[1]
Li, M.H.; Chen, S.W.; Li, Y.D.; Chen, Y.C.; Cheng, Y.S.; Hu, D.J.; Tan, H.Q.; Wu, Q.; Wang, W.; Sun, Z.K.; Wei, X.E.; Zhang, J.Y.; Qiao, R.H.; Zong, W.H.; Zhang, Y.; Lou, W.; Chen, Z.Y.; Zhu, Y.; Peng, D.R.; Ding, S.X.; Xu, X.F.; Hou, X.H.; Jia, W.P. Prevalence of unruptured cerebral aneurysms in Chinese adults aged 35 to 75 years: A cross-sectional study. Ann. Intern. Med., 2013, 159(8), 514-521.
[2]
Li, J.; Shen, B.; Ma, C.; Liu, L.; Ren, L.; Fang, Y.; Dai, D.; Chen, S.; Lu, J. 3D contrast enhancement-MR angiography for imaging of unruptured cerebral aneurysms: a hospital-based prevalence study. PLoS One, 2014, 9(12), e114157.
[3]
(a) Morita, A.; Kirino, T.; Hashi, K.; Aoki, N.; Fukuhara, S.; Hashimoto, N.; Nakayama, T.; Sakai, M.; Teramoto, A.; Tominari, S.; Yoshimoto, T. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N. Engl. J. Med., 2012, 366(26), 2474-2482.
(b) Winn, H.R.; Britz, G.W. Unruptured aneurysms. J. Neurosurg., 2006, 104(2), 179-180.
(c) Vlak, M.H.; Algra, A.; Brandenburg, R.; Rinkel, G.J. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. Lancet Neurol., 2011, 10(7), 626-636.
[4]
Keedy, A. An overview of intracranial aneurysms. McGill J. Med., 2006, 9(2), 141-146.
[5]
van Gijn, J.; Kerr, R.S.; Rinkel, G.J. Subarachnoid haemorrhage. Lancet, 2007, 369(9558), 306-318.
[6]
(a) Schievink, W.I. Intracranial aneurysms. N. Engl. J. Med., 1997, 336(1), 28-40.
(b) Chalouhi, N.; Chitale, R.; Jabbour, P.; Tjoumakaris, S.; Dumont, A.S.; Rosenwasser, R.; Gonzalez, L.F. The case for family screening for intracranial aneurysms. Neurosurg. Focus, 2011, 31(6), E8.
(c) Kang, H.; Peng, T.; Qian, Z.; Li, Y.; Jiang, C.; Ji, W.; Wu, J.; Xu, W.; Wen, X.; Liu, A. Impact of hypertension and smoking on the rupture of intracranial aneurysms and their joint effect. Neurol. Neurochir. Pol., 2015, 49(2), 121-125.
[7]
Jamous, M.A.; Nagahiro, S.; Kitazato, K.T.; Tamura, T.; Kuwayama, K.; Satoh, K. Role of estrogen deficiency in the formation and progression of cerebral aneurysms. Part II: Experimental study of the effects of hormone replacement therapy in rats. J. Neurosurg., 2005, 103(6), 1052-1057.
[8]
Xu, Z.; Li, H.; Song, J.; Han, B.; Wang, Z.; Cao, Y.; Wang, S.; Zhao, J. Meta-analysis of microarray-based expression profiles to identify differentially expressed genes in intracranial aneurysms. World Neurosurg., 2017, 97, 661-668.e7.
[9]
Kleinloog, R.; De, M.N.; Verweij, B.H.; Post, J.A.; Gje, R.; Ruigrok, Y.M. Risk factors for intracranial aneurysm rupture: A systematic review. Neurosurgery, 2017, 82(4), 431-440.
[10]
Yoshimura, Y.; Murakami, Y.; Saitoh, M.; Yokoi, T.; Aoki, T.; Miura, K.; Ueshima, H.; Nozaki, K. Statin use and risk of cerebral aneurysm rupture: a hospital-based case-control study in Japan. J. Stroke Cerebrovasc. Dis., 2014, 23(2), 343-348.
[11]
(a) Flandry, R.E., Jr Inflammatory intracranial aneurysms. J. S. C. Med. Assoc., 1994, 90(1), 11-12.
