Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Routes for 1,4-disubstituted 1,2,3-triazoles: A Review

Author(s): Chander P. Kaushik*, Jyoti Sangwan, Raj Luxmi, Krishan Kumar and Ashima Pahwa

Volume 23, Issue 8, 2019

Page: [860 - 900] Pages: 41

DOI: 10.2174/1385272823666190514074146

Price: $65

Abstract

N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.

Keywords: Click chemistry, 1, 3-dipolar cycloaddition, 1, 4-disubstituted 1, 2, 3-triazoles, rigioselective, non-copper catalysts, copper catalysts.

Graphical Abstract

[1]
Huisgen, R.; Padwa, A. 1,3-Dipolar cycloaddition chemistry; Wiley: New York, 1984.
[2]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599. [http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4]. [PMID: 12203546].
[3]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021. [http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5]. [PMID: 11433435].
[4]
Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999. [http://dx.doi.org/10.1021/ja054114s]. [PMID: 16287266].
[5]
Ackermann, L.; Potukuchi, H.K. Regioselective syntheses of fully-substituted 1,2,3-triazoles: The CuAAC/C-H bond functionalization nexus. Org. Biomol. Chem., 2010, 8(20), 4503-4513. [http://dx.doi.org/10.1039/c0ob00212g]. [PMID: 20733972].
[6]
Shirame, S.P.; Jadhav, S.Y.; Bhosale, R.B. Design and synthesis of 1,2,3-triazole quinoline analogues via click chemistry approach and their antimicrobial, antioxidant activities. Asian. J. Pharm. Clin. Res., 2014, 7, 163-165.
[7]
Li, X.; Liu, C.; Tang, S.; Wu, Q.; Hu, H.; Zhao, Q.; Zou, Y. Synthesis, in vitro biological evaluation and molecular docking of new triazoles as potent antifungal agents. Arch. Pharm. Chem. Arch. Pharm. (Weinheim), 2016, 349(1), 42-49. [http://dx.doi.org/10.1002/ardp.201500313]. [PMID: 26641629].
[8]
Su, N.N.; Li, Y.; Yu, S.J.; Zhang, X.; Liu, X.H.; Zhao, W.G. Microwave-assisted synthesis of some novel 1,2,3-triazoles by click chemistry and their biological activity. Res. Chem. Intermed., 2013, 39, 759-766. [http://dx.doi.org/10.1007/s11164-012-0595-9].
[9]
Garudachari, B.; Isloor, A.M.; Satyanarayana, M.N.; Fun, H.K.; Hegde, G. Click chemistry approach: Regioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur. J. Med. Chem., 2014, 74, 324-332. [http://dx.doi.org/10.1016/j.ejmech.2014.01.008]. [PMID: 24486415].
[10]
Alam, M.S.; Ozoe, Y.; Lee, D.U. Structure-antimicrobial activity relationship of 4- or 5-substituted 1-(2,6-Dichloro-4-trifluoromethylphenyl)-1H-1,2,3-triazole analogues. J. Korean Soc. Appl. Biol. Chem., 2011, 54, 149-153. [http://dx.doi.org/10.3839/jksabc.2011.024].
[11]
Pereira, D.; Fernandes, P. Synthesis and antibacterial activity of novel 4-aryl-[1,2,3]-triazole containing macrolides. Bioorg. Med. Chem. Lett., 2011, 21(1), 510-513. [http://dx.doi.org/10.1016/j.bmcl.2010.10.091]. [PMID: 21084187].
[12]
Chunyoung, P.; Chunwei, X.; Jainfa, L.; Dan, J.; Xiurong, B.; Junrui, L. Synthesis and biological activities of 1-(4-Methyl)phenyl-5-substituted phenylimino-1,2,3-triazole carboxylic acid/caboxylic acid amide. Youji Huaxue, 2013, 33, 383-388. [http://dx.doi.org/10.6023/cjoc201209039].
[13]
Lal, K.; Kaushik, C.P.; Kumar, A. Antimicrobial evaluation, QSAR and docking studies of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med. Chem. Res., 2015, 24, 3258-3271. [http://dx.doi.org/10.1007/s00044-015-1378-9].
[14]
Genin, M.J.; Allwine, D.A.; Anderson, D.J.; Barbachyn, M.R.; Emmert, D.E.; Garmon, S.A.; Graber, D.R.; Grega, K.C.; Hester, J.B.; Hutchinson, D.K.; Morris, J.; Reischer, R.J.; Ford, C.W.; Zurenko, G.E.; Hamel, J.C.; Schaadt, R.D.; Stapert, D.; Yagi, B.H. Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem., 2000, 43(5), 953-970. [http://dx.doi.org/10.1021/jm990373e]. [PMID: 10715160].
[15]
Sukerkar, P.A.; MacRenaris, K.W.; Townsend, T.R.; Ahmed, R.A.; Burdette, J.E.; Meade, T.J. Synthesis and biological evaluation of water-soluble progesterone-conjugated probes for magnetic resonance imaging of hormone related cancers. Bioconjug. Chem., 2011, 22(11), 2304-2316. [http://dx.doi.org/10.1021/bc2003555]. [PMID: 21972997].
[16]
Ma, L.Y.; Pang, L.P.; Wang, B.; Zhang, M.; Hu, B.; Xue, D.Q.; Shao, K.P.; Zhang, B.L.; Liu, Y.; Zhang, E.; Liu, H.M. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur. J. Med. Chem., 2014, 86, 368-380. [http://dx.doi.org/10.1016/j.ejmech.2014.08.010]. [PMID: 25180925].
[17]
Whiting, M.; Muldoon, J.; Lin, Y.C.; Silverman, S.M.; Lindstrom, W.; Olson, A.J.; Kolb, H.C.; Finn, M.G.; Sharpless, K.B.; Elder, J.H.; Fokin, V.V. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. Engl., 2006, 45(9), 1435-1439. [http://dx.doi.org/10.1002/anie.200502161]. [PMID: 16425339].
[18]
Whiting, M.; Tripp, J.C.; Lin, Y.C.; Lindstrom, W.; Olson, A.J.; Elder, J.H.; Sharpless, K.B.; Fokin, V.V. Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J. Med. Chem., 2006, 49(26), 7697-7710. [http://dx.doi.org/10.1021/jm060754+]. [PMID: 17181152].
[19]
Csuk, R.; Barthel, A.; Sczepek, R.; Siewert, B.; Schwarz, S. Synthesis, encapsulation and antitumor activity of new betulin derivatives. Arch. Pharm. Chem. Life Sci., 2011, 1, 37-49.
[20]
Zou, Y.; Zhao, Q.; Hu, H.; Hu, L.; Yu, S.; Xu, M.; Wu, Q. Synthesis and in vitro antitumor activities of xanthone derivatives containing 1,4-disubstituted-1,2,3-triazole moiety. Arch. Pharm. Res., 2012, 35(12), 2093-2104. [http://dx.doi.org/10.1007/s12272-012-1206-4]. [PMID: 23263803].
