Research Article

葡萄牙多发性酰基辅酶A脱氢酶缺乏症患者的分子及临床研究

卷 19, 期 7, 2019

页: [487 - 493] 页: 7

弟呕挨: 10.2174/1566524019666190507114748

价格: $65

摘要

背景:多发性酰基辅酶A氢酶缺乏症(MADD)是一种先天性罕见的代谢性疾病,临床表型广泛,进化多样。这种天生的代谢错误是由ETFA、ETFB或ETFDH基因突变引起的,这些基因由线粒体ETF和ETF:QO蛋白编码。据报道,相当多的患者对核黄素口服补充剂反应积极,这构成了病理学的原型治疗。 目的:在葡萄牙患者中发现的ETFA、ETFB和ETFDH基因突变,尽可能将生化和临床结果与突变对受影响蛋白结构和稳定性的影响联系起来,以便更好地在分子水平上理解MADD的发病机制。 方法:在新生儿筛查过程中,根据血斑中有机酸和/或酰基肉碱的尿谱特征,确定MADD患者。收集所有患者的基因型、临床和生化数据。在硅结构分析中,使用生物信息学工具进行了ETF:QO分子模型识别错义突变。 结果:对8例葡萄牙MADD患者的临床及生化特征进行了调查。基因型分析鉴定出5个ETFDH突变,包括1个扩展(p.X618QextX*14), 2个剪接突变(c.34+5G>C和c .405+3A>T)和两个错义突变(ETF:QO-p.Arg155Gly和ETF: QO-p.Pro534Leu)和一个ETFB变异(ETFβ- p.Arg191Cys)。含有ETFDH突变p.X618QextX*14, c.34+5G>C 和ETF:QO-p.Arg155Gly的纯合子患者。Arg155Gly均表现为严重(致命)的MADD表型。然而,当这些突变中的任何一个与已知的ETF:QO-p.Pro534Leu杂合时轻度变异,严重的临床疗效有部分和暂时减弱。实际上,后者破坏了与ETF交互的循环的稳定性,没有造成重大的功能后果。然而,ETF:QO中位置155定位于泛醌结合和膜相互作用域,预计会干扰蛋白结构和膜插入,功能影响严重。因此,分子模型的结构分析被证明是一个有价值的工具,在临床表型严重程度的背景下,使突变的影响合理化。 结论:先进的分子诊断,结构分析和临床相关性表明,在一个等位基因中具有严重预后突变的MADD患者实际上可以通过与另一个等位基因中较轻的突变互补而恢复到较温和的表型。 然而,这些患者仍处于不稳定的代谢平衡中,在分解代谢应激或继发性病理期间可能出现严重的致命结果,因此需要严格的临床随访。

关键词: II型谷氨酸尿症,核黄素反应性-MADD,结构生物化学,罕见疾病,先天性代谢错误,线粒体疾病,新生儿筛查。

[1]
Frerman FE, Goodman SI, Scriver CR, et al. Defects of electron transfer flavoprotein and electron transfer flavoprotein-ubiquinone oxidoreductase: Glutaric acidemia type ii the metabolic & molecular basis of inherited disease New York 2001; 2357-65.
[2]
Bosch AM, Abeling NG, Ijlst L, et al. Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: A new inborn error of metabolism with potential treatment. J Inherit Metab Dis 2011; 34(1): 159-64.
[3]
Olsen RKJ, Koňaříková E, Giancaspero TA, et al. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency. Am J Hum Genet 2016; 98(6): 1130-45.
[4]
Missaglia S, Tavian D, Moro L, Angelini C. Characterization of two ETFDH mutations in a novel case of riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Lipids Health Dis 2018; 17(1): 254.
[5]
Loehr JP, Goodman SI, Frerman FE. Glutaric acidemia type II: heterogeneity of clinical and biochemical phenotypes. Pediatr Res 1990; 27(3): 311-5.
[6]
Antonacci R, Colombo I, Archidiacono N, et al. Assignment of the gene encoding the beta-subunit of the electron-transfer flavoprotein (ETFB) to human chromosome 19q13.3. Genomics 1994; 19(1): 177-9.
[7]
Barton DE, Yang-Feng TL, Finocchiaro G, Ozasa H, Tanaka K, Francke U. Short chain acyl-CoA dehydrogenase (ACADS) maps to chromosome 12 (q22-qter) and electron transfer flavoprotein (ETFA) to 15 (q23-q25). Cytogenet Cell Genet 1987; 46: 577-8.
[8]
Spector EB, Seltzer WK, Goodman SI. Assignment of electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) to human chromosome 4q33 by fluorescence in situ hybridization and somatic cell hybridization. Mol Genet Metab 1999; 67(4): 364-7.
[9]
Olsen RK, Andresen BS, Christensen E, Bross P, Skovby F, Gregersen N. Clear relationship between ETF/ETFDH genotype and phenotype in patients with multiple acyl-CoA dehydrogenation deficiency. Hum Mutat 2003; 22(1): 12-23.
[10]
Henriques BJ, Fisher MT, Bross P, Gomes CM. A polymorphic position in electron transfer flavoprotein modulates kinetic stability as evidenced by thermal stress. FEBS Lett 2011; 585(3): 505-10.
[11]
Henriques BJ, Rodrigues JV, Olsen RK, Bross P, Gomes CM. Role of flavinylation in a mild variant of multiple acyl-CoA dehydrogenation deficiency: a molecular rationale for the effects of riboflavin supplementation. J Biol Chem 2009; 284(7): 4222-9.
[12]
Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis 2014; 9: 117.
[13]
Henriques BJ, Lucas TG, Gomes CM. Therapeutic Approaches Using Riboflavin in Mitochondrial Energy Metabolism Disorders. Curr Drug Targets 2016; 17(13): 1527-34.
[14]
Henriques BJ, Olsen RK, Bross P, Gomes CM. Emerging roles for riboflavin in functional rescue of mitochondrial β-oxidation flavoenzymes. Curr Med Chem 2010; 17(32): 3842-54.
[15]
Lucas TG, Henriques BJ, Rodrigues JV, Bross P, Gregersen N, Gomes CM. Cofactors and metabolites as potential stabilizers of mitochondrial acyl-CoA dehydrogenases. Biochim Biophys Acta 2011; 1812(12): 1658-63.
[16]
Alves E, Henriques BJ, Rodrigues JV, et al. Mutations at the flavin binding site of ETF:QO yield a MADD-like severe phenotype in Drosophila. Biochim Biophys Acta 2012; 1822(8): 1284-92.
[17]
Gobin-Limballe S, McAndrew RP, Djouadi F, Kim JJ, Bastin J. Compared effects of missense mutations in Very-Long-Chain Acyl-CoA Dehydrogenase deficiency: Combined analysis by structural, functional and pharmacological approaches. Biochim Biophys Acta 2010; 1802(5): 478-84.
[18]
Henriques BJ, Bross P, Gomes CM. Mutational hotspots in electron transfer flavoprotein underlie defective folding and function in multiple acyl-CoA dehydrogenase deficiency. Biochim Biophys Acta 2010; 1802(11): 1070-7.
[19]
Zhang J, Frerman FE, Kim JJ. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc Natl Acad Sci USA 2006; 103(44): 16212-7.
[20]
Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990; 8(1): 52-6.
[21]
Laskowski RA, Chistyakov VV, Thornton JM. PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res 2005; 33: D266-8.
[22]
Yotsumoto Y, Hasegawa Y, Fukuda S, et al. Clinical and molecular investigations of Japanese cases of glutaric acidemia type 2. Mol Genet Metab 2008; 94(1): 61-7.
[23]
Wolfe LA, He M, Vockley J, et al. Novel ETF dehydrogenase mutations in a patient with mild glutaric aciduria type II and complex II-III deficiency in liver and muscle. J Inherit Metab Dis 2010; 33(Suppl. 3): S481-7.
[24]
Angle B, Burton BK. Risk of sudden death and acute life-threatening events in patients with glutaric acidemia type II. Mol Genet Metab 2008; 93(1): 36-9.
[25]
Pontoizeau C, Habarou F, Brassier A, et al. Hyperprolinemia in Type 2 Glutaric Aciduria and MADD-Like Profiles. JIMD Rep 2016; 27: 39-45.
[26]
Schiff M, Froissart R, Olsen RK, Acquaviva C, Vianey-Saban C. Electron transfer flavoprotein deficiency: functional and molecular aspects. Mol Genet Metab 2006; 88(2): 153-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy