[1]
Ismail, N.S.M.; Elzahabi, H.S.A.; Sabry, P.; Baselious, F.N. AbdelMalaK, A.S.; Hanna, F. A study of the allosteric inhibition of HCV RNA-dependent RNA polymerase and implementing virtual screening for the selection of promising dual-site inhibitors with low resistance potential. J. Recept. Sig. Transd., 2016, 37(4), 335-341. [doi: 10.1080/10799893.2016.1248293].
[3]
Ministério da Saúde. Coletiva Hepatites (ASCOM): Plano para eliminar hepatite C até 2030. 2017.
[4]
Ganesan, A.; Barakat, K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin. Drug Discov., 2017, 12(4), 407-425. [http://dx.doi.org/10.1080/17460441.2017.1291628]. [PMID: 28164720].
[5]
El-Hasab, M.A.E.; El-Bastawissy, E.E.; El-Moselhy, T.F. Identification of potential inhibitors for HCV NS3 genotype 4a by combining protein-ligand interaction fingerprint, 3D pharmacophore, docking, and dynamic simulation. J. Biomol. Struct. Dyn., 2018, 36(7), 1713-1727. [http://dx.doi.org/10.1080/07391102.2017.1332689]. [PMID: 28531373].
[6]
Wang, M.; Xuan, S.; Yan, A.; Yu, C. Classification models of HCV NS3 protease inhibitors based on support vector machine (SVM). Comb. Chem. High Throughput Screen., 2015, 18(1), 24-32. [http://dx.doi.org/10.2174/1386207317666141120122554]. [PMID: 25410306].
[7]
Cheung, M.C.M.; Walker, A.J.; Hudson, B.E.; Verma, S.; McLauchlan, J.; Mutimer, D.J.; Brown, A.; Gelson, W.T.H.; MacDonald, D.C.; Agarwal, K.; Foster, G.R.; Irving, W.L. Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. J. Hepatol., 2016, 65(4), 741-747. [http://dx.doi.org/10.1016/j.jhep.2016.06.019]. [PMID: 27388925].
[8]
Manns, M.; Samuel, D.; Gane, E.J.; Mutimer, D.; McCaughan, G.; Buti, M.; Prieto, M.; Calleja, J.L.; Peck-Radosavljevic, M.; Müllhaupt, B.; Agarwal, K.; Angus, P.; Yoshida, E.M.; Colombo, M.; Rizzetto, M.; Dvory-Sobol, H.; Denning, J.; Arterburn, S.; Pang, P.S.; Brainard, D.; McHutchison, J.G.; Dufour, J.F.; Van Vlierberghe, H.; van Hoek, B.; Forns, X. Ledipasvir and sofosbuvir plus ribavirin in patients with genotype 1 or 4 hepatitis C virus infection and advanced liver disease: a multicentre, open-label, randomised, phase 2 trial. Lancet Infect. Dis., 2016, 16(6), 685-697. [http://dx.doi.org/10.1016/S1473-3099(16)00052-9]. [PMID: 26907736].
[9]
Foster, G.R.; Irving, W.L.; Cheung, M.C.; Walker, A.J.; Hudson, B.E.; Verma, S.; McLauchlan, J.; Mutimer, D.J.; Brown, A.; Gelson, W.T.; MacDonald, D.C.; Agarwal, K. Impact of direct acting antiviral therapy in patients with chronic hepatitis C and decompensated cirrhosis. J. Hepatol., 2016, 64(6), 1224-1231. [http://dx.doi.org/10.1016/j.jhep.2016.01.029]. [PMID: 26829205].
[10]
Curry, M.P.; O’Leary, J.G.; Bzowej, N.; Muir, A.J.; Korenblat, K.M.; Fenkel, J.M.; Reddy, K.R.; Lawitz, E.; Flamm, S.L.; Schiano, T.; Teperman, L.; Fontana, R.; Schiff, E.; Fried, M.; Doehle, B.; An, D.; McNally, J.; Osinusi, A.; Brainard, D.M.; McHutchison, J.G.; Brown, R.S., Jr; Charlton, M. ASTRAL-4 Investigators Sofosbuvir and velpatasvir for HCV in patients with decompensated cirrhosis. N. Engl. J. Med., 2015, 373(27), 2618-2628. [http://dx.doi.org/10.1056/NEJMoa1512614]. [PMID: 26569658].
[11]
Belli, L.S.; Berenguer, M.; Cortesi, P.A.; Strazzabosco, M.; Rockenschaub, S.R.; Martini, S.; Morelli, C.; Donato, F.; Volpes, R.; Pageaux, G.P.; Coilly, A.; Fagiuoli, S.; Amaddeo, G.; Perricone, G.; Vinaixa, C.; Berlakovich, G.; Facchetti, R.; Polak, W.; Muiesan, P.; Duvoux, C. Delisting of liver transplant candidates with chronic hepatitis C after viral eradication: A European study. J. Hepatol., 2016, 65(3), 524-531. [http://dx.doi.org/10.1016/j.jhep.2016.05.010]. [PMID: 27212241].
[12]
Pascasio, J.M.; Vinaixa, C.; Ferrer, M.T.; Colmenero, J.; Rubin, A.; Castells, L.; Manzano, M.L.; Lorente, S.; Testillano, M.; Xiol, X.; Molina, E.; González-Diéguez, L.; Otón, E.; Pascual, S.; Santos, B.; Herrero, J.I.; Salcedo, M.; Montero, J.L.; Sánchez-Antolín, G.; Narváez, I.; Nogueras, F.; Giráldez, Á.; Prieto, M.; Forns, X.; Londoño, M.C. Clinical outcomes of patients undergoing antiviral therapy while awaiting liver transplantation. J. Hepatol., 2017, 67(6), 1168-1176. [http://dx.doi.org/10.1016/j.jhep.2017.08.008]. [PMID: 28842296].
[13]
Belli, L.S.; Duvoux, C.; Berenguer, M.; Berg, T.; Coilly, A.; Colle, I.; Fagiuoli, S.; Khoo, S.; Pageaux, G.P.; Puoti, M.; Samuel, D.; Strazzabosco, M. ELITA consensus statements on the use of DAAs in liver transplant candidates and recipients. J. Hepatol., 2017, 67(3), 585-602. [http://dx.doi.org/10.1016/j.jhep.2017.03.006]. [PMID: 28323126].
[14]
Carreño, V.; Bartolomé, J.; Castillo, I.; Quiroga, J.A. New perspectives in occult hepatitis C virus infection. World J. Gastroenterol., 2012, 18(23), 2887-2894. [http://dx.doi.org/10.3748/wjg.v18.i23.2887]. [PMID: 22736911].
[15]
Chou, R.; Hartung, D.; Rahman, B.; Wasson, N.; Cottrell, E.B.; Fu, R. Comparative effectiveness of antiviral treatment for hepatitis C virus infection in adults: a systematic review. Ann. Intern. Med., 2013, 158(2), 114-123. [http://dx.doi.org/10.7326/0003-4819-158-2-201301150-00576]. [PMID: 23437439].
[16]
Abd Alla, M.D.A.; El Awady, M.K.; Dawood, R.M.; Elhawary, M.A.; Al-Azhari, S.S.; Galal, A.G.M. Hepatitis C virus serologic relapse after treatment with direct-acting antivirals is dependent on viral RNA levels in peripheral blood mononuclear cells and the grade of liver cirrhosis. Arch. Virol., 2018, 163(10), 2765-2774. [http://dx.doi.org/10.1007/s00705-018-3922-7]. [PMID: 29971486].
[17]
Faillaci, F.; Marzi, L.; Critelli, R.; Milosa, F.; Schepis, F.; Turola, E.; Andreani, S.; Vandelli, G.; Bernabucci, V.; Lei, B. DÁmbrosio, F.; Bristot, L.; Cavalletto, L.; Chamello, L.; Sighinolfi, P.; Manni, P.; Maionara, A.; Caporali, C.; Bianchini, M.; Marsico, M.; Turco, L.; de Maria, N.; Del Buono; M., Todesca, P.; di Lena, L.; Romagnoli, D.; Magistri, P.; di Benedetto, F.; Bruno, S.; Taliani, G.; Gianneli, G.; Martinez-Chantar, M.L.; Villa, E. Liver angiopoietin-2 is a key predictor of de novo or recurrent hepatocellular cancer after hepatitis C virus direct-acting antivirals. Hepatol, 2018, 68, 1010-1024. [http://dx.doi.org/10.1002/hep.29911].
[18]
Ikeda, K.; Kawamura, Y.; Kobayashi, M.; Kominami, Y.; Fujiyama, S.; Sezaki, H.; Hosaka, T.; Akuta, N.; Saitoh, S.; Suzuki, F.; Suzuki, Y.; Arase, Y.; Kumada, H. Direct-acting antivirals decreased tumor recurrence after initial treatment of hepatitis C virus-related hepatocellular carcinoma. Dig. Dis. Sci., 2017, 62(10), 2932-2942. [http://dx.doi.org/10.1007/s10620-017-4739-z]. [PMID: 28884320].
[19]
Waziry, R.; Hajarizadeh, B.; Grebely, J.; Amin, J.; Law, M.; Danta, M.; George, J.; Dore, G.J. Hepatocellular carcinoma risk following direct-acting antiviral HCV therapy: A systematic review, meta-analyses, and meta-regression. J. Hepatol., 2017, 67(6), 1204-1212. [http://dx.doi.org/10.1016/j.jhep.2017.07.025]. [PMID: 28802876].
[20]
Alberti, A.; Piovesan, S. Increased incidence of liver cancer after successful DAA treatment of chronic hepatitis C: Fact or fiction? Liver Int., 2017, 37(6), 802-808. [http://dx.doi.org/10.1111/liv.13390]. [PMID: 28544696].
[21]
Serti, E.; Park, H.; Keane, M.; O’Keefe, A.C.; Rivera, E.; Liang, T.J.; Ghany, M.; Rehermann, B. Rapid decrease in hepatitis C viremia by direct acting antivirals improves the natural killer cell response to IFNα. Gut, 2017, 66(4), 724-735. [http://dx.doi.org/10.1136/gutjnl-2015-310033]. [PMID: 26733671].
[22]
Meissner, E.G.; Wu, D.; Osinusi, A.; Bon, D.; Virtaneva, K.; Sturdevant, D.; Porcella, S.; Wang, H.; Herrmann, E.; McHutchison, J.; Suffredini, A.F.; Polis, M.; Hewitt, S.; Prokunina-Olsson, L.; Masur, H.; Fauci, A.S.; Kottilil, S. Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome. J. Clin. Invest., 2014, 124(8), 3352-3363. [http://dx.doi.org/10.1172/JCI75938]. [PMID: 24983321].
[23]
Ponder, E.L.; Freundlich, J.S.; Sarker, M.; Ekins, S. Computational models for neglected diseases: Gaps and opportunities. Pharm. Res., 2014, 31(2), 271-277. [http://dx.doi.org/10.1007/s11095-013-1170-9]. [PMID: 23990313].
[24]
Scotti, M.T.; Herrera-Acevedo, C.; Oliveira, T.B.; Costa, R.P.O.; Santos, S.Y.K.O.; Rodrigues, R.P.; Scotti, L.; Da-Costa, F.B.; Sistemat, X. An online web-based cheminformatics tool for data management of secondary metabolites. Molecules, 2018, 23(1), 103-113. [http://dx.doi.org/10.3390/molecules23010103]. [PMID: 29301376].
[25]
Cruciani, G.; Crivori, P.; Carrupt, P.A.; Testa, B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Mol. Struct., 2000, 503, 17-30. [http://dx.doi.org/10.1016/S0166-1280(99)00360-7].
[26]
Steven, L. Book Review: C4.5: Programs for machine learning. Morgan Kaufmann, 1993, 16, 235-240.
[27]
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P. Witten, I.H. The WEKA data mining software: An update. SIGKDD Explor., 2009, 11, 10-18. [http://dx.doi.org/10.1145/1656274.1656278].
[28]
Scotti, M.T.; Scotti, L.; Ishiki, H.M.; Peron, L.M.; Rezende, L.; Amaral, A.T. Variable selection approaches to generate QSAR models for a set of antichagasic semicarbazones and analogues. Chemom. Intell. Lab. Syst., 2016, 154, 137-149. [http://dx.doi.org/10.1016/j.chemolab.2016.03.023].
[29]
Jiang, Y.; Andrews, S.W.; Condroski, K.R.; Buckman, B.; Serebryany, V.; Wenglowsky, S.; Kennedy, A.L.; Madduru, M.R.; Wang, B.; Lyon, M.; Doherty, G.A.; Woodard, B.T.; Lemieux, C.; Geck Do, M.; Zhang, H.; Ballard, J.; Vigers, G.; Brandhuber, B.J.; Stengel, P.; Josey, J.A.; Beigelman, L.; Blatt, L.; Seiwert, S.D. Discovery of danoprevir (ITMN-191/R7227), a highly selective and potent inhibitor of hepatitis C virus (HCV) NS3/4A protease. J. Med. Chem., 2014, 57(5), 1753-1769. [http://dx.doi.org/10.1021/jm400164c]. [PMID: 23672640].
[30]
Venkatraman, S.; Wu, W.; Prongay, A.; Girijavallabhan, V.; George Njoroge, F. Potent inhibitors of HCV-NS3 protease derived from boronic acids. Bioorg. Med. Chem. Lett., 2009, 19(1), 180-183. [http://dx.doi.org/10.1016/j.bmcl.2008.10.124]. [PMID: 19022670].
[31]
de Vicente, J.; Hendricks, R.T.; Smith, D.B.; Fell, J.B.; Fischer, J.; Spencer, S.R.; Stengel, P.J.; Mohr, P.; Robinson, J.E.; Blake, J.F.; Hilgenkamp, R.K.; Yee, C.; Adjabeng, G.; Elworthy, T.R.; Li, J.; Wang, B.; Bamberg, J.T.; Harris, S.F.; Wong, A.; Leveque, V.J.; Najera, I.; Le Pogam, S.; Rajyaguru, S.; Ao-Ieong, G.; Alexandrova, L.; Larrabee, S.; Brandl, M.; Briggs, A.; Sukhtankar, S.; Farrell, R. Non-nucleoside inhibitors of HCV polymerase NS5B. Part 4: structure-based design, synthesis, and biological evaluation of benzo[d]isothiazole-1,1-dioxides. Bioorg. Med. Chem. Lett., 2009, 19(19), 5652-5656. [http://dx.doi.org/10.1016/j.bmcl.2009.08.022]. [PMID: 19709881].
[32]
Schiering, N.; D’Arcy, A.; Villard, F.; Simic, O.; Kamke, M.; Monnet, G.; Hassiepen, U.; Svergun, D.I.; Pulfer, R.; Eder, J.; Raman, P.; Bodendorf, U. A macrocyclic HCV NS3/4A protease inhibitor interacts with protease and helicase residues in the complex with its full-length target. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 21052-21056. [http://dx.doi.org/10.1073/pnas.1110534108]. [PMID: 22160684].
[33]
Abraham, M.U.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lingahl, E. Gromacs: High performance molecular simulations through multi-level paralleslism from laptotops to supercomputers. SoftwareX, 2015, 1-2, 19-25. [http://dx.doi.org/10.1016/j.softx.2015.06.001].
[34]
Berendsen, H.J.C.; Van der Spoel, D.; Van Drunem, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91, 1995. [http://dx.doi.org/10.1016/0010-4655(95)00042-E].