[21]
Tripathi, R.P.; Yadav, A.K.; Ajay, A.; Bisht, S.S.; Chaturvedi, V.; Sinha, S.K. Application of Huisgen (3+2) cycloaddition reaction: Synthesis of 1-(2,3-dihydrobenzofuran-2-yl-methyl [1,2,3]-triazoles and their antitubercular evaluations. Eur. J. Med. Chem., 2010, 45(1), 142-148. [http://dx.doi.org/10.1016/j.ejmech.2009.09.036]. [PMID: 19846238].
[22]
Patpi, S.R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; Anjana Devi, T.; Kalivendi, S.V.; Kantevari, S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J. Med. Chem., 2012, 55(8), 3911-3922. [http://dx.doi.org/10.1021/jm300125e]. [PMID: 22449006].
[23]
Anthony, P.; Bashir, N.; Parveen, R. Regioselective synthesis of 1,4-disubstituted 1,2,3-bistriazoles and their antifungal and anti-oxidant evaluation. Asian. J. Biomed. Pharm. Sci., 2014, 4, 9-13.
[24]
Mady, M.F.; Awad, G.E.A.; Jørgensen, K.B. Ultrasound-assisted synthesis of novel 1,2,3-triazoles coupled diaryl sulfone moieties by the CuAAC reaction, and biological evaluation of them as antioxidant and antimicrobial agents. Eur. J. Med. Chem., 2014, 84, 433-443. [http://dx.doi.org/10.1016/j.ejmech.2014.07.042]. [PMID: 25038485].
[25]
Amir, M.; Shikha, K. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives. Eur. J. Med. Chem., 2004, 39(6), 535-545. [http://dx.doi.org/10.1016/j.ejmech.2004.02.008]. [PMID: 15183912].
[26]
Patil, V.; Guerrant, W.; Chen, P.C.; Gryder, B.; Benicewicz, D.B.; Khan, S.I.; Tekwani, B.L.; Oyelere, A.K. Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group. Bioorg. Med. Chem., 2010, 18(1), 415-425. [http://dx.doi.org/10.1016/j.bmc.2009.10.042]. [PMID: 19914074].
[27]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 2010, 18(23), 8243-8256. [http://dx.doi.org/10.1016/j.bmc.2010.10.009]. [PMID: 21044845].
[28]
Santos, J.D.O.; Pereira, G.R.; Brandao, G.C.; Borgati, T.F.; Arantes, L.M.; Paula, R.C.D.; Soares, L.F.; Nascimento, M.F.A.D.; Ferreira, M.R.C.; Taranto, A.G.; Varotti, F.P.; Oliveria, A.B.D. Synthesis, in vitro antimalarial activity and in silico studies of hybrid kauranoid 1,2,3-triazoles derived from naturally occurring diterpenes. J. Braz. Chem. Soc., 2016, 27, 551-565.
[29]
Faidallah, H.M.; Panda, S.S.; Serrano, J.C.; Girgis, A.S.; Khan, K.A.; Alamry, K.A.; Therathanakorn, T.; Meyers, M.J.; Sverdrup, F.M.; Eickhoff, C.S.; Getchell, S.G.; Katritzky, A.R. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg. Med. Chem., 2011, 19, 1860-1865. [PMID: 27298002].
[30]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Synthesis and biological evaluation of novel 1,2,3-triazolonucleotides. Arch. Pharm. (Weinheim), 2013, 346(4), 278-291. [http://dx.doi.org/10.1002/ardp.201200421]. [PMID: 23427010].
[31]
Jordão, A.K.; Ferreira, V.F.; Souza, T.M.L.; Faria, G.G.D.S.; Machado, V.; Abrantes, J.L.; de Souza, M.C.; Cunha, A.C. Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorg. Med. Chem., 2011, 19(6), 1860-1865. [http://dx.doi.org/10.1016/j.bmc.2011.02.007]. [PMID: 21376603].
[32]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Novel acyclic phosphonylated 1,2,3-triazolonucleosides with an acetamidomethyl linker: Synthesis and biological activity. Arch. Pharm. (Weinheim), 2014, 347(7), 506-514. [http://dx.doi.org/10.1002/ardp.201300468]. [PMID: 24664932].
[33]
Singh, M.S.; Chowdhury, S.; Koley, S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron, 2016, 72, 5257-5283. [http://dx.doi.org/10.1016/j.tet.2016.07.044].
[34]
Feldman, A.K.; Colasson, B.; Fokin, V.V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org. Lett., 2004, 6(22), 3897-3899. [http://dx.doi.org/10.1021/ol048859z]. [PMID: 15496058].
[35]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216. [http://dx.doi.org/10.1021/ja0471525]. [PMID: 15631470].
[36]
Beckmann, H.S.G.; Wittmann, V. One-pot procedure for diazo transfer and azide-alkyne cycloaddition: Triazole linkages from amines. Org. Lett., 2007, 9(1), 1-4. [http://dx.doi.org/10.1021/ol0621506]. [PMID: 17192070].
[37]
Klein, M.; Krainz, K.; Redwan, I.N.; Dinér, P.; Grøtli, M. Synthesis of chiral 1,4-disubstituted-1,2,3-triazole derivatives from amino acids. Molecules, 2009, 14(12), 5124-5143. [http://dx.doi.org/10.3390/molecules14125124]. [PMID: 20032880].
[38]
Bakunov, S.A.; Bakunova, S.M.; Wenzler, T.; Ghebru, M.; Werbovetz, K.A.; Brun, R.; Tidwell, R.R. Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J. Med. Chem., 2010, 53(1), 254-272. [http://dx.doi.org/10.1021/jm901178d]. [PMID: 19928900].
[39]
Wang, X.L.; Wan, K.; Zhou, C.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639. [http://dx.doi.org/10.1016/j.ejmech.2010.07.031]. [PMID: 20708826].
[40]
Sarmiento-Sanchez, J.I.; Ochoa-Teran, A.; Rivero, I.A. Conventional and microwave assisted synthesis of 1,4-disubstituted 1,2,3-triazoles from Huisgen cycloaddition. ARKIVOC, 2011, 9, 177-188.
[41]
Keshavarz, M.; Badri, R. A facile and one pot synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from terminal alkynes and phenacyl azides prepared from styrenes by CAN oxidant and sodium azide. Mol. Divers., 2011, 15(4), 957-962. [http://dx.doi.org/10.1007/s11030-011-9327-0]. [PMID: 21800069].
[42]
Corrales, R.C.N.R.; de Souza, N.B.; Pinheiro, L.S.; Abramo, C.; Coimbra, E.S.; Da Silva, A.D. Thiopurine derivatives containing triazole and steroid: synthesis, antimalarial and antileishmanial activities. Biomed. Pharmacother., 2011, 65(3), 198-203. [http://dx.doi.org/10.1016/j.biopha.2010.10.013]. [PMID: 21111565].
[43]
Menendez, C.; Chollet, A.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Lherbet, C.; Baltas, M. Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2012, 52, 275-283. [http://dx.doi.org/10.1016/j.ejmech.2012.03.029]. [PMID: 22483635].
[44]
Singh, P.; Singh, P.; Kumar, M.; Gut, J.; Rosenthal, P.J.; Kumar, K.; Kumar, V.; Mahajan, M.P.; Bisetty, K. Synthesis, docking and in vitro antimalarial evaluation of bifunctional hybrids derived from β-lactams and 7-chloroquinoline using click chemistry. Bioorg. Med. Chem. Lett., 2012, 22(1), 57-61. [http://dx.doi.org/10.1016/j.bmcl.2011.11.082]. [PMID: 22172698].
[45]
Jwad, R.S.; Mohammed, A.I.; Shihab, M.S. Synthesis of 1,2,3-triazoles based on phenacyl azide derivatives via click chemistry. Iraqi J. Sci., 2012, 53, 487-494.
[46]
Varizhuk, A.M.; Kaluzhny, D.N.; Novikov, R.A.; Chizhov, A.O.; Smirnov, I.P.; Chuvilin, A.N.; Tatarinova, O.N.; Fisunov, G.Y.; Pozmogova, G.E.; Florentiev, V.L. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems. J. Org. Chem., 2013, 78(12), 5964-5969. [http://dx.doi.org/10.1021/jo400651k]. [PMID: 23724994].
[47]
Silva, M.; Goncalves, J.C.O.; Oliveira-Campos, A.M.F.; Rodrigues, L.M.; Esteves, A.P. Synthesis of novel glycoconjugates derived from alkynyl heterocycles through a click approach. Synth. Commun., 2013, 43, 1432-1438. [http://dx.doi.org/10.1080/00397911.2011.637655].
[48]
Hugenberg, V.; Riemann, B.; Hermann, S.; Schober, O.; Schäfers, M.; Szardenings, K.; Lebedev, A.; Gangadharmath, U.; Kolb, H.; Walsh, J.; Zhang, W.; Kopka, K.; Wagner, S. Inverse 1,2,3-triazole-1-yl-ethyl substituted hydroxamates as highly potent matrix metalloproteinase inhibitors: (radio)synthesis, in vitro and first in vivo evaluation. J. Med. Chem., 2013, 56(17), 6858-6870. [http://dx.doi.org/10.1021/jm4006753]. [PMID: 23899323].
[49]
Kaushik, C.P.; Lal, K.; Kumar, A.; Kumar, S. Synthesis and biological evaluation of amino acid-linked 1,2,3-bistriazole conjugates as potential antimicrobial agents. Med. Chem. Res., 2014, 23, 2995-3004. [http://dx.doi.org/10.1007/s00044-013-0882-z].
[50]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283. [http://dx.doi.org/10.1016/j.ejmech.2014.02.017]. [PMID: 24589483].
[51]
Sharma, G.V.M.; Kumar, K.S.; Kumar, B.S.; Reddy, S.V.; Prakasham, R.S.; Hugel, H. ZrCl4-catalyzed C-O bond to C-N bond formation: Synthesis of 1,2,3-triazoles and their biological evaluation. Synth. Commun., 2014, 44, 3156-3164. [http://dx.doi.org/10.1080/00397911.2014.910528].
[52]
Cerda-Perdo, J.E.D.L.; Amador-Sanchen, Y.A.; Hernandez, M.C.; Perez-Perez, J.; Rojas-Lima, S.; Lopez-Ruiz, H.L.A. Cu(I) catalyzed mild and general synthesis of 1,4 disubstituted-1,2,3-triazoles from terminal acetylenes and in situ generated alkyl azides. Heterocycles, 2014, 89, 27-41. [http://dx.doi.org/10.3987/COM-13-12764].
[53]
Ramchander, J.; Rameshwar, N.; Reddy, T.S.; Raju, G.; Reddy, A.R. Synthesis and photophysical properties of 1,4-disubstituted naphthyloxymethyl-N-alkyl naphthimido-1,2,3-triazole. J. Chem. Sci., 2014, 126, 1063-1074. [http://dx.doi.org/10.1007/s12039-014-0677-x].
[54]
Lal, K.; Kaushik, C.P.; Kumar, K.; Kumar, A.; Qazi, A.K.; Hamid, A.; Jaglan, S. One-pot synthesis and cytotoxic evaluation of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med. Chem. Res., 2014, 23, 4761-4770. [http://dx.doi.org/10.1007/s00044-014-1038-5].
[55]
Kumar, K.; Pradines, B.; Madamet, M.; Amalvict, R.; Kumar, V. 1H-1,2,3-triazole tethered mono- and bis-ferrocenylchalcone-β-lactam conjugates: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2014, 86, 113-121. [http://dx.doi.org/10.1016/j.ejmech.2014.08.053]. [PMID: 25147153].
[56]
Sabarinathan, N.; Sridharan, S.; Antony, S.A. Synthesis of pyrimidine substituted 1,2,3-triazole derivatives via click reactions and its biological evaluation. Int. J. Chemtech Res., 2014, 7, 2573-2579.
[57]
Parveen, R.; Chattree, A.; Bashir, N. Regio-selective synthesis of 1,4-disubstituted 1,2,3-triazoles and evaluation of their antimicrobial activity. Asian J. Biomed. Pharm. Sci., 2014, 4, 44-47.
[58]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76. [http://dx.doi.org/10.1016/j.ejmech.2014.07.087]. [PMID: 25078311].
[59]
Kaushik, C.P.; Kumar, K.; Singh, D.; Singh, S.K.; Jindal, D.K.; Luxmi, R. Synthesis, characterization and antimicrobial potential of some 1,4-disubstituted 1,2,3-bistriazoles. Synth. Commun., 2015, 45, 1977-1985. [http://dx.doi.org/10.1080/00397911.2015.1056796].
[60]
Kaushik, C.P.; Kumar, K.; Lal, K.; Narasimhan, B.; Kumar, A. Synthesis and antimicrobial evaluation of 1,4-disubstituted 1,2,3 triazoles containing benzofused N-heteroaromatic moieties. Monatsh. Chem., 2016, 147, 817-828. [http://dx.doi.org/10.1007/s00706-015-1544-2].
[61]
Kumar, A.K.; Sunitha, V.; Shankar, B.; Ramesh, M.; Krishna, T.M.; Jalapathi, P. Synthesis, biological evaluation and molecular docking studies of novel 1,2,3-triazole derivatives as potent anti-inflammatory agents. Russ. J. Gen. Chem., 2016, 86, 1154-1162. [http://dx.doi.org/10.1134/S1070363216050297].
[62]
Kaushik, C.P.; Kumar, K.; Singh, S.K.; Singh, D.; Saini, S. Synthesis and antimicrobial evaluation of 1,4-disubstituted 1,2,3-triazoles with aromatic ester functionality. Arab. J. Chem., 2016, 9, 865-871. [http://dx.doi.org/10.1016/j.arabjc.2013.09.023].
[63]
Subhashini, N.J.P.; Sravanthi, C.; Sravanthi, K. Shivaraj. Synthesis, characterization, and antimicrobial activity of novel (E)-1-(Aryl)-3-3, 5-dimethoxy-4-[(1-(aryl)-1H- 1,2,3-triazol-4-yl)methoxy]phenylprop-2-en-1-ones. Russ. J. Gen. Chem., 2016, 86, 1405-1411. [http://dx.doi.org/10.1134/S107036321606027X].
[64]
Nguyen, B.C.Q.; Takahashi, H.; Uto, Y.; Shahinozzaman, M.D.; Tawata, S.; Maruta, H. 1,2,3-Triazolyl ester of Ketorolac: A “Click Chemistry”-based highly potent PAK1-blocking cancer-killer. Eur. J. Med. Chem., 2017, 126, 270-276. [http://dx.doi.org/10.1016/j.ejmech.2016.11.038]. [PMID: 27889630].
[65]
Kaushik, C.P.; Kumar, K.; Narasimhan, B.; Singh, D.; Kumar, P.; Pahwa, A. Synthesis, antimicrobial activity and QSAR studies of amide-ester linked 1, 4-disubstituted 1,2,3-triazoles. Monatsh. Chem., 2017, 148, 765-779. [http://dx.doi.org/10.1007/s00706-016-1766-y].
[66]
Kaushik, C.P.; Luxmi, R.; Singh, D.; Kumar, A. Synthesis and antimicrobial evaluation of ester-linked 1,4-disubstituted 1,2,3-triazoles with a furyl/thienyl moiety. Mol. Divers., 2017, 21(1), 137-145. [http://dx.doi.org/10.1007/s11030-016-9710-y]. [PMID: 27900513].
[67]
Kaushik, C.P.; Pahwa, A.; Thakur, R.; Kaur, P. Regioselective synthesis and antimicrobial evaluation of some thioether–amide linked 1, 4-disubstituted 1,2,3-triazoles. Synth. Commun., 2017, 47, 368-378. [http://dx.doi.org/10.1080/00397911.2016.1265983].
[68]
Ay, K.; Ispartaloglu, B.; Halay, E.; Ay, E.; Yasa, I.; Karayıldırım, T. Synthesis and antimicrobial evaluation of sulfanilamide-and carbohydrate-derived 1, 4-disubstitued-1,2,3-triazoles via click chemistry. Med. Chem. Res., 2017, 26(7), 1497-1505. [http://dx.doi.org/10.1007/s00044-017-1864-3].
[69]
Kaushik, C.P.; Pahwa, A.; Kumar, D.; Kumar, A.; Singh, D.; Kumar, K.; Luxmi, R. Synthesis and antimicrobial evaluation of (1-(2-(Benzyloxy)-2-oxoethyl)-1H-1, 2, 3-triazol-4-yl) methyl benzoate analogues. J. Het. Chem., 2018.
[http://dx.doi.org/10.1002/jhet.3209]
[70]
Kaushik, C.P.; Pahwa, A. Convenient synthesis, antimalarial and antimicrobial potential of thioethereal 1,4-disubstituted 1,2,3-triazoles with ester functionality. Med. Chem. Res., 2018, 27, 458-469. [http://dx.doi.org/10.1007/s00044-017-2072-x].
[71]
Yan, Z.Y.; Niu, Y.N.; Wei, H.L.; Wu, L.Y.; Zhao, Y.B.; Liang, Y.M. Combining proline and ‘click chemistry’: A class of versatile organocatalysts for the highly diastereo- and enantioselective michael addition in water. Tetrahedron Asymmetry, 2006, 17, 3288-3293. [http://dx.doi.org/10.1016/j.tetasy.2006.12.003].
[72]
Kocalka, P.; Andersen, N.K.; Jensen, F.; Nielsen, P. Synthesis of 5-(1,2,3-triazol-4-yl)-2′-deoxyuridines by a click chemistry approach: Stacking of triazoles in the major groove gives increased nucleic acid duplex stability. ChemBioChem, 2007, 8(17), 2106-2116. [http://dx.doi.org/10.1002/cbic.200700410]. [PMID: 17969214].
[73]
Gallardo, H.; Bortoluzzi, A.J.; Santos, D.M.P.D.O. Synthesis, crystalline structure and mesomorphic properties of new liquid crystalline 1,2,3-triazole derivatives. Liq. Cryst., 2008, 35, 719-725. [http://dx.doi.org/10.1080/02678290802120307].
[74]
Jlalia, I.; Elamari, H.; Meganem, F.; Herscovici, J.; Girard, C. Copper(I)-doped Wyoming’s montmorillonite for the synthesis of disubstituted 1,2,3-triazoles. Tetrahedron Lett., 2008, 49, 6756-6758. [http://dx.doi.org/10.1016/j.tetlet.2008.09.031].
[75]
Martinelli, M.; Milcent, T.; Ongeri, S.; Crousse, B. Synthesis of new triazole-based trifluoromethyl scaffolds. Beilstein J. Org. Chem., 2008, 4, 19. [http://dx.doi.org/10.3762/bjoc.4.19]. [PMID: 18941482].
[76]
Friscourt, F.; Boons, G.J. One-pot three-step synthesis of 1,2,3-triazoles by copper-catalyzed cycloaddition of azides with alkynes formed by a Sonogashira cross-coupling and desilylation. Org. Lett., 2010, 12(21), 4936-4939. [http://dx.doi.org/10.1021/ol1022036]. [PMID: 20942390].
[77]
Vantikommu, J.; Palle, S.; Reddy, P.S.; Ramanatham, V.; Khagga, M.; Pallapothula, V.R. Synthesis and cytotoxicity evaluation of novel 1,4-disubstituted 1,2,3-triazoles via CuI catalysed 1,3-dipolar cycloaddition. Eur. J. Med. Chem., 2010, 45(11), 5044-5050. [http://dx.doi.org/10.1016/j.ejmech.2010.08.012]. [PMID: 20833451].
[78]
Alcaide, B.; Almendros, P.; Aragoncillo, C.; Callejo, R.; Ruiz, M.P.; Torres, M.R. Regio- and diastereoselective synthesis of β-lactam-triazole hybrids via Passerini/CuAAC sequence. J. Org. Chem., 2012, 77(16), 6917-6928. [http://dx.doi.org/10.1021/jo301113g]. [PMID: 22812653].
[79]
Lal, K.; Kumar, A.; Pavan, M.S.; Kaushik, C.P. Regioselective synthesis and antimicrobial studies of ester linked 1,4-disubstituted 1,2,3-bistriazoles. Bioorg. Med. Chem. Lett., 2012, 22(13), 4353-4357. [http://dx.doi.org/10.1016/j.bmcl.2012.05.008]. [PMID: 22658363].
[80]
Stefani, H.A.; Vasconcelos, S.N.S.; Souza, F.B.; Manarin, F.; Zukerman-Schpector, J. One -pot three component synthesis of indole-3-glyoxyl derivatives and indole-3-glyoxy triazoles. Tetrahedron Lett., 2013, 54, 5821-5825. [http://dx.doi.org/10.1016/j.tetlet.2013.08.064].
[81]
Hiroki, H.; Ogata, K.; Fukuzawa, S.I. 2-Ethynylpyridine-promoted rapid copper(I) chloride catalyzed azide–alkyne cycloaddition reaction in water. Synlett., 2013, 24, 0843-0846.
[82]
Murthy, Y.L.N.; Samsonu, D.; Diwakar, B.S. Development of one-pot three component synthesis of 1,4-disubstituted 1,2,3-triazoles, employing green catalyst. Org. Commun., 2013, 6, 125-133.
[83]
Ali, A.A.; Chetia, M.; Saikia, P.J.; Sarma, D. (DHQD)2PHAL ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition reaction in water at room temperature. RSC Adv., 2014, 4, 64388-64392. [http://dx.doi.org/10.1039/C4RA12572J].
[84]
Venkatesh, G.B.; Prasad, S.H. Synthesis of some novel 1-(substituted phenyl)-2(4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl) ketones. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 335-341. [http://dx.doi.org/10.1080/10426507.2014.947405].
[85]
Naeimi, H.; Dadashzadeh, S.; Moradian, M. Facile and efficient sonochemical synthesis of 1,4-disubstituted 1,2,3-triazole derivatives catalyzed by CuI under mild conditions. Res. Chem. Intermed., 2015, 41, 2687-2695. [http://dx.doi.org/10.1007/s11164-013-1379-6].
[86]
Mohammadi-Khanaposhtani, M.; Safavi, M.; Sabourian, R.; Mahdavi, M.; Pordeli, M.; Saeedi, M.; Ardestani, S.K.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9(10H)-acridinone-1,2,3-triazoles. Mol. Divers., 2015, 19(4), 787-795. [http://dx.doi.org/10.1007/s11030-015-9616-0]. [PMID: 26170096].
[87]
Dubey, N.; Sharma, M.C.; Kumar, A.; Sharma, P. A click chemistry strategy to synthesize geraniol-coupled 1,4-disubstituted 1,2,3-triazoles and exploration of their microbicidal and antioxidant potential with molecular docking profile. Med. Chem. Res., 2015, 24, 2717-2731. [http://dx.doi.org/10.1007/s00044-015-1329-5].
[88]
Khedar, P.; Pericherla, K.; Singh, R.P.; Jha, P.N.; Kumar, A. Click chemistry inspired synthesis of piperazine-triazole derivatives and evaluation of their antimicrobial activities. Med. Chem. Res., 2015, 24, 3117-3126. [http://dx.doi.org/10.1007/s00044-015-1361-5].
[89]
Coffey, S.B.; Aspnes, G.; Londregan, A.T. Expedient synthesis of N1-substituted triazole peptidomimetics. ACS Comb. Sci., 2015, 17(12), 706-709. [http://dx.doi.org/10.1021/acscombsci.5b00150]. [PMID: 26562078].
[90]
Ashok, D.; Ravi, S.; Lakshmi, B.V.; Ganesh, A.; Adam, S. Microwave assisted synthesis of (E)-1-(2-((1-Benzyl-1H-1,2,3-Triazol-4-yl)methoxy)phenyl)-3-(9-Ethyl-9H-Carbazol-3 yl)prop-2-en-1-ones and their antimicrobial activity. Russ. J. Bioorganic Chem., 2016, 42, 323-331. [http://dx.doi.org/10.1134/S1068162016030043].
[91]
Vasconcelos, S.N.; Shamim, A.; Ali, B.; de Oliveira, I.M.; Stefani, H.A. Functionalization of protected tyrosine via Sonogashira reaction: Synthesis of 3-(1,2,3-triazolyl)-tyrosine. Mol. Divers., 2016, 20(2), 469-481. [http://dx.doi.org/10.1007/s11030-015-9642-y]. [PMID: 26498123].
[92]
Nagavelli, V.R.; Nukala, S.K.; Narsimha, S.; Battula, K.S.; Tangeda, S.J.; Reddy, Y.N. Synthesis, characterization and biological evaluation of 7-substituted-4-((1-aryl-1H-1,2,3-triazol-4-yl) methyl)-2H-benzo[b][1,4]oxazin3(4H)-ones as anticancer agents. Med. Chem. Res., 2016, 25, 1781-1793. [http://dx.doi.org/10.1007/s00044-016-1616-9].
[93]
Zhang, W.; Xu, W. Synthesis of 1-arylsulfonyl-1,2,3-triazoles from (Z)-arylvinyl bromides by sequential elimination–cycloaddition reaction. Chem. Heterocycl. Compd., 2016, 52, 192-195. [http://dx.doi.org/10.1007/s10593-016-1859-x].
[94]
Chen, X.; Xiao, Y.; Wang, G.; Li, Z.; Xu, X. Synthesis of novel 1,2,3-triazole-containing pyridine-pyrazole amide derivatives based on one-pot click reaction and their evaluation for potent nematicidal activity against meloidogyne incognita. Res. Chem. Intermed., 2016, 42, 5495-5508. [http://dx.doi.org/10.1007/s11164-015-2381-y].
[95]
Wang, Z.; Sheng, S.R.; Wei, M.H.; Liu, X.L. Simple synthesis of 1-substituted-4-vinyl-1,2,3-triazoles based on polystyrene-supported sulfonyl chloride. Synth. Commun., 2016, 46, 226-231. [http://dx.doi.org/10.1080/00397911.2015.1130228].
[96]
Su, C.L.; Tseng, C.L.; Ramesh, C.; Liu, H.S.; Huang, C.F.; Yao, C.F. Using gene expression database to uncover biology functions of 1,4-disubstituted 1,2,3-triazole analogues synthesized via a copper (I)-catalyzed reaction. Eur. J. Med. Chem., 2017, 132, 90-107. [http://dx.doi.org/10.1016/j.ejmech.2017.03.034]. [PMID: 28342400].
[97]
Liu, X.; Su, C. Cu (I)-promoted one-pot synthesis of 1, 4-disubstituted 1, 2, 3-triazoles from anti-3-aryl-2, 3-dibromopropanoic acids and nitrobenzaldehydes. Synth. Commun., 2017, 47, 279-284. [http://dx.doi.org/10.1080/00397911.2016.1262039].
[98]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 125, 1200-1212. [http://dx.doi.org/10.1016/j.ejmech.2016.11.008]. [PMID: 27863370].
[99]
Ali, A.A.; Sharma, R.; Saikia, P.J.; Sarma, D. CTAB promoted CuI catalyzed green and economical synthesis of 1, 4-disubstituted-1, 2, 3-triazoles. Synth. Commun., 2018, 48, 1206-1212. [http://dx.doi.org/10.1080/00397911.2018.1439176].
[100]
Guo, S.; Zhou, Y.; Dai, B.; Huo, C.; Liu, C.; Zhao, Y. CuI/Et2NH-Catalyzed One-Pot highly efficient synthesis of 1, 4-Disubstituted 1, 2, 3-Triazoles in Green solvent glycerol. Synthesis, 2018, 50, 2191-2199. [http://dx.doi.org/10.1055/s-0036-1591557].
[101]
Bonnamour, J.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Synthesis of new trifluoromethy peptidomimetics with a triazol moiety. Tetrahedron Lett., 2007, 48, 8360-8362. [http://dx.doi.org/10.1016/j.tetlet.2007.09.118].
[102]
White, J.R.; Price, G.J.; Schiffers, S.; Raithby, P.R.; Plucinski, P.K.; Frost, C.G. A modular approach to catalytic synthesis using a dual-functional linker for click and Suzuki coupling reaction. Tetrahedron Lett., 2010, 51, 3913-3917. [http://dx.doi.org/10.1016/j.tetlet.2010.05.104].
[103]
Salehi, P.; Dabiri, M.; Koohshari, M.; Movahed, S.K.; Bararjanian, M. One-pot synthesis of 1,2,3-triazole linked dihydropyrimidinones via Huisgen 1,3-dipolar/Biginelli cycloaddition. Mol. Divers., 2011, 15(4), 833-837. [http://dx.doi.org/10.1007/s11030-011-9313-6]. [PMID: 21505758].
[104]
Stefani, H.A.; Leal, D.M.; Manarin, F. 4-Organochalcogenoyl-1H-1,2,3-triazoles: synthesis and functionalization by a nickel-catalyzed Negishi cross-coupling reaction. Tetrahedron Lett., 2012, 53, 6495-6499. [http://dx.doi.org/10.1016/j.tetlet.2012.09.062].
[105]
Lima-Neto, R.G.; Cavalcante, N.N.M.; Srivastava, R.M.; Mendonça, Junior, F.J.; Wanderley, A.G.; Neves, R.P.; dos Anjos, J.V. Synthesis of 1,2,3-triazole derivatives and in vitro antifungal evaluation on Candida strains. Molecules, 2012, 17(5), 5882-5892. [http://dx.doi.org/10.3390/molecules17055882]. [PMID: 22592091].
[106]
Mendoza-Espinosa, D.; Negron-Silva, G.; Lomas-Romero, L.; Gutierrez-Carrillo, A.; Santillan, R. Facile one-pot synthesis of a series of 1,2,3-triazoles featuring oxygen, nitrogen and sulphur functionlized pendant arms. Synth. Commun., 2014, 44, 807-817. [http://dx.doi.org/10.1080/00397911.2013.833628].
[107]
Cruz-Gonzalez, D.Y.; Gonzalez-Olvera, R.; Negron-Silva, G.E.; Lomas-Romero, L.; Gutierrez-Carrillo, A.; Palomar-Pardave, M.E.; Romero-Romo, M.A.; Santillan, R.; Uruchurtu, J. One-Pot three component synthesis of new mono- and bis-1,2,3-triazole derivatives of 2-benzimidazolethiol with a promising inhibitory activity against acidic corrosion of steel. Synthesis, 2014, 46, 1217-1223. [http://dx.doi.org/10.1055/s-0033-1340863].
[108]
Shaabani, S.; Shaabani, A.; Ng, S.W. One-pot synthesis of coumarin-3-carboxamides containing a triazole ring via an isocyanide-based six-component reaction. ACS Comb. Sci., 2014, 16(4), 176-183. [http://dx.doi.org/10.1021/co4001259]. [PMID: 24528142].
[109]
Jafari, A.A.; Mahmoudi, H.; Firouzabadi, H. A copper acetate/2-aminobenzenthiol complex supported on magnetite/silica nanoparticles as a highly active and recyclable catalyst for 1, 2, 3-triazole synthesis. RSC Adv., 2015, 5, 107474-107481. [http://dx.doi.org/10.1039/C5RA22909J].
[110]
Dofe, V.S.; Sarkate, A.P.; Lokwani, D.K.; Kathwate, S.H.; Gill, C.H. Synthesis, antimicrobial evaluation and molecular docking studies of novel chromone based 1,2,3-triazoles. Res. Chem. Intermed., 2017, 43, 15-28. [http://dx.doi.org/10.1007/s11164-016-2602-z].
[111]
Zhang, D.W.; Zhang, Y.M.; Li, J.; Zhao, T.Q.; Gu, Q.; Lin, F. Ultrasonic-assisted synthesis of 1,4-disubstituted 1,2,3-triazoles via various terminal acetylenes and azide and their quorum sensing inhibition. Ultrason. Sonochem., 2017, 36, 343-353. [http://dx.doi.org/10.1016/j.ultsonch.2016.12.011]. [PMID: 28069219].
[112]
Yadav, J.S.; Reddy, B.V.S.; Chary, D.N.; Reddy, C.S. A tandem ferrier and click reaction: A facile synthesis of triazolyl-2,3-dideoxypyranosides. Tetrahedron Lett., 2008, 49, 2649-2652. [http://dx.doi.org/10.1016/j.tetlet.2008.02.052].
[113]
Chattopadhyay, B.; Vera, C.I.R.; Chuprakov, S.; Gevorgyan, V. Fused tetrazoles as azide surrogates in click reaction: efficient synthesis of N-heterocycle-substituted 1,2,3-triazoles. Org. Lett., 2010, 12(9), 2166-2169. [http://dx.doi.org/10.1021/ol100745d]. [PMID: 20380424].
[114]
Wang, D.; Li, N.; Zhao, M.; Shi, W.; Ma, C.; Chen, B. Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. Green Chem., 2010, 12, 2120-2123. [http://dx.doi.org/10.1039/c0gc00381f].
[115]
Narendra, N.; Vishwanatha, T.M.; Sureshbabu, V.V. Peptidomimetics through click chemistry: Synthesis of novel β-keto triazole acids from N-protected amino acids. Int. J. Pept. Res. Ther., 2010, 16, 283-290. [http://dx.doi.org/10.1007/s10989-010-9214-z].
[116]
Adzima, B.J.; Tao, Y.; Kloxin, C.J.; DeForest, C.A.; Anseth, K.S.; Bowman, C.N. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nat. Chem., 2011, 3(3), 256-259. [http://dx.doi.org/10.1038/nchem.980]. [PMID: 21336334].
[117]
Kumar, R.; Pradhan, P.; Zajc, B. Facile synthesis of 4-vinyl- and 4-fluorovinyl-1,2,3-triazoles via bifunctional “click-olefination” reagents. Chem. Commun. (Camb.), 2011, 47(13), 3891-3893. [http://dx.doi.org/10.1039/c0cc05083k]. [PMID: 21336351].
[118]
Lal, S.; Mcnally, J.; White, A.J.P.; Diez-Gonzalez, S. Novel phosphinite and phosphonite copper(I) complexes: Efficient catalysts for click azide−alkyne cycloaddition reactions. Organometallics, 2011, 30, 6225-6232. [http://dx.doi.org/10.1021/om200791u].
[119]
Wan, L.; Cai, C. Multicomponent Synthesis of 1,2,3-Triazoles in water catalyzed by silica-immobilized NHC–Cu(I). Catal. Lett., 2012, 142, 1134-1140. [http://dx.doi.org/10.1007/s10562-012-0880-7].
[120]
Haldón, E.; Álvarez, E.; Nicasio, M.C.; Pérez, P.J. 1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap. Chem. Commun. (Camb.), 2014, 50(64), 8978-8981. [http://dx.doi.org/10.1039/C4CC03614J]. [PMID: 24980244].
[121]
Naeimi, H.; Nejadshafiee, V. Efficient one-pot click synthesis of β-hydroxy-1,2,3 triazoles catalyzed by copper(I)@phosphorated SiO2via multicomponent reaction in aqueous media. New J. Chem., 2014, 38, 5429-5435. [http://dx.doi.org/10.1039/C4NJ00909F].
[122]
Rinaldi, L.; Martina, K.; Baricco, F.; Rotolo, L.; Cravotto, G. Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation. Molecules, 2015, 20(2), 2837-2849. [http://dx.doi.org/10.3390/molecules20022837]. [PMID: 25671367].
[123]
Dubey, N.; Sharma, P.; Kumar, A. Clay-supported Cu(II) catalyst: An efficient, heterogeneous and recyclable catalyst for synthesis of 1,4-disubstituted 1,2,3-triazoles from alloxan-derived terminal alkyne and substituted azides using click chemistry. Synth. Commun., 2015, 45, 2608-2626. [http://dx.doi.org/10.1080/00397911.2015.1099675].
[124]
Rad, M.N.S.; Behrouz, S.; Behrouz, M.; Sami, A.; Mardkhoshnood, M.; Zarenezhad, A.; Zarenezhad, E. Design, synthesis and biological evaluation of novel 1, 2, 3-triazolyl\upbeta. Mol. Divers., 2016, 20, 705-718. [http://dx.doi.org/10.1007/s11030-016-9678-7]. [PMID: 27278443].
[125]
Taskin, O.S.; Yilmaz, G.; Yagci, Y. Fullerene-attached polymeric homogeneous/heterogeneous photoactivators for visible-light-induced CuAAC click reactions. ACS Macro Lett., 2016, 5, 103-107. [http://dx.doi.org/10.1021/acsmacrolett.5b00885].
[126]
Zarenezhad, E.; Rad, M.N.S.; Behrouz, S.; Esmaielzadeh, S.; Farjam, M. Immobilized [Cu(cdsalMeen)] on silica gel: A highly efficient heteroge-neous catalyst for ‘Click’[3+ 2] Huisgen cycloaddition. J. Iran. Chem. Soc., 2017, 14, 509-519. [http://dx.doi.org/10.1007/s13738-016-0999-3].
[127]
Dige, N.C.; Patil, J.D.; Pore, D.M. Dicationic 1,3-bis (1-methyl-1h-imidazol-3-ium) propane copper (i) dibromate: Novel heterogeneous catalyst for 1,3-dipolar cycloaddition. Catal. Lett., 2017, 147, 301-309. [http://dx.doi.org/10.1007/s10562-016-1942-z].
[128]
Jia, X.; Xu, G.; Du, Z.; Fu, Y. Cu(BTC)-MOF catalyzed multicomponent reaction to construct 1,4-disubstituted-1,2,3-triazoles. Polyhedron, 2018, 151, 515-519. [http://dx.doi.org/10.1016/j.poly.2018.05.058].
[129]
Touj, N.; Chakchouk-Mtibaa, A.; Mansour, L.; Harrath, A.H.; Hamoud, J.; Ozdemir, I.; Mellouli, L.; Yasar, S.; Hamdi, N. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) under mild condition in water: Synthesis, catalytic application and biological activities. J. Organomet. Chem., 2017, 853, 49-63. [http://dx.doi.org/10.1016/j.jorganchem.2017.09.024].
[130]
Park, I.S.; Kwon, M.S.; Kim, Y.; Lee, J.S.; Park, J. Heterogeneous copper catalyst for the cycloaddition of azides and alkynes without additives under ambient conditions. Org. Lett., 2008, 10(3), 497-500. [http://dx.doi.org/10.1021/ol702790w]. [PMID: 18181635].
[131]
Lee, B.S.; Yi, M.; Chu, S.Y.; Lee, J.Y.; Kwon, H.R.; Lee, K.R.; Kang, D.; Kim, W.S.; Lim, H.B.; Lee, J.; Youn, H.J.; Chi, D.Y.; Hur, N.H. Copper nitride nanoparticles supported on a superparamagnetic mesoporous microsphere for toxic-free click chemistry. Chem. Commun. (Camb.), 2010, 46(22), 3935-3937. [http://dx.doi.org/10.1039/c001255f]. [PMID: 20422108].
[132]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent synthesis of 1,2,3-triazoles in water catalyzed by copper nanoparticles on activated carbon. Adv. Synth. Catal., 2010, 352, 3208-3214. [http://dx.doi.org/10.1002/adsc.201000637].
[133]
Kim, J.Y.; Park, J.C.; Kang, H.; Song, H.; Park, K.H. CuO hollow nanostructures catalyze [3 + 2] cycloaddition of azides with terminal alkynes. Chem. Commun. (Camb.), 2010, 46(3), 439-441. [http://dx.doi.org/10.1039/B917781G]. [PMID: 20066318].
[134]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon. Org. Biomol. Chem., 2011, 9(18), 6385-6395. [http://dx.doi.org/10.1039/c1ob05735a]. [PMID: 21789331].
[135]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent click synthesis of 1,2,3-triazoles from epoxides in water catalyzed by copper nanoparticles on activated carbon. J. Org. Chem., 2011, 76(20), 8394-8405. [http://dx.doi.org/10.1021/jo2016339]. [PMID: 21894972].
[136]
Kumar, B.S.P.A.; Reddy, K.H.V.; Madhav, B.; Ramesh, K.; Nageswar, Y.V.D. Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry’. Tetrahedron Lett., 2012, 53, 4595-4599. [http://dx.doi.org/10.1016/j.tetlet.2012.06.077].
[137]
Rad, M.N.S.; Behrouz, S.; Doroodmand, M.M.; Movahediyan, A. Copper-doped silica cuprous sulphate (CDSCS) as a highly efficient and new heterogeneous nano catalyst for [3+2] Huisgen cycloaddition. Tetrahedron Lett., 2012, 68, 7812-7821. [http://dx.doi.org/10.1016/j.tet.2012.07.032].
[138]
Hudson, R.; Li, C.J.; Moores, A. Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide-alkyne click reaction in water. Green Chem., 2012, 14, 622-624. [http://dx.doi.org/10.1039/c2gc16421c].
[139]
Baig, R.B.N.; Varma, R.S. A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1,3-dipolar cycloadditions. Green Chem., 2012, 14, 625-632. [http://dx.doi.org/10.1039/c2gc16301b].
[140]
Kovacs, S.; Zih-Perenyi, K.; Revesz, A.; Navak, Z. Copper on Iron: Catalyst and scavenger for azide–alkyne cycloaddition. Synthesis, 2012, 44, 3722-3730. [http://dx.doi.org/10.1055/s-0032-1317697].
[141]
Albadi, J.; Shiran, J.A.; Mansournezhad, A. Click synthesis of 1,4-disubstituted 1,2,3-triazoles catalysed by CuO–CeO2 nanocomposite in the presence of amberlite-supported azide. J. Chem. Sci., 2014, 126, 147-150. [http://dx.doi.org/10.1007/s12039-013-0537-0].
[142]
Chavan, P.V.; Pandit, K.S.; Desai, U.V.; Kulkarni, M.A.; Wadgaonkar, P.P. Cellulose supported cuprous iodide nanoparticles (cell-CuI NPs): A new heterogeneous and recyclable catalyst for the one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Adv., 2014, 4, 42137-42146. [http://dx.doi.org/10.1039/C4RA05080K].
[143]
Huang, L.; Liu, W.; Wu, J.; Fu, Y.; Wang, K.; Huo, C.; Du, Z. Nano-copper catalyzed three-component reaction to construct 1, 4-substituted 1, 2, 3-triazoles. Tetrahedron Lett., 2014, 55, 2312-2316. [http://dx.doi.org/10.1016/j.tetlet.2014.02.114].
[144]
Billault, I.; Pessel, F.; Petit, A.; Turgis, R.; Scherrmann, M.C. Investigation of the copper(I) catalysed azide–alkyne cycloaddition reactions (CuAAC) in molten PEG2000. New J. Chem., 2015, 39, 1986-1995. [http://dx.doi.org/10.1039/C4NJ01784F].
[145]
Lu, J.; Ma, E.Q.; Liu, Y.H.; Li, Y.M.; Mo, L.P.; Zhang, Z.H. One-pot three component synthesis of 1,2,3-triazoles using magnetic NiFe2O4-glutamate-Cu as an efficient heterogeneous catalyst in water. RSC Advances, 2015, 5, 59167-59185. [http://dx.doi.org/10.1039/C5RA09517D].
[146]
Sasikala, R.; Rani, S.K.; Easwaramoorthy, D.; Karthikeyan, K. Lanthanum loaded CuO nanoparticles: Synthesis, characterization and recyclable catalyst for the synthesis of 1,4- disubstituted 1,2,3-triazoles and propargylamines. RSC Adv., 2015, 5, 56507-56517. [http://dx.doi.org/10.1039/C5RA05468K].
[147]
Mirsafaei, R.; Heravi, M.M.; Ahmadi, S.; Moslemin, M.H.; Hosseinnejad, T. In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water. J. Mol. Catal. A, 2015, 402, 100-108. [http://dx.doi.org/10.1016/j.molcata.2015.03.006].
[148]
Saadat, S.; Nazari, S.; Afshari, M.; Shahabi, M.; Keshavarz, M. Copper(I) iodide nanoparticles on polyaniline as a green, recoverable and reusable catalyst for multicomponent click synthesis of 1,4-disubstituted-1H-1,2,3-triazoles. Orient. J. Chem., 2015, 31, 1005-1012. [http://dx.doi.org/10.13005/ojc/310248].
[149]
Amini, M.; Hassandoost, R.; Bagherzadeh, M.; Gautam, S.; Chae, K.H. Copper nanoparticles supported on CeO2 as an efficient catalyst for click reactions of azides with alkynes. Catal. Commun., 2016, 85, 13-16. [http://dx.doi.org/10.1016/j.catcom.2016.07.006].
[150]
Shaabani, S.; Tavousi Tabatabaei, A.; Shaabani, A. Copper (I) oxide nanoparticles supported on magnetic casein as a bio-supported and magnetically recoverable catalyst for aqueous click chemistry synthesis of 1, 4-disubstituted 1, 2, 3-triazoles. Appl. Organomet. Chem., 2017, 31, e3559.
[http://dx.doi.org/10.1002/aoc.3559]
[151]
Sarkar, S.M.; Rahman, M.L. Cellulose supported poly (amidoxime) copper complex for Click reaction. J. Clean. Prod., 2017, 141, 683-692. [http://dx.doi.org/10.1016/j.jclepro.2016.09.153].
[152]
Bagherzadeh, M.; Mousavi, N.A.; Amini, M.; Gautam, S.; Singh, J.P.; Chae, K.H. Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties. Chin. Chem. Lett., 2017, 28, 1125-1130. [http://dx.doi.org/10.1016/j.cclet.2017.01.022].
[153]
Raj, J.P.; Gangaprasad, D.; Vajjiravel, M.; Karthikeyan, K.; Elangovan, J. CuO nanoparticles catalyzed synthesis of 1, 4-Disubstituted-1, 2, 3-Triazoles from Bromoalkenes. J. Chem. Sci., 2018, 130, 44. [http://dx.doi.org/10.1007/s12039-018-1452-1].
[154]
Yadav, P.; Lal, K.; Kumar, L.; Kumar, A.; Kumar, A.; Paul, A.K.; Kumar, R. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur. J. Med. Chem., 2018, 155, 263-274. [http://dx.doi.org/10.1016/j.ejmech.2018.05.055]. [PMID: 29890388].
[155]
Chetia, M.; Gehlot, P.S.; Kumar, A.; Sarma, D. A recyclable/reusable hydrotalcite supported copper nano catalyst for 1, 4-disubstituted-1, 2, 3-triazole synthesis via click chemistry approach. Tetrahedron Lett., 2018, 59, 397-401. [http://dx.doi.org/10.1016/j.tetlet.2017.12.051].
[156]
Liu, P.N.; Siyang, H.X.; Zhang, L.; Tse, S.K.S.; Jia, G. RuH2(CO)(PPh3)3 catalyzed selective formation of 1,4-disubstituted triazoles from cycloaddition of alkynes and organic azides. J. Org. Chem., 2012, 77(13), 5844-5849. [http://dx.doi.org/10.1021/jo3008572]. [PMID: 22670768].
[157]
Connell, T.U.; Schieber, C.; Silvestri, I.P.; White, J.M.; Williams, S.J.; Donnelly, P.S. Copper and silver complexes of tris(triazole)amine and tris(benzimidazole)amine ligands: evidence that catalysis of an azide-alkyne cycloaddition (“click”) reaction by a silver tris(triazole)amine complex arises from copper impurities. Inorg. Chem., 2014, 53(13), 6503-6511. [http://dx.doi.org/10.1021/ic5008999]. [PMID: 24949519].
[158]
Jia, Q.; Yang, G.; Chen, L.; Du, Z.; Wei, J.; Zhong, Y.; Wang, J. A facile one-pot metal-free synthesis of 1,4-disubstituted 1,2,3-triazoles. Eur. J. Org. Chem., 2015, 16, 3435-3440. [http://dx.doi.org/10.1002/ejoc.201500360].
[159]
Singh, H.; Khanna, G.; Nand, B.; Khurana, J.M. Metal-free synthesis of 1,2,3-triazoles by azide-aldehyde cycloaddition under ultrasonic irradiation in TSIL [DBU-Bu]OH and in hydrated IL Bu4NOH under heating. Monatsh. Chem., 2016, 147, 1215-1219. [http://dx.doi.org/10.1007/s00706-015-1623-4].
[160]
Sharma, R.K.; Mishra, M.; Sharma, S.; Dutta, S. Zinc(II) complex immobilized on amine functionalized silica-gel: A novel, highly efficient and recyclable catalyst for multicomponent click synthesis of of 1,4-disubstituted 1,2,3-triazoles. J. Coord. Chem., 2016, 69, 1152-1165. [http://dx.doi.org/10.1080/00958972.2016.1165807].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy