antitumor activities of xanthone derivatives containing 1,4-disubstituted-1,2,3-triazole moiety. Arch. Pharm. Res., 2012, 35(12), 2093-2104. [http://dx.doi.org/10.1007/s12272-012-1206-4]. [PMID: 23263803].
[21]
Tripathi, R.P.; Yadav, A.K.; Ajay, A.; Bisht, S.S.; Chaturvedi, V.; Sinha, S.K. Application of Huisgen (3+2) cycloaddition reaction: Synthesis of 1-(2,3-dihydrobenzofuran-2-yl-methyl [1,2,3]-triazoles and their antitubercular evaluations. Eur. J. Med. Chem., 2010, 45(1), 142-148. [http://dx.doi.org/10.1016/j.ejmech.2009.09.036]. [PMID: 19846238].
[22]
Patpi, S.R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; Anjana Devi, T.; Kalivendi, S.V.; Kantevari, S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J. Med. Chem., 2012, 55(8), 3911-3922. [http://dx.doi.org/10.1021/jm300125e]. [PMID: 22449006].
[23]
Anthony, P.; Bashir, N.; Parveen, R. Regioselective synthesis of 1,4-disubstituted 1,2,3-bistriazoles and their antifungal and anti-oxidant evaluation. Asian. J. Biomed. Pharm. Sci., 2014, 4, 9-13.
[24]
Mady, M.F.; Awad, G.E.A.; Jørgensen, K.B. Ultrasound-assisted synthesis of novel 1,2,3-triazoles coupled diaryl sulfone moieties by the CuAAC reaction, and biological evaluation of them as antioxidant and antimicrobial agents. Eur. J. Med. Chem., 2014, 84, 433-443. [http://dx.doi.org/10.1016/j.ejmech.2014.07.042]. [PMID: 25038485].
[25]
Amir, M.; Shikha, K. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. Eur. J. Med. Chem., 2004, 39(6), 535-545. [http://dx.doi.org/10.1016/j.ejmech.2004.02.008]. [PMID: 15183912].
[26]
Patil, V.; Guerrant, W.; Chen, P.C.; Gryder, B.; Benicewicz, D.B.; Khan, S.I.; Tekwani, B.L.; Oyelere, A.K. Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group. Bioorg. Med. Chem., 2010, 18(1), 415-425. [http://dx.doi.org/10.1016/j.bmc.2009.10.042]. [PMID: 19914074].
[27]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 2010, 18(23), 8243-8256. [http://dx.doi.org/10.1016/j.bmc.2010.10.009]. [PMID: 21044845].
[28]
Santos, J.D.O.; Pereira, G.R.; Brandao, G.C.; Borgati, T.F.; Arantes, L.M.; Paula, R.C.D.; Soares, L.F.; Nascimento, M.F.A.D.; Ferreira, M.R.C.; Taranto, A.G.; Varotti, F.P.; Oliveria, A.B.D. Synthesis, in vitro antimalarial activity and in silico studies of hybrid kauranoid 1,2,3-triazoles derived from naturally occurring diterpenes. J. Braz. Chem. Soc., 2016, 27, 551-565.
[29]
Faidallah, H.M.; Panda, S.S.; Serrano, J.C.; Girgis, A.S.; Khan, K.A.; Alamry, K.A.; Therathanakorn, T.; Meyers, M.J.; Sverdrup, F.M.; Eickhoff, C.S.; Getchell, S.G.; Katritzky, A.R. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg. Med. Chem., 2011, 19, 1860-1865. [PMID: 27298002].
[30]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Synthesis and biological evaluation of novel 1,2,3-triazolonucleotides. Arch. Pharm. (Weinheim), 2013, 346(4), 278-291. [http://dx.doi.org/10.1002/ardp.201200421]. [PMID: 23427010].
[31]
Jordão, A.K.; Ferreira, V.F.; Souza, T.M.L.; Faria, G.G.D.S.; Machado, V.; Abrantes, J.L.; de Souza, M.C.; Cunha, A.C. Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorg. Med. Chem., 2011, 19(6), 1860-1865. [http://dx.doi.org/10.1016/j.bmc.2011.02.007]. [PMID: 21376603].
[32]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Novel acyclic phosphonylated 1,2,3-triazolonucleosides with an acetamidomethyl linker: Synthesis and biological activity. Arch. Pharm. (Weinheim), 2014, 347(7), 506-514. [http://dx.doi.org/10.1002/ardp.201300468]. [PMID: 24664932].
[33]
Singh, M.S.; Chowdhury, S.; Koley, S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron, 2016, 72, 5257-5283. [http://dx.doi.org/10.1016/j.tet.2016.07.044].
[34]
Feldman, A.K.; Colasson, B.; Fokin, V.V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org. Lett., 2004, 6(22), 3897-3899. [http://dx.doi.org/10.1021/ol048859z]. [PMID: 15496058].
[35]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216. [http://dx.doi.org/10.1021/ja0471525]. [PMID: 15631470].
[36]
Beckmann, H.S.G.; Wittmann, V. One-pot procedure for diazo transfer and azide-alkyne cycloaddition: Triazole linkages from amines. Org. Lett., 2007, 9(1), 1-4. [http://dx.doi.org/10.1021/ol0621506]. [PMID: 17192070].
[37]
Klein, M.; Krainz, K.; Redwan, I.N.; Dinér, P.; Grøtli, M. Synthesis of chiral 1,4-disubstituted-1,2,3-triazole derivatives from amino acids. Molecules, 2009, 14(12), 5124-5143. [http://dx.doi.org/10.3390/molecules14125124]. [PMID: 20032880].
[38]
Bakunov, S.A.; Bakunova, S.M.; Wenzler, T.; Ghebru, M.; Werbovetz, K.A.; Brun, R.; Tidwell, R.R. Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J. Med. Chem., 2010, 53(1), 254-272. [http://dx.doi.org/10.1021/jm901178d]. [PMID: 19928900].
[39]
Wang, X.L.; Wan, K.; Zhou, C.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639. [http://dx.doi.org/10.1016/j.ejmech.2010.07.031]. [PMID: 20708826].