(b) Tulamo, R.; Frosen, J.; Hernesniemi, J.; Niemela, M. Inflammatory changes in the aneurysm wall: A review. J. Neurointerv. Surg., 2010, 2(2), 120-130.
[12]
(a) Ingebrigtsen, T.; Morgan, M.K.; Faulder, K.; Ingebrigtsen, L.; Sparr, T.; Schirmer, H. Bifurcation geometry and the presence of cerebral artery aneurysms. J. Neurosurg., 2004, 101(1), 108.
(b) Lee, S.W.; Antiga, L.; Spence, J.D.; Steinman, D.A. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke, 2008, 39(8), 2341-2347.
[13]
Wermer, M.J.; van der Schaaf, I.C.; Algra, A.; Rinkel, G.J. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: An updated meta-analysis. Stroke, 2007, 38(4), 1404-1410.
[14]
(a) Nixon, A.M.; Gunel, M.; Sumpio, B.E. The critical role of hemodynamics in the development of cerebral vascular disease. J. Neurosurg., 2010, 112(6), 1240.
(b) Alnaes, M.S.; Isaksen, J.; Mardal, K.A.; Romner, B.; Morgan, M.K.; Ingebrigtsen, T. Computation of hemodynamics in the circle of Willis. Stroke, 2007, 38(9), 2500-2505.
[15]
Prado, C.M.; Ramos, S.G.; Alves-Filho, J.C.; Jr, J.E.; Cunha, F.Q.; Rossi, M.A. PO9-253 wall shear stress and stretch differentially affect aorta remodeling in rats. J. Hypertens., 2006, 24(3), 503-515.
[16]
Dardik, A.; Chen, L.; Frattini, J.; Asada, H.; Aziz, F.; Kudo, F.A.; Sumpio, B.E. Differential effects of orbital and laminar shear stress on endothelial cells. J. Vasc. Surg., 2005, 41(5), 869-880.
[17]
Canham, P.B.; Finlay, H.M. Morphometry of medial gaps of human brain artery branches. Stroke, 2004, 35(5), 1153.
[18]
Wang, Z.; Kolega, J.; Hoi, Y.; Gao, L.; Swartz, D.D.; Levy, E.I.; Mocco, J.; Meng, H. Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery, 2009, 65(1), 169.
[19]
Boussel, L.; Rayz, V.; McCulloch, C.; Martin, A.; Acevedo-Bolton, G.; Lawton, M.; Higashida, R.; Smith, W.S.; Young, W.L.; Saloner, D. Aneurysm growth occurs at region of low wall shear stress: Patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke, 2008, 39(11), 2997-3002.
[20]
Frösen, J.; Piippo, A.; Paetau, A.; Kangasniemi, M.; Niemelä, M.; Hernesniemi, J.; Jääskeläinen, J. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture histological analysis of 24 unruptured and 42 ruptured cases. Stroke, 2004, 35(10), 2287-2293.
[21]
Raghavan, M.L.; Ma, B.; Harbaugh, R.E. Quantified aneurysm shape and rupture risk. J. Neurosurg., 2005, 102(2), 355.
[22]
(a) Humphrey, J.D.; Taylor, C.A. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng., 2008, 10(10), 221-246.
(b) Hassan, T.; Timofeev, E.V.; Saito, T.; Shimizu, H.; Ezura, M.; Matsumoto, Y.; Takayama, K.; Tominaga, T.; Takahashi, A. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: Computational flow dynamics analysis of the risk factors for lesion rupture. J. Neurosurg., 2005, 103(4), 662-680.
[23]
Morimoto, M.; Miyamoto, S.; Mizoguchi, A.; Kume, N.; Kita, T.; Hashimoto, N. Mouse model of cerebral aneurysm experimental induction by renal hypertension and local hemodynamic changes. Stroke, 2002, 33(7), 1911-1915.
[24]
Moriwaki, T.; Takagi, Y.; Sadamasa, N.; Aoki, T.; Nozaki, K.; Hashimoto, N. Impaired progression of cerebral aneurysms in interleukin-1beta-deficient mice. Stroke, 2006, 37(3), 900-905.
[25]
(a) Aoki, T.; Moriwaki, T.; Takagi, Y.; Kataoka, H.; Yang, J.; Nozaki, K.; Hashimoto, N. The efficacy of apolipoprotein E deficiency in cerebral aneurysm formation. Int. J. Mol. Med., 2008, 21(4), 453-459.
(b) Aoki, T.; Nishimura, M.; Kataoka, H.; Ishibashi, R.; Nozaki, K.; Hashimoto, N. Reactive oxygen species modulate growth of cerebral aneurysms: a study using the free radical scavenger edaravone and p47phox(-/-) mice. Lab. Invest., 2009, 89(7), 730-741.
[26]
(a) Chalouhi, N.; Points, L.; Pierce, G.L.; Ballas, Z.; Jabbour, P.; Hasan, D. Localized increase of chemokines in the lumen of human cerebral aneurysms. Stroke, 2013, 44(9), 2594-2597.
(b) Aoki, T.; Koseki, H.; Miyata, H.; Abekura, Y.; Shimizu, K. Intracranial aneurysm as an inflammation-related disease. No Shinkei Geka, 2018, 46(4), 275-294.
[27]
Fennell, V.S.; Kalani, M.Y.; Atwal, G.; Martirosyan, N.L.; Spetzler, R.F. Biology of saccular cerebral aneurysms: A review of current understanding and future directions. Front. Surg., 2016, 3, 43.
[28]
(a) Pawlowska, E.; Szczepanska, J.; Wisniewski, K.; Tokarz, P.; Jaskólski, D.J.; Blasiak, J. NF-κB-mediated inflammation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Does autophagy play a role? Int. J. Mol. Sci., 2018, 19(4), pii: E1245.
(b) Sawyer, D.M.; Pace, L.A.; Pascale, C.L.; Kutchin, A.C.; O’Neill, B.E.; Starke, R.M.; Dumont, A.S. Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. J. Neuroinflammation, 2016, 13(1), 185.
(c) Aoki, T.; Fukuda, M.; Nishimura, M.; Nozaki, K.; Narumiya, S. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation. Acta Neuropathol. Commun., 2014, 2, 34.
[29]
Shi, C.; Awad, I.A.; Jafari, N.; Lin, S.; Du, P.; Hage, Z.A.; Shenkar, R.; Getch, C.C.; Bredel, M.; Batjer, H.H.; Bendok, B.R. Genomics of human intracranial aneurysm wall. Stroke, 2009, 40(4), 1252.
[30]
Kleinloog, R.; Verweij, B.H.; van der Vlies, P.; Deelen, P.; Swertz, M.A.; de Muynck, L.; Van Damme, P.; Giuliani, F.; Regli, L.; van der Zwan, A.; Berkelbach van der Sprenkel, J.W.; Han, K.S.; Gosselaar, P.; van Rijen, P.C.; Korkmaz, E.; Post, J.A.; Rinkel, G.J.; Veldink, J.H.; Ruigrok, Y.M. RNA sequencing analysis of intracranial aneurysm walls reveals involvement of lysosomes and immunoglobulins in rupture. Stroke, 2017, 47(5), 1286.
[31]
Pera, J.; Korostynski, M.; Krzyszkowski, T.; Czopek, J.; Slowik, A.; Dziedzic, T.; Piechota, M.; Stachura, K.; Moskala, M.; Przewlocki, R.; Szczudlik, A. Gene expression profiles in human ruptured and unruptured intracranial aneurysms: What is the role of inflammation? Stroke, 2010, 41(2), 224-231.
[32]
Gimbrone, M.A. Jr. Endothelial dysfunction, hemodynamic forces, and atherosclerosis. Ann. N. Y. Acad. Sci., 2010, 902(1), 230-240.
[33]
Metaxa, E.; Meng, H.; Kaluvala, S.R.; Szymanski, M.P.; Paluch, R.A.; Kolega, J. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(2), H736.
[34]
Jamous, M.A.; Nagahiro, S.; Kitazato, K.T.; Tamura, T.; Aziz, H.A.; Shono, M.; Satoh, K. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: Experimental study in rats. J. Neurosurg., 2007, 107(2), 405-411.
[35]
Fan, X.J.; Zhao, H.D.; Yu, G.; Zhong, X.L.; Yao, H.; Yang, Q.D. Role of inflammatory responses in the pathogenesis of human cerebral aneurysm. Genet. Mol. Res., 2015, 14(3), 9062-9070.
[36]
(a) Abruzzo, T.; Kendler, A.; Apkarian, R.; Workman, M.; Khoury, J.C.; Cloft, H.J. Cerebral aneurysm formation in nitric oxide synthase-3 knockout mice. Curr. Neurovasc. Res., 2007, 4(3), 161-169.
(b) Aoki, T.; Kataoka, H.; Shimamura, M.; Nakagami, H.; Wakayama, K.; Moriwaki, T.; Ishibashi, R.; Nozaki, K.; Morishita, R.; Hashimoto, N. NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation, 2007, 116(24), 2830-2840.
[37]
Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol., 1996, 271(5 Pt 1), C1424-C1437.
[38]
Nathan, C.; Xie, Q.W. Nitric oxide synthases: Roles, tolls, and controls. Cell, 1994, 78(6), 915-918.
[39]
Koide, M.; Kawahara, Y.; Tsuda, T.; Nakayama, I.; Yokoyama, M. Expression of nitric oxide synthase by cytokines in vascular smooth muscle cells. Hypertension, 1994, 23(1)(Suppl.), 45-48.
[40]
Atochin, D.N.; Huang, P.L. Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Pflugers Arch., 2010, 460(6), 965-974.
[41]
Arnal, J.F.; Dinh-Xuan, A.T.; Pueyo, M.; Darblade, B.; Rami, J. Endothelium-derived nitric oxide and vascular physiology and pathology. Cell. Mol. Life Sci., 1999, 55(8-9), 1078-1087.
[42]
Balligand, J.L.; Feron, O.; Dessy, C. eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol. Rev., 2009, 89(2), 481.
[43]
Huang, P.L. Unraveling the links between diabetes, obesity, and cardiovascular disease. Circ. Res., 2005, 96(11), 1129-1131.
[44]
Kuhlencordt, P.J.; Gyurko, R.; Han, F.; Scherrer-Crosbie, M.; Aretz, T.H.; Hajjar, R.; Picard, M.H.; Huang, P.L. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation, 2001, 104(4), 448-454.
[45]
Aoki, T.; Nishimura, M.; Kataoka, H.; Ishibashi, R.; Nozaki, K.; Miyamoto, S. Complementary inhibition of cerebral aneurysm formation by eNOS and nNOS. Lab. Invest., 2011, 91(4), 619-626.
[46]
Sadamasa, N.; Nozaki, K.; Hashimoto, N. Disruption of gene for inducible nitric oxide synthase reduces progression of cerebral aneurysms. Stroke, 2003, 34(12), 2980.
[47]
Villalobo, A. Nitric oxide and cell proliferation. FEBS J., 2010, 273(11), 2329-2344.
[48]
MJ. K.; JA, F. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol., 1994, 266(1), 628-636.
[49]
Harrison, D.G.; Widder, J.; Grumbach, I.; Chen, W.; Weber, M.; Searles, C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J. Intern. Med., 2010, 259(4), 351-363.
[50]
Hayden, M.S.; Ghosh, S. Signaling to NF-κB. Genes Dev., 2004, 18(18), 2195-2224.
[51]
Ghosh, S.; Dass, J.F.P. Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene, 2016, 584(1), 97-109.
[52]
Aoki, T.; Frosen, J.; Fukuda, M.; Bando, K.; Shioi, G.; Tsuji, K.; Ollikainen, E.; Nozaki, K.; Laakkonen, J.; Narumiya, S. Prostaglandin E2-EP2-NF-kappaB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci. Signal., 2017, 10(465), pii: eaah6037.
[53]
Perkins, N.D. Perkins NDThe diverse and complex roles of NF-kappaB subunits in cancer. Nat. Rev. Cancer, 2012, 12(2), 121-132.
[54]
De Meyer, G.R.; Grootaert, M.O.; Michiels, C.F.; Kurdi, A.; Schrijvers, D.M.; Martinet, W. Autophagy in vascular disease. Circ. Res., 2015, 116(3), 468-479.
[55]
Hosaka, K.; Hoh, B.L. Inflammation and cerebral aneurysms. Transl. Stroke Res., 2014, 5(2), 190-198.
[56]
Aoki, T.; Nishimura, M.; Kataoka, H.; Ishibashi, R.; Nozaki, K.; Hashimoto, N. Reactive oxygen species modulate growth of cerebral aneurysms: A study using the free radical scavenger edaravone and p47phox(-/-) mice. Lab. Invest., 2009, 89(7), 730-741.
[57]
Kanematsu, Y.; Kanematsu, M.; Kurihara, C.; Tada, Y.; Tsou, T.L.; Rooijen, N.V.; Lawton, M.T.; Young, W.L.; Liang, E.I.; Nuki, Y. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke, 2011, 42(1), 173.
[58]
Bhullar, I.S.; Li, Y.S.; Miao, H.; Zandi, E.; Kim, M.; Shyy, J.Y.; Chien, S. Fluid shear stress activation of IkappaB kinase is integrin-dependent. J. Biol. Chem., 1998, 273(46), 30544-30549.
[59]
Aoki, T.; Kataoka, H.; Ishibashi, R.; Nozaki, K.; Egashira, K.; Hashimoto, N. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke, 2009, 40(3), 942-951.
[60]
Moore, K.J.; Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell, 2011, 145(3), 341-355.
[61]
Aoki, T.; Kataoka, H.; Morimoto, M.; Nozaki, K.; Hashimoto, N. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke, 2007, 38(1), 162-169.
[62]
Raffetto, J.D.; Khalil, R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol., 2008, 75(2), 346-359.
[63]
Hasan, D.; Chalouhi, N.; Jabbour, P.; Hashimoto, T. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: Preliminary results. J. Neuroinflammation, 2012, 9(1), 222.
[64]
Libby, P.; Tabas, I.; Fredman, G.; Fisher, E.A. Inflammation and its resolution as determinants of acute coronary syndromes. Circ. Res., 2014, 114(12), 1867.
[65]
Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006, 69(3), 562-573.
[66]
Song, J.; Wu, C.; Zhang, X.; Sorokin, L.M. In vivo processing of CXCL5 (LIX) by matrix metalloproteinase (MMP)-2 and MMP-9 promotes early neutrophil recruitment in IL-1β-induced peritonitis. J. Immunol., 2013, 190(1), 401-410.
[67]
(a) Woo, C.H.; Lim, J.H.; Kim, J.H. Lipopolysaccharide induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells. J. Immunol., 2004, 173(11), 6973-6980.
(b) Green, J.A.; Dholakia, S.; Janczar, K.; Ong, C.W.; Moores, R.; Fry, J.; Elkington, P.T.; Roncaroli, F.; Friedland, J.S. Mycobacterium tuberculosis-infected human monocytes down-regulate microglial MMP-2 secretion in CNS tuberculosis via TNFα, NFκB, p38 and caspase 8 dependent pathways. J. Neuroinflammation, 2011, 8(1), 46.
[68]
Chen, Q.; Moulder, K.; Tenkova, T.; Hardy, K.; Olney, J.W.; Romano, C. Excitotoxic cell death dependent on inhibitory receptor activation. Exp. Neurol., 1999, 160(1), 215-225.
[69]
Gurney, K.J.; Estrada, E.Y.; Rosenberg, G.A. Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol. Dis., 2006, 23(1), 87-96.
[70]
Perrotta, I.; Sciangula, A.; Aquila, S.; Mazzulla, S. Matrix metalloproteinase-9 expression in calcified human aortic valves: A histopathologic, immunohistochemical, and ultrastructural study. Appl. Immunohistochem. Mol. Morphol., 2016, 24(2), 128-137.
[71]
Nuki, Y.; Tsou, T.L.; Kurihara, C.; Kanematsu, M.; Kanematsu, Y.; Hashimoto, T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension, 2009, 54(6), 1337-1344.
[72]
Xiong, W.; Knispel, R.A.; Dietz, H.C.; Ramirez, F.; Baxter, B.T. Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J. Vasc. Surg., 2008, 47(1), 166-172.
[73]
Aoki, T.; Kataoka, H.; Ishibashi, R.; Nozaki, K.; Hashimoto, N. Simvastatin suppresses the progression of experimentally induced cerebral aneurysms in rats. Stroke, 2008, 39(4), 1276-1285.
[74]
Owens, G.K. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found. Symp., 2007, 283, 174.
[75]
Nakajima, N.; Nagahiro, S.; Sano, T.; Satomi, J.; Satoh, K. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls. Acta Neuropathol., 2000, 100(5), 475-480.