[35]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363. [http://dx.doi.org/10.1107/S0907444904011679]. [PMID: 15272157].
[36]
Bondi, A. Van der Waals Volumes and Radii. J. Phys., 1994, 68, 441-451. [DOI: 10.1021/j100785a001].
[37]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. [http://dx.doi.org/10.1002/jcc.20084]. [PMID: 15264254].
[38]
Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta, 1975, 405(2), 442-451. [http://dx.doi.org/10.1016/0005-2795(75)90109-9]. [PMID: 1180967].
[39]
Silva, F.C. (Federal University of Pernambuco, Recife, Pernambuco, Brazil).Análise ROC; , 2006.
[40]
Lorenzo, V.P.; Lúcio, A.S.; Scotti, L.; Tavares, J.F.; Filho, J.M.; Lima, T.K.; Rocha, J.D.; Scotti, M.T. Structure-and ligand-based approaches to evaluate aporphynic alkaloids from annonaceae as multi-target agent against Leishmania donovani. Curr. Pharm. Des., 2016, 22(34), 5196-5203. [http://dx.doi.org/10.2174/1381612822666160513144853]. [PMID: 27174814].
[41]
Acevedo, C.H.; Scotti, L.; Scotti, M.T. In Silico studies designed to select sesquiterpene lactones with potential antichagasic activity from an in-house asteraceae database. ChemMedChem, 2018, 13(6), 634-645. [http://dx.doi.org/10.1002/cmdc.201700743]. [PMID: 29323468].
[42]
Razzaghi-Asl, N.; Mirzayi, S.; Mahnam, K.; Sepehri, S. Identification of COX-2 inhibitors via structure-based virtual screening and molecular dynamics simulation. J. Mol. Graph. Model., 2018, 83, 138-152. [http://dx.doi.org/10.1016/j.jmgm.2018.05.010]. [PMID: 29936228].
[44]
Toyama, M.; Hamasaki, T.; Uto, T.; Aoyama, H.; Okamoto, M.; Hashmoto, Y.; Baba, M. Synergistic inhibition of HTLV-1-infected cell proliferation by combination of cepharanthine and a tetramethylnaphthalene derivative. Anticancer Res., 2012, 32(7), 2639-2645. [PMID: 22753721].
[45]
Rogosnitzky, M.; Danks, R. Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacol. Rep., 2011, 63(2), 337-347. [http://dx.doi.org/10.1016/S1734-1140(11)70500-X]. [PMID: 21602589].
[46]
Verpoorte, R.; Ruigrok, C.L.; Svendsen, A.B. Medicinal plants of Surinam. II: Antimicrobial active alkaloids from Aspidosperma marcgravianum. Planta Med., 1982, 46(3), 149-152. [http://dx.doi.org/10.1055/s-2007-970040]. [PMID: 7178295].
[47]
Zhao, M.M.; McNamara, J.M.; Ho, G.J.; Emerson, K.M.; Song, Z.J.; Tschaen, D.M.; Brands, K.M.; Dolling, U.H.; Grabowski, E.J.; Reider, P.J.; Cottrell, I.F.; Ashwood, M.S.; Bishop, B.C. Practical asymmetric synthesis of aprepitant, a potent human NK-1 receptor antagonist, via a stereoselective Lewis acid-catalyzed trans acetalization reaction. J. Org. Chem., 2002, 67(19), 6743-6747. [http://dx.doi.org/10.1021/jo0203793]. [PMID: 12227806].
[48]
Aly, Y.; Galal, A.; Wong, L.K.; Fu, E.W.; Lin, F.; Duah, F.K.; Schiff, P.L. A revision of the structure of the isoquinolone alkaloid thalflavine. Phytochemistry, 1989, 28, 1967-1971. [http://dx.doi.org/10.1016/S0031-9422(00)97896-8].
[49]
López, J.A.; Laurito, J.G.; Brenes, A.M.; Lin, F.; Sharaf, M.; Wong, L.K.; Schiff, P.L. Aporphinoid alkaloids of Guatteria oliviformis and G. Tonduzii. Phytochemistry, 1990, 29, 1899-1901. [http://dx.doi.org/10.1016/0031-9422(90)85037-G].
[51]
Todeschini, R.; Consonni, V. Molecular descriptors for chemoinformatics, 1st ed; Wiley-VCH, 2009. [http://dx.doi.org/10.1002/9783527628766]
[52]
Scotti, M.T.; Speck-Planche, A.; Tavares, J.F.; Sobral, M.S.; Cordeiro, M.N.S. Virtual screening of alkaloids from apocynaceae with potential antitrypanosomal activity. Curr. Bioinform., 2015, 10, 509-519. [http://dx.doi.org/10.2174/1574893610666151008011042].
[53]
Oprea, T.I. Property distribution of drug-related chemical databases. J. Comput. Aided Mol. Des., 2000, 14(3), 251-264. [http://dx.doi.org/10.1023/A:1008130001697]. [PMID: 10756480].
[54]
Walters, W.P.; Murcko, M.A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev., 2002, 54(3), 255-271. [http://dx.doi.org/10.1016/S0169-409X(02)00003-0]. [PMID: 11922947].
[55]
Chen, G.; Zheng, S.; Luo, X.; Shen, J.; Zhu, W.; Liu, H.; Gui, C.; Zhang, J.; Zheng, M.; Puah, C.M.; Chen, K.; Jiang, H. Focused combinatorial library design based on structural diversity, druglikeness and binding affinity score. J. Comb. Chem., 2005, 7(3), 398-406. [http://dx.doi.org/10.1021/cc049866h]. [PMID: 15877468].
[56]
Zheng, S.; Luo, X.; Chen, G.; Zhu, W.; Shen, J.; Chen, K.; Jiang, H.; Zheng, M.; Puah, C.M.; Chen, K.; Jiang, H. A new rapid and effective chemistry space filter in recognizing a druglike database. J. Chem. Inf. Model., 2005, 45(4), 856-862. [http://dx.doi.org/10.1021/ci050031j]. [PMID: 16045278].
[57]
Rishton, G.M. Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov. Today, 2003, 8(2), 86-96. [http://dx.doi.org/10.1016/S1359644602025722]. [PMID: 12565011].
[58]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623. [http://dx.doi.org/10.1021/jm020017n]. [PMID: 12036371].
[59]
Wahyuni, T.S.; Utsubo, C.A.; Hotta, H. Promising anti-hepatitis c virus compounds from natural resources. Nat. Prod. Commun., 2016, 11(8), 1193-1200. [http://dx.doi.org/10.1177/1934578X1601100840]. [PMID: 30725589].
[60]
Koutsoudakis, G.; Romero-Brey, I.; Berger, C.; Pérez-Vilaró, G.; Monteiro Perin, P.; Vondran, F.W.; Kalesse, M.; Harmrolfs, K.; Müller, R.; Martinez, J.P.; Pietschmann, T.; Bartenschlager, R.; Brönstrup, M.; Meyerhans, A.; Díez, J.; Soraphen, A.; Soraphen, A. A broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. J. Hepatol., 2015, 63(4), 813-821. [http://dx.doi.org/10.1016/j.jhep.2015.06.002]. [PMID: 26070407].
[61]
Elsebai, M.F.; Koutsoudakis, G.; Saludes, V.; Pérez-Vilaró, G.; Turpeinen, A.; Mattila, S.; Pirttilä, A.M.; Fontaine-Vive, F.; Mehiri, M.; Meyerhans, A.; Díez, J. Pan-genotypic hepatitis c virus inhibition by natural products derived from the wild egyptian artichoke. J. Virol., 2015, 90(4), 1918-1930. [http://dx.doi.org/10.1128/JVI.02030-15]. [PMID: 26656684].