[40]
Sarmiento-Sanchez, J.I.; Ochoa-Teran, A.; Rivero, I.A. Conventional and microwave assisted synthesis of 1,4-disubstituted 1,2,3-triazoles from Huisgen cycloaddition. ARKIVOC, 2011, 9, 177-188.
[41]
Keshavarz, M.; Badri, R. A facile and one pot synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from terminal alkynes and phenacyl azides prepared from styrenes by CAN oxidant and sodium azide. Mol. Divers., 2011, 15(4), 957-962. [http://dx.doi.org/10.1007/s11030-011-9327-0]. [PMID: 21800069].
[42]
Corrales, R.C.N.R.; de Souza, N.B.; Pinheiro, L.S.; Abramo, C.; Coimbra, E.S.; Da Silva, A.D. Thiopurine derivatives containing triazole and steroid: synthesis, antimalarial and antileishmanial activities. Biomed. Pharmacother., 2011, 65(3), 198-203. [http://dx.doi.org/10.1016/j.biopha.2010.10.013]. [PMID: 21111565].
[43]
Menendez, C.; Chollet, A.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Lherbet, C.; Baltas, M. Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2012, 52, 275-283. [http://dx.doi.org/10.1016/j.ejmech.2012.03.029]. [PMID: 22483635].
[44]
Singh, P.; Singh, P.; Kumar, M.; Gut, J.; Rosenthal, P.J.; Kumar, K.; Kumar, V.; Mahajan, M.P.; Bisetty, K. Synthesis, docking and in vitro antimalarial evaluation of bifunctional hybrids derived from β-lactams and 7-chloroquinoline using click chemistry. Bioorg. Med. Chem. Lett., 2012, 22(1), 57-61. [http://dx.doi.org/10.1016/j.bmcl.2011.11.082]. [PMID: 22172698].
[45]
Jwad, R.S.; Mohammed, A.I.; Shihab, M.S. Synthesis of 1,2,3-triazoles based on phenacyl azide derivatives via click chemistry. Iraqi J. Sci., 2012, 53, 487-494.
[46]
Varizhuk, A.M.; Kaluzhny, D.N.; Novikov, R.A.; Chizhov, A.O.; Smirnov, I.P.; Chuvilin, A.N.; Tatarinova, O.N.; Fisunov, G.Y.; Pozmogova, G.E.; Florentiev, V.L. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems. J. Org. Chem., 2013, 78(12), 5964-5969. [http://dx.doi.org/10.1021/jo400651k]. [PMID: 23724994].
[47]
Silva, M.; Goncalves, J.C.O.; Oliveira-Campos, A.M.F.; Rodrigues, L.M.; Esteves, A.P. Synthesis of novel glycoconjugates derived from alkynyl heterocycles through a click approach. Synth. Commun., 2013, 43, 1432-1438. [http://dx.doi.org/10.1080/00397911.2011.637655].
[48]
Hugenberg, V.; Riemann, B.; Hermann, S.; Schober, O.; Schäfers, M.; Szardenings, K.; Lebedev, A.; Gangadharmath, U.; Kolb, H.; Walsh, J.; Zhang, W.; Kopka, K.; Wagner, S. Inverse 1,2,3-triazole-1-yl-ethyl substituted hydroxamates as highly potent matrix metalloproteinase inhibitors: (radio)synthesis, in vitro and first in vivo evaluation. J. Med. Chem., 2013, 56(17), 6858-6870. [http://dx.doi.org/10.1021/jm4006753]. [PMID: 23899323].
[49]
Kaushik, C.P.; Lal, K.; Kumar, A.; Kumar, S. Synthesis and biological evaluation of amino acid-linked 1,2,3-bistriazole conjugates as potential antimicrobial agents. Med. Chem. Res., 2014, 23, 2995-3004. [http://dx.doi.org/10.1007/s00044-013-0882-z].
[50]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283. [http://dx.doi.org/10.1016/j.ejmech.2014.02.017]. [PMID: 24589483].
[51]
Sharma, G.V.M.; Kumar, K.S.; Kumar, B.S.; Reddy, S.V.; Prakasham, R.S.; Hugel, H. ZrCl4-catalyzed C-O bond to C-N bond formation: Synthesis of 1,2,3-triazoles and their biological evaluation. Synth. Commun., 2014, 44, 3156-3164. [http://dx.doi.org/10.1080/00397911.2014.910528].
[52]
Cerda-Perdo, J.E.D.L.; Amador-Sanchen, Y.A.; Hernandez, M.C.; Perez-Perez, J.; Rojas-Lima, S.; Lopez-Ruiz, H.L.A. Cu(I) catalyzed mild and general synthesis of 1,4 disubstituted-1,2,3-triazoles from terminal acetylenes and in situ generated alkyl azides. Heterocycles, 2014, 89, 27-41. [http://dx.doi.org/10.3987/COM-13-12764].
[53]
Ramchander, J.; Rameshwar, N.; Reddy, T.S.; Raju, G.; Reddy, A.R. Synthesis and photophysical properties of 1,4-disubstituted naphthyloxymethyl-N-alkyl naphthimido-1,2,3-triazole. J. Chem. Sci., 2014, 126, 1063-1074. [http://dx.doi.org/10.1007/s12039-014-0677-x].
[54]
Lal, K.; Kaushik, C.P.; Kumar, K.; Kumar, A.; Qazi, A.K.; Hamid, A.; Jaglan, S. One-pot synthesis and cytotoxic evaluation of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med. Chem. Res., 2014, 23, 4761-4770. [http://dx.doi.org/10.1007/s00044-014-1038-5].
[55]
Kumar, K.; Pradines, B.; Madamet, M.; Amalvict, R.; Kumar, V. 1H-1,2,3-triazole tethered mono- and bis-ferrocenylchalcone-β-lactam conjugates: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2014, 86, 113-121. [http://dx.doi.org/10.1016/j.ejmech.2014.08.053]. [PMID: 25147153].
[56]
Sabarinathan, N.; Sridharan, S.; Antony, S.A. Synthesis of pyrimidine substituted 1,2,3-triazole derivatives via click reactions and its biological evaluation. Int. J. Chemtech Res., 2014, 7, 2573-2579.
[57]
Parveen, R.; Chattree, A.; Bashir, N. Regio-selective synthesis of 1,4-disubstituted 1,2,3-triazoles and evaluation of their antimicrobial activity. Asian J. Biomed. Pharm. Sci., 2014, 4, 44-47.
[58]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76. [http://dx.doi.org/10.1016/j.ejmech.2014.07.087]. [PMID: 25078311].
[59]
Kaushik, C.P.; Kumar, K.; Singh, D.; Singh, S.K.; Jindal, D.K.; Luxmi, R. Synthesis, characterization and antimicrobial potential of some 1,4-disubstituted 1,2,3-bistriazoles. Synth. Commun., 2015, 45, 1977-1985. [http://dx.doi.org/10.1080/00397911.2015.1056796].
[60]
Kaushik, C.P.; Kumar, K.; Lal, K.; Narasimhan, B.; Kumar, A. Synthesis and antimicrobial evaluation of 1,4-disubstituted 1,2,3 triazoles containing benzofused N-heteroaromatic moieties. Monatsh. Chem., 2016, 147, 817-828. [http://dx.doi.org/10.1007/s00706-015-1544-2].
[61]
Kumar, A.K.; Sunitha, V.; Shankar, B.; Ramesh, M.; Krishna, T.M.; Jalapathi, P. Synthesis, biological evaluation and molecular docking studies of novel 1,2,3-triazole derivatives as potent anti-inflammatory agents. Russ. J. Gen. Chem., 2016, 86, 1154-1162. [http://dx.doi.org/10.1134/S1070363216050297].
[62]
Kaushik, C.P.; Kumar, K.; Singh, S.K.; Singh, D.; Saini, S. Synthesis and antimicrobial evaluation of 1,4-disubstituted 1,2,3-triazoles with aromatic ester functionality. Arab. J. Chem., 2016, 9, 865-871. [http://dx.doi.org/10.1016/j.arabjc.2013.09.023].
[63]
Subhashini, N.J.P.; Sravanthi, C.; Sravanthi, K. Shivaraj. Synthesis, characterization, and antimicrobial activity of novel (E)-1-(Aryl)-3-3, 5-dimethoxy-4-[(1-(aryl)-1H- 1,2,3-triazol-4-yl)methoxy]phenylprop-2-en-1-ones. Russ. J. Gen. Chem., 2016, 86, 1405-1411. [http://dx.doi.org/10.1134/S107036321606027X].
[64]
Nguyen, B.C.Q.; Takahashi, H.; Uto, Y.; Shahinozzaman, M.D.; Tawata, S.; Maruta, H. 1,2,3-Triazolyl ester of Ketorolac: A “Click Chemistry”-based highly potent PAK1-blocking cancer-killer. Eur. J. Med. Chem., 2017, 126, 270-276. [http://dx.doi.org/10.1016/j.ejmech.2016.11.038]. [PMID: 27889630].
[65]
Kaushik, C.P.; Kumar, K.; Narasimhan, B.; Singh, D.; Kumar, P.; Pahwa, A. Synthesis, antimicrobial activity and QSAR studies of amide-ester linked 1, 4-disubstituted 1,2,3-triazoles. Monatsh. Chem., 2017, 148, 765-779. [http://dx.doi.org/10.1007/s00706-016-1766-y].
[66]
Kaushik, C.P.; Luxmi, R.; Singh, D.; Kumar, A. Synthesis and antimicrobial evaluation of ester-linked 1,4-disubstituted 1,2,3-triazoles with a furyl/thienyl moiety. Mol. Divers., 2017, 21(1), 137-145. [http://dx.doi.org/10.1007/s11030-016-9710-y]. [PMID: 27900513].
[67]
Kaushik, C.P.; Pahwa, A.; Thakur, R.; Kaur, P. Regioselective synthesis and antimicrobial evaluation of some thioether–amide linked 1, 4-disubstituted 1,2,3-triazoles. Synth. Commun., 2017, 47, 368-378. [http://dx.doi.org/10.1080/00397911.2016.1265983].
[68]
Ay, K.; Ispartaloglu, B.; Halay, E.; Ay, E.; Yasa, I.; Karayıldırım, T. Synthesis and antimicrobial evaluation of sulfanilamide-and carbohydrate-derived 1, 4-disubstitued-1,2,3-triazoles via click chemistry. Med. Chem. Res., 2017, 26(7), 1497-1505. [http://dx.doi.org/10.1007/s00044-017-1864-3].
[70]
Kaushik, C.P.; Pahwa, A. Convenient synthesis, antimalarial and antimicrobial potential of thioethereal 1,4-disubstituted 1,2,3-triazoles with ester functionality. Med. Chem. Res., 2018, 27, 458-469. [http://dx.doi.org/10.1007/s00044-017-2072-x].
[71]
Yan, Z.Y.; Niu, Y.N.; Wei, H.L.; Wu, L.Y.; Zhao, Y.B.; Liang, Y.M. Combining proline and ‘click chemistry’: A class of versatile organocatalysts for the highly diastereo- and enantioselective michael addition in water. Tetrahedron Asymmetry, 2006, 17, 3288-3293. [http://dx.doi.org/10.1016/j.tetasy.2006.12.003].
[72]
Kocalka, P.; Andersen, N.K.; Jensen, F.; Nielsen, P. Synthesis of 5-(1,2,3-triazol-4-yl)-2′-deoxyuridines by a click chemistry approach: Stacking of triazoles in the major groove gives increased nucleic acid duplex stability. ChemBioChem, 2007, 8(17), 2106-2116. [http://dx.doi.org/10.1002/cbic.200700410]. [PMID: 17969214].
[73]
Gallardo, H.; Bortoluzzi, A.J.; Santos, D.M.P.D.O. Synthesis, crystalline structure and mesomorphic properties of new liquid crystalline 1,2,3-triazole derivatives. Liq. Cryst., 2008, 35, 719-725. [http://dx.doi.org/10.1080/02678290802120307].
[74]
Jlalia, I.; Elamari, H.; Meganem, F.; Herscovici, J.; Girard, C. Copper(I)-doped Wyoming’s montmorillonite for the synthesis of disubstituted 1,2,3-triazoles. Tetrahedron Lett., 2008, 49, 6756-6758. [http://dx.doi.org/10.1016/j.tetlet.2008.09.031].
[75]
Martinelli, M.; Milcent, T.; Ongeri, S.; Crousse, B. Synthesis of new triazole-based trifluoromethyl scaffolds. Beilstein J. Org. Chem., 2008, 4, 19. [http://dx.doi.org/10.3762/bjoc.4.19]. [PMID: 18941482].
[76]
Friscourt, F.; Boons, G.J. One-pot three-step synthesis of 1,2,3-triazoles by copper-catalyzed cycloaddition of azides with alkynes formed by a Sonogashira cross-coupling and desilylation. Org. Lett., 2010, 12(21), 4936-4939. [http://dx.doi.org/10.1021/ol1022036]. [PMID: 20942390].
[77]
Vantikommu, J.; Palle, S.; Reddy, P.S.; Ramanatham, V.; Khagga, M.; Pallapothula, V.R. Synthesis and cytotoxicity evaluation of novel 1,4-disubstituted 1,2,3-triazoles via CuI catalysed 1,3-dipolar cycloaddition. Eur. J. Med. Chem., 2010, 45(11), 5044-5050. [http://dx.doi.org/10.1016/j.ejmech.2010.08.012]. [PMID: 20833451].
[78]
Alcaide, B.; Almendros, P.; Aragoncillo, C.; Callejo, R.; Ruiz, M.P.; Torres, M.R. Regio- and diastereoselective synthesis of β-lactam-triazole hybrids via Passerini/CuAAC sequence. J. Org. Chem., 2012, 77(16), 6917-6928. [http://dx.doi.org/10.1021/jo301113g]. [PMID: 22812653].
[79]
Lal, K.; Kumar, A.; Pavan, M.S.; Kaushik, C.P. Regioselective synthesis and antimicrobial studies of ester linked 1,4-disubstituted 1,2,3-bistriazoles. Bioorg. Med. Chem. Lett., 2012, 22(13), 4353-4357. [http://dx.doi.org/10.1016/j.bmcl.2012.05.008]. [PMID: 22658363].
[80]
Stefani, H.A.; Vasconcelos, S.N.S.; Souza, F.B.; Manarin, F.; Zukerman-Schpector, J. One -pot three component synthesis of indole-3-glyoxyl derivatives and indole-3-glyoxy triazoles. Tetrahedron Lett., 2013, 54, 5821-5825. [http://dx.doi.org/10.1016/j.tetlet.2013.08.064].
[81]
Hiroki, H.; Ogata, K.; Fukuzawa, S.I. 2-Ethynylpyridine-promoted rapid copper(I) chloride catalyzed azide–alkyne cycloaddition reaction in water. Synlett., 2013, 24, 0843-0846.
[82]
Murthy, Y.L.N.; Samsonu, D.; Diwakar, B.S. Development of one-pot three component synthesis of 1,4-disubstituted 1,2,3-triazoles, employing green catalyst. Org. Commun., 2013, 6, 125-133.
[83]
Ali, A.A.; Chetia, M.; Saikia, P.J.; Sarma, D. (DHQD)2PHAL ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition reaction in water at room temperature. RSC Adv., 2014, 4, 64388-64392. [http://dx.doi.org/10.1039/C4RA12572J].
[84]
Venkatesh, G.B.; Prasad, S.H. Synthesis of some novel 1-(substituted phenyl)-2(4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl) ketones. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 335-341. [http://dx.doi.org/10.1080/10426507.2014.947405].
[85]
Naeimi, H.; Dadashzadeh, S.; Moradian, M. Facile and efficient sonochemical synthesis of 1,4-disubstituted 1,2,3-triazole derivatives catalyzed by CuI under mild conditions. Res. Chem. Intermed., 2015, 41, 2687-2695. [http://dx.doi.org/10.1007/s11164-013-1379-6].
[86]
Mohammadi-Khanaposhtani, M.; Safavi, M.; Sabourian, R.; Mahdavi, M.; Pordeli, M.; Saeedi, M.; Ardestani, S.K.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9(10H)-acridinone-1,2,3-triazoles. Mol. Divers., 2015, 19(4), 787-795. [http://dx.doi.org/10.1007/s11030-015-9616-0]. [PMID: 26170096].
[87]
Dubey, N.; Sharma, M.C.; Kumar, A.; Sharma, P. A click chemistry strategy to synthesize geraniol-coupled 1,4-disubstituted 1,2,3-triazoles and exploration of their microbicidal and antioxidant potential with molecular docking profile. Med. Chem. Res., 2015, 24, 2717-2731. [http://dx.doi.org/10.1007/s00044-015-1329-5].
[88]
Khedar, P.; Pericherla, K.; Singh, R.P.; Jha, P.N.; Kumar, A. Click chemistry inspired synthesis of piperazine-triazole derivatives and evaluation of their antimicrobial activities. Med. Chem. Res., 2015, 24, 3117-3126. [http://dx.doi.org/10.1007/s00044-015-1361-5].
[89]
Coffey, S.B.; Aspnes, G.; Londregan, A.T. Expedient synthesis of N1-substituted triazole peptidomimetics. ACS Comb. Sci., 2015, 17(12), 706-709. [http://dx.doi.org/10.1021/acscombsci.5b00150]. [PMID: 26562078].
[90]
Ashok, D.; Ravi, S.; Lakshmi, B.V.; Ganesh, A.; Adam, S. Microwave assisted synthesis of (E)-1-(2-((1-Benzyl-1H-1,2,3-Triazol-4-yl)methoxy)phenyl)-3-(9-Ethyl-9H-Carbazol-3 yl)prop-2-en-1-ones and their antimicrobial activity. Russ. J. Bioorganic Chem., 2016, 42, 323-331. [http://dx.doi.org/10.1134/S1068162016030043].
[91]
Vasconcelos, S.N.; Shamim, A.; Ali, B.; de Oliveira, I.M.; Stefani, H.A. Functionalization of protected tyrosine via Sonogashira reaction: Synthesis of 3-(1,2,3-triazolyl)-tyrosine. Mol. Divers., 2016, 20(2), 469-481. [http://dx.doi.org/10.1007/s11030-015-9642-y]. [PMID: 26498123].
[92]
Nagavelli, V.R.; Nukala, S.K.; Narsimha, S.; Battula, K.S.; Tangeda, S.J.; Reddy, Y.N. Synthesis, characterization and biological evaluation of 7-substituted-4-((1-aryl-1H-1,2,3-triazol-4-yl) methyl)-2H-benzo[b][1,4]oxazin3(4H)-ones as anticancer agents. Med. Chem. Res., 2016, 25, 1781-1793. [http://dx.doi.org/10.1007/s00044-016-1616-9].
[93]
Zhang, W.; Xu, W. Synthesis of 1-arylsulfonyl-1,2,3-triazoles from (Z)-arylvinyl bromides by sequential elimination–cycloaddition reaction. Chem. Heterocycl. Compd., 2016, 52, 192-195. [http://dx.doi.org/10.1007/s10593-016-1859-x].
[94]
Chen, X.; Xiao, Y.; Wang, G.; Li, Z.; Xu, X. Synthesis of novel 1,2,3-triazole-containing pyridine-pyrazole amide derivatives based on one-pot click reaction and their evaluation for potent nematicidal activity against meloidogyne incognita. Res. Chem. Intermed., 2016, 42, 5495-5508. [http://dx.doi.org/10.1007/s11164-015-2381-y].
[95]
Wang, Z.; Sheng, S.R.; Wei, M.H.; Liu, X.L. Simple synthesis of 1-substituted-4-vinyl-1,2,3-triazoles based on polystyrene-supported sulfonyl chloride. Synth. Commun., 2016, 46, 226-231. [http://dx.doi.org/10.1080/00397911.2015.1130228].
[96]
Su, C.L.; Tseng, C.L.; Ramesh, C.; Liu, H.S.; Huang, C.F.; Yao, C.F. Using gene expression database to uncover biology functions of 1,4-disubstituted 1,2,3-triazole analogues synthesized via a copper (I)-catalyzed reaction. Eur. J. Med. Chem., 2017, 132, 90-107. [http://dx.doi.org/10.1016/j.ejmech.2017.03.034]. [PMID: 28342400].
[97]
Liu, X.; Su, C. Cu (I)-promoted one-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles from anti-3-aryl-2, 3-dibromopropanoic acids and nitrobenzaldehydes. Synth. Commun., 2017, 47, 279-284. [http://dx.doi.org/10.1080/00397911.2016.1262039].
[98]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 125, 1200-1212. [http://dx.doi.org/10.1016/j.ejmech.2016.11.008]. [PMID: 27863370].
[99]
Ali, A.A.; Sharma, R.; Saikia, P.J.; Sarma, D. CTAB promoted CuI catalyzed green and economical synthesis of 1, 4-disubstituted-1, 2, 3-triazoles. Synth. Commun., 2018, 48, 1206-1212. [http://dx.doi.org/10.1080/00397911.2018.1439176].
[100]
Guo, S.; Zhou, Y.; Dai, B.; Huo, C.; Liu, C.; Zhao, Y. CuI/Et2NH-Catalyzed One-Pot highly efficient synthesis of 1, 4-Disubstituted 1, 2, 3-Triazoles in Green solvent glycerol. Synthesis, 2018, 50, 2191-2199. [http://dx.doi.org/10.1055/s-0036-1591557].
[101]
Bonnamour, J.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Synthesis of new trifluoromethy peptidomimetics with a triazol moiety. Tetrahedron Lett., 2007, 48, 8360-8362. [http://dx.doi.org/10.1016/j.tetlet.2007.09.118].
[102]
White, J.R.; Price, G.J.; Schiffers, S.; Raithby, P.R.; Plucinski, P.K.; Frost, C.G. A modular approach to catalytic synthesis using a dual-functional linker for click and Suzuki coupling reaction. Tetrahedron Lett., 2010, 51, 3913-3917. [http://dx.doi.org/10.1016/j.tetlet.2010.05.104].
[103]
Salehi, P.; Dabiri, M.; Koohshari, M.; Movahed, S.K.; Bararjanian, M. One-pot synthesis of 1,2,3-triazole linked dihydropyrimidinones via Huisgen 1,3-dipolar/Biginelli cycloaddition. Mol. Divers., 2011, 15(4), 833-837. [http://dx.doi.org/10.1007/s11030-011-9313-6]. [PMID: 21505758].
[104]
Stefani, H.A.; Leal, D.M.; Manarin, F. 4-Organochalcogenoyl-1H-1,2,3-triazoles: synthesis and functionalization by a nickel-catalyzed Negishi cross-coupling reaction. Tetrahedron Lett., 2012, 53, 6495-6499. [http://dx.doi.org/10.1016/j.tetlet.2012.09.062].
[105]
Lima-Neto, R.G.; Cavalcante, N.N.M.; Srivastava, R.M.; Mendonça, Junior, F.J.; Wanderley, A.G.; Neves, R.P.; dos Anjos, J.V. Synthesis of 1,2,3-triazole derivatives and in vitro antifungal evaluation on Candida strains. Molecules, 2012, 17(5), 5882-5892. [http://dx.doi.org/10.3390/molecules17055882]. [PMID: 22592091].
[106]
Mendoza-Espinosa, D.; Negron-Silva, G.; Lomas-Romero, L.; Gutierrez-Carrillo, A.; Santillan, R. Facile one-pot synthesis of a series of 1,2,3-triazoles featuring oxygen, nitrogen and sulphur functionlized pendant arms. Synth. Commun., 2014, 44, 807-817. [http://dx.doi.org/10.1080/00397911.2013.833628].
[107]
Cruz-Gonzalez, D.Y.; Gonzalez-Olvera, R.; Negron-Silva, G.E.; Lomas-Romero, L.; Gutierrez-Carrillo, A.; Palomar-Pardave, M.E.; Romero-Romo, M.A.; Santillan, R.; Uruchurtu, J. One-Pot three component synthesis of new mono- and bis-1,2,3-triazole derivatives of 2-benzimidazolethiol with a promising inhibitory activity against acidic corrosion of steel. Synthesis, 2014, 46, 1217-1223. [http://dx.doi.org/10.1055/s-0033-1340863].
[108]
Shaabani, S.; Shaabani, A.; Ng, S.W. One-pot synthesis of coumarin-3-carboxamides containing a triazole ring via an isocyanide-based six-component reaction. ACS Comb. Sci., 2014, 16(4), 176-183. [http://dx.doi.org/10.1021/co4001259]. [PMID: 24528142].
[109]
Jafari, A.A.; Mahmoudi, H.; Firouzabadi, H. A copper acetate/2-aminobenzenthiol complex supported on magnetite/silica nanoparticles as a highly active and recyclable catalyst for 1, 2, 3-triazole synthesis. RSC Adv., 2015, 5, 107474-107481. [http://dx.doi.org/10.1039/C5RA22909J].
[110]
Dofe, V.S.; Sarkate, A.P.; Lokwani, D.K.; Kathwate, S.H.; Gill, C.H. Synthesis, antimicrobial evaluation and molecular docking studies of novel chromone based 1,2,3-triazoles. Res. Chem. Intermed., 2017, 43, 15-28. [http://dx.doi.org/10.1007/s11164-016-2602-z].
[111]
Zhang, D.W.; Zhang, Y.M.; Li, J.; Zhao, T.Q.; Gu, Q.; Lin, F. Ultrasonic-assisted synthesis of 1,4-disubstituted 1,2,3-triazoles via various terminal acetylenes and azide and their quorum sensing inhibition. Ultrason. Sonochem., 2017, 36, 343-353. [http://dx.doi.org/10.1016/j.ultsonch.2016.12.011]. [PMID: 28069219].
[112]
Yadav, J.S.; Reddy, B.V.S.; Chary, D.N.; Reddy, C.S. A tandem ferrier and click reaction: A facile synthesis of triazolyl-2,3-dideoxypyranosides. Tetrahedron Lett., 2008, 49, 2649-2652. [http://dx.doi.org/10.1016/j.tetlet.2008.02.052].
[113]
Chattopadhyay, B.; Vera, C.I.R.; Chuprakov, S.; Gevorgyan, V. Fused tetrazoles as azide surrogates in click reaction: efficient synthesis of N-heterocycle-substituted 1,2,3-triazoles. Org. Lett., 2010, 12(9), 2166-2169. [http://dx.doi.org/10.1021/ol100745d]. [PMID: 20380424].
[114]
Wang, D.; Li, N.; Zhao, M.; Shi, W.; Ma, C.; Chen, B. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chem., 2010, 12, 2120-2123. [http://dx.doi.org/10.1039/c0gc00381f].
[115]
Narendra, N.; Vishwanatha, T.M.; Sureshbabu, V.V. Peptidomimetics through click chemistry: Synthesis of novel β-keto triazole acids from N-protected amino acids. Int. J. Pept. Res. Ther., 2010, 16, 283-290. [http://dx.doi.org/10.1007/s10989-010-9214-z].
[116]
Adzima, B.J.; Tao, Y.; Kloxin, C.J.; DeForest, C.A.; Anseth, K.S.; Bowman, C.N. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem., 2011, 3(3), 256-259. [http://dx.doi.org/10.1038/nchem.980]. [PMID: 21336334].
[117]
Kumar, R.; Pradhan, P.; Zajc, B. Facile synthesis of 4-vinyl- and 4-fluorovinyl-1,2,3-triazoles via bifunctional “click-olefination” reagents. Chem. Commun. (Camb.), 2011, 47(13), 3891-3893. [http://dx.doi.org/10.1039/c0cc05083k]. [PMID: 21336351].
[118]
Lal, S.; Mcnally, J.; White, A.J.P.; Diez-Gonzalez, S. Novel phosphinite and phosphonite copper(I) complexes: Efficient catalysts for click azide−alkyne cycloaddition reactions. Organometallics, 2011, 30, 6225-6232. [http://dx.doi.org/10.1021/om200791u].
[119]
Wan, L.; Cai, C. Multicomponent Synthesis of 1,2,3-Triazoles in water catalyzed by silica-immobilized NHC–Cu(I). Catal. Lett., 2012, 142, 1134-1140. [http://dx.doi.org/10.1007/s10562-012-0880-7].
[120]
Haldón, E.; Álvarez, E.; Nicasio, M.C.; Pérez, P.J. 1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap. Chem. Commun. (Camb.), 2014, 50(64), 8978-8981. [http://dx.doi.org/10.1039/C4CC03614J]. [PMID: 24980244].
[121]
Naeimi, H.; Nejadshafiee, V. Efficient one-pot click synthesis of β-hydroxy-1,2,3 triazoles catalyzed by copper(I)@phosphorated SiO2via multicomponent reaction in aqueous media. New J. Chem., 2014, 38, 5429-5435. [http://dx.doi.org/10.1039/C4NJ00909F].
[122]
Rinaldi, L.; Martina, K.; Baricco, F.; Rotolo, L.; Cravotto, G. Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation. Molecules, 2015, 20(2), 2837-2849. [http://dx.doi.org/10.3390/molecules20022837]. [PMID: 25671367].
[123]
Dubey, N.; Sharma, P.; Kumar, A. Clay-supported Cu(II) catalyst: An efficient, heterogeneous and recyclable catalyst for synthesis of 1,4-disubstituted 1,2,3-triazoles from alloxan-derived terminal alkyne and substituted azides using click chemistry. Synth. Commun., 2015, 45, 2608-2626. [http://dx.doi.org/10.1080/00397911.2015.1099675].
[124]
Rad, M.N.S.; Behrouz, S.; Behrouz, M.; Sami, A.; Mardkhoshnood, M.; Zarenezhad, A.; Zarenezhad, E. Design, synthesis and biological evaluation of novel 1, 2, 3-triazolyl\upbeta. Mol. Divers., 2016, 20, 705-718. [http://dx.doi.org/10.1007/s11030-016-9678-7]. [PMID: 27278443].
[125]
Taskin, O.S.; Yilmaz, G.; Yagci, Y. Fullerene-attached polymeric homogeneous/heterogeneous photoactivators for visible-light-induced CuAAC click reactions. ACS Macro Lett., 2016, 5, 103-107. [http://dx.doi.org/10.1021/acsmacrolett.5b00885].
[126]
Zarenezhad, E.; Rad, M.N.S.; Behrouz, S.; Esmaielzadeh, S.; Farjam, M. Immobilized [Cu(cdsalMeen)] on silica gel: A highly efficient heteroge-neous catalyst for ‘Click’[3+ 2] Huisgen cycloaddition. J. Iran. Chem. Soc., 2017, 14, 509-519. [http://dx.doi.org/10.1007/s13738-016-0999-3].
[127]
Dige, N.C.; Patil, J.D.; Pore, D.M. Dicationic 1,3-bis (1-methyl-1h-imidazol-3-ium) propane copper (i) dibromate: Novel heterogeneous catalyst for 1,3-dipolar cycloaddition. Catal. Lett., 2017, 147, 301-309. [http://dx.doi.org/10.1007/s10562-016-1942-z].
[128]
Jia, X.; Xu, G.; Du, Z.; Fu, Y. Cu(BTC)-MOF catalyzed multicomponent reaction to construct 1,4-disubstituted-1,2,3-triazoles. Polyhedron, 2018, 151, 515-519. [http://dx.doi.org/10.1016/j.poly.2018.05.058].
[129]
Touj, N.; Chakchouk-Mtibaa, A.; Mansour, L.; Harrath, A.H.; Hamoud, J.; Ozdemir, I.; Mellouli, L.; Yasar, S.; Hamdi, N. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) under mild condition in water: Synthesis, catalytic application and biological activities. J. Organomet. Chem., 2017, 853, 49-63. [http://dx.doi.org/10.1016/j.jorganchem.2017.09.024].
[130]
Park, I.S.; Kwon, M.S.; Kim, Y.; Lee, J.S.; Park, J. Heterogeneous copper catalyst for the cycloaddition of azides and alkynes without additives under ambient conditions. Org. Lett., 2008, 10(3), 497-500. [http://dx.doi.org/10.1021/ol702790w]. [PMID: 18181635].
[131]
Lee, B.S.; Yi, M.; Chu, S.Y.; Lee, J.Y.; Kwon, H.R.; Lee, K.R.; Kang, D.; Kim, W.S.; Lim, H.B.; Lee, J.; Youn, H.J.; Chi, D.Y.; Hur, N.H. Copper nitride nanoparticles supported on a superparamagnetic mesoporous microsphere for toxic-free click chemistry. Chem. Commun. (Camb.), 2010, 46(22), 3935-3937. [http://dx.doi.org/10.1039/c001255f]. [PMID: 20422108].
[132]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent synthesis of 1,2,3-triazoles in water catalyzed by copper nanoparticles on activated carbon. Adv. Synth. Catal., 2010, 352, 3208-3214. [http://dx.doi.org/10.1002/adsc.201000637].
[133]
Kim, J.Y.; Park, J.C.; Kang, H.; Song, H.; Park, K.H. CuO hollow nanostructures catalyze [3 + 2] cycloaddition of azides with terminal alkynes. Chem. Commun. (Camb.), 2010, 46(3), 439-441. [http://dx.doi.org/10.1039/B917781G]. [PMID: 20066318].
[134]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon. Org. Biomol. Chem., 2011, 9(18), 6385-6395. [http://dx.doi.org/10.1039/c1ob05735a]. [PMID: 21789331].
[135]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent click synthesis of 1,2,3-triazoles from epoxides in water catalyzed by copper nanoparticles on activated carbon. J. Org. Chem., 2011, 76(20), 8394-8405. [http://dx.doi.org/10.1021/jo2016339]. [PMID: 21894972].
[136]
Kumar, B.S.P.A.; Reddy, K.H.V.; Madhav, B.; Ramesh, K.; Nageswar, Y.V.D. Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry’. Tetrahedron Lett., 2012, 53, 4595-4599. [http://dx.doi.org/10.1016/j.tetlet.2012.06.077].
[137]
Rad, M.N.S.; Behrouz, S.; Doroodmand, M.M.; Movahediyan, A. Copper-doped silica cuprous sulphate (CDSCS) as a highly efficient and new heterogeneous nano catalyst for [3+2] Huisgen cycloaddition. Tetrahedron Lett., 2012, 68, 7812-7821. [http://dx.doi.org/10.1016/j.tet.2012.07.032].
[138]
Hudson, R.; Li, C.J.; Moores, A. Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide-alkyne click reaction in water. Green Chem., 2012, 14, 622-624. [http://dx.doi.org/10.1039/c2gc16421c].
[139]
Baig, R.B.N.; Varma, R.S. A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1,3-dipolar cycloadditions. Green Chem., 2012, 14, 625-632. [http://dx.doi.org/10.1039/c2gc16301b].
[140]
Kovacs, S.; Zih-Perenyi, K.; Revesz, A.; Navak, Z. Copper on Iron: Catalyst and scavenger for azide–alkyne cycloaddition. Synthesis, 2012, 44, 3722-3730. [http://dx.doi.org/10.1055/s-0032-1317697].
[141]
Albadi, J.; Shiran, J.A.; Mansournezhad, A. Click synthesis of 1,4-disubstituted 1,2,3-triazoles catalysed by CuO–CeO2 nanocomposite in the presence of amberlite-supported azide. J. Chem. Sci., 2014, 126, 147-150. [http://dx.doi.org/10.1007/s12039-013-0537-0].
[142]
Chavan, P.V.; Pandit, K.S.; Desai, U.V.; Kulkarni, M.A.; Wadgaonkar, P.P. Cellulose supported cuprous iodide nanoparticles (cell-CuI NPs): A new heterogeneous and recyclable catalyst for the one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Adv., 2014, 4, 42137-42146. [http://dx.doi.org/10.1039/C4RA05080K].
[143]
Huang, L.; Liu, W.; Wu, J.; Fu, Y.; Wang, K.; Huo, C.; Du, Z. Nano-copper catalyzed three-component reaction to construct 1, 4-substituted 1, 2, 3-triazoles. Tetrahedron Lett., 2014, 55, 2312-2316. [http://dx.doi.org/10.1016/j.tetlet.2014.02.114].
[144]
Billault, I.; Pessel, F.; Petit, A.; Turgis, R.; Scherrmann, M.C. Investigation of the copper(I) catalysed azide–alkyne cycloaddition reactions (CuAAC) in molten PEG2000. New J. Chem., 2015, 39, 1986-1995. [http://dx.doi.org/10.1039/C4NJ01784F].
[145]
Lu, J.; Ma, E.Q.; Liu, Y.H.; Li, Y.M.; Mo, L.P.; Zhang, Z.H. One-pot three component synthesis of 1,2,3-triazoles using magnetic NiFe2O4-glutamate-Cu as an efficient heterogeneous catalyst in water. RSC Advances, 2015, 5, 59167-59185. [http://dx.doi.org/10.1039/C5RA09517D].
[146]
Sasikala, R.; Rani, S.K.; Easwaramoorthy, D.; Karthikeyan, K. Lanthanum loaded CuO nanoparticles: Synthesis, characterization and recyclable catalyst for the synthesis of 1,4- disubstituted 1,2,3-triazoles and propargylamines. RSC Adv., 2015, 5, 56507-56517. [http://dx.doi.org/10.1039/C5RA05468K].
[147]
Mirsafaei, R.; Heravi, M.M.; Ahmadi, S.; Moslemin, M.H.; Hosseinnejad, T. In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water. J. Mol. Catal. A, 2015, 402, 100-108. [http://dx.doi.org/10.1016/j.molcata.2015.03.006].
[148]
Saadat, S.; Nazari, S.; Afshari, M.; Shahabi, M.; Keshavarz, M. Copper(I) iodide nanoparticles on polyaniline as a green, recoverable and reusable catalyst for multicomponent click synthesis of 1,4-disubstituted-1H-1,2,3-triazoles. Orient. J. Chem., 2015, 31, 1005-1012. [http://dx.doi.org/10.13005/ojc/310248].
[149]
Amini, M.; Hassandoost, R.; Bagherzadeh, M.; Gautam, S.; Chae, K.H. Copper nanoparticles supported on CeO2 as an efficient catalyst for click reactions of azides with alkynes. Catal. Commun., 2016, 85, 13-16. [http://dx.doi.org/10.1016/j.catcom.2016.07.006].
[151]
Sarkar, S.M.; Rahman, M.L. Cellulose supported poly (amidoxime) copper complex for Click reaction. J. Clean. Prod., 2017, 141, 683-692. [http://dx.doi.org/10.1016/j.jclepro.2016.09.153].
[152]
Bagherzadeh, M.; Mousavi, N.A.; Amini, M.; Gautam, S.; Singh, J.P.; Chae, K.H. Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties. Chin. Chem. Lett., 2017, 28, 1125-1130. [http://dx.doi.org/10.1016/j.cclet.2017.01.022].
[153]
Raj, J.P.; Gangaprasad, D.; Vajjiravel, M.; Karthikeyan, K.; Elangovan, J. CuO nanoparticles catalyzed synthesis of 1, 4-Disubstituted-1, 2, 3-Triazoles from Bromoalkenes. J. Chem. Sci., 2018, 130, 44. [http://dx.doi.org/10.1007/s12039-018-1452-1].
[154]
Yadav, P.; Lal, K.; Kumar, L.; Kumar, A.; Kumar, A.; Paul, A.K.; Kumar, R. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur. J. Med. Chem., 2018, 155, 263-274. [http://dx.doi.org/10.1016/j.ejmech.2018.05.055]. [PMID: 29890388].
[155]
Chetia, M.; Gehlot, P.S.; Kumar, A.; Sarma, D. A recyclable/reusable hydrotalcite supported copper nano catalyst for 1, 4-disubstituted-1, 2, 3-triazole synthesis via click chemistry approach. Tetrahedron Lett., 2018, 59, 397-401. [http://dx.doi.org/10.1016/j.tetlet.2017.12.051].
[156]
Liu, P.N.; Siyang, H.X.; Zhang, L.; Tse, S.K.S.; Jia, G. RuH2(CO)(PPh3)3 catalyzed selective formation of 1,4-disubstituted triazoles from cycloaddition of alkynes and organic azides. J. Org. Chem., 2012, 77(13), 5844-5849. [http://dx.doi.org/10.1021/jo3008572]. [PMID: 22670768].
[157]
Connell, T.U.; Schieber, C.; Silvestri, I.P.; White, J.M.; Williams, S.J.; Donnelly, P.S. Copper and silver complexes of tris(triazole)amine and tris(benzimidazole)amine ligands: evidence that catalysis of an azide-alkyne cycloaddition (“click”) reaction by a silver tris(triazole)amine complex arises from copper impurities. Inorg. Chem., 2014, 53(13), 6503-6511. [http://dx.doi.org/10.1021/ic5008999]. [PMID: 24949519].
[158]
Jia, Q.; Yang, G.; Chen, L.; Du, Z.; Wei, J.; Zhong, Y.; Wang, J. A facile one-pot metal-free synthesis of 1,4-disubstituted 1,2,3-triazoles. Eur. J. Org. Chem., 2015, 16, 3435-3440. [http://dx.doi.org/10.1002/ejoc.201500360].
[159]
Singh, H.; Khanna, G.; Nand, B.; Khurana, J.M. Metal-free synthesis of 1,2,3-triazoles by azide-aldehyde cycloaddition under ultrasonic irradiation in TSIL [DBU-Bu]OH and in hydrated IL Bu4NOH under heating. Monatsh. Chem., 2016, 147, 1215-1219. [http://dx.doi.org/10.1007/s00706-015-1623-4].
[160]
Sharma, R.K.; Mishra, M.; Sharma, S.; Dutta, S. Zinc(II) complex immobilized on amine functionalized silica-gel: A novel, highly efficient and recyclable catalyst for multicomponent click synthesis of of 1,4-disubstituted 1,2,3-triazoles. J. Coord. Chem., 2016, 69, 1152-1165. [http://dx.doi.org/10.1080/00958972.2016.1165807].