[76]
Chalouhi, N.; Ali, M.S.; Jabbour, P.M.; Tjoumakaris, S.I.; Gonzalez, L.F.; Rosenwasser, R.H.; Koch, W.J.; Dumont, A.S. Biology of intracranial aneurysms: role of inflammation. J. Cereb. Blood Flow Metab., 2012, 32(9), 1659-1676.
[77]
Frösen, J.; Marjamaa, J.; Myllärniemi, M.; Aboramadan, U.; Tulamo, R.; Niemelä, M.; Hernesniemi, J.; Jääskeläinen, J. Contribution of mural and bone marrow-derived neointimal cells to thrombus organization and wall remodeling in a microsurgical murine saccular aneurysm model. Neurosurgery, 2006, 58(5), 936-944.
[78]
Kilic, T.; Sohrabifar, M.; Kurtkaya, O.; Yildirim, O.; Elmaci, I.; Günel, M.; Pamir, M.N. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls. Neurosurgery, 2005, 57(5), 997-1007.
[79]
Mérei, F.T.; Gallyas, F. Role of the structural elements of the arterial wall in the formation and growth of intracranial saccular aneurysms. Neurol. Res., 1993, 2(1), 283-303.
[80]
Ali, M.S.; Starke, R.M.; Jabbour, P.M.; Tjoumakaris, S.I.; Gonzalez, L.F.; Rosenwasser, R.H.; Owens, G.K.; Koch, W.J.; Greig, N.H.; Dumont, A.S. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: Implications for cerebral aneurysm pathology. J. Cereb. Blood Flow Metab., 2013, 33(10), 1564-1573.
[81]
Ali, M.S.; Starke, R.M.; Jabbour, P.; Tjoumakaris, S.I.; Gonzalez, L.F.; Rosenwasser, R.H.; Dumont, A.S. 184 infliximab suppresses TNF-[alpha] induced inflammatory phenotype in cerebral vascular smooth muscle cells: Implications for cerebral aneurysm formation. Neurosurgery, 2013, 60, 181.
[82]
Wajant, H.; Pfizenmaier, K.; Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ., 2003, 10(1), 45-65.
[83]
Narayan, N.; Lee, I.H.; Borenstein, R.; Sun, J.; Wong, R.; Tong, G.; Fergusson, M.M.; Liu, J.; Rovira, I.I.; Cheng, H.L. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature, 2014, 506(7489), 516.
[84]
Maddahi, A.; Kruse, L.S.; Chen, Q.W.; Edvinsson, L. The role of tumor necrosis factor-α and TNF-α receptors in cerebral arteries following cerebral ischemia in rat. J. Neuroinflammation, 2011, 8(1), 1-13.
[85]
Fontanella, M.; Rainero, I.; Gallone, S.; Rubino, E.; Fenoglio, P.; Valfrè, W.; Garbossa, D.; Carlino, C.; Ducati, A.; Pinessi, L. Tumor necrosis factor-alpha gene and cerebral aneurysms. Neurosurgery, 2007, 60(4), 668.
[86]
Jayaraman, T.; Berenstein, V.; Li, X.; Mayer, J.; Silane, M.; Shin, Y.S.; Niimi, Y.; Kilic, T.; Gunel, M.; Berenstein, A. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery, 2005, 57(3), 558-564.
[87]
(a) Liu, Y.; Li, P.; Hu, X.; Hu, Y.; Sun, H.G.; Ma, W.C.; Qiao, F.; He, M.; You, C. Angiotensin-converting enzyme insertion/deletion gene polymorphism and risk of intracranial aneurysm in a Chinese population. J. Int. Med. Res., 2013, 41(4), 1079-1087.
(b) Cui, H.K.; Yan, R.F.; Ding, X.L.; Zhao, P.; Wu, Q.W.; Wang, H.P.; Qin, H.X.; Tu, J.F.; Yang, R.M. Platelet-derived growth factor-β expression in rabbit models of cerebral vasospasm following subarachnoid hemorrhage. Mol. Med. Rep., 2014, 10(3), 1416.
(c) Ruigrok, Y.M.; Baas, A.F.; Medic, J.; Wijmenga, C.; Rinkel, G.J.E. The transforming growth factor‐β receptor genes and the risk of intracranial aneurysms. Int. J. Stroke, 2012, 7(8), 645-648.
(d) Ollikainen, E.; Tulamo, R.; Lehti, S.; Hernesniemi, J.; Niemelä, M.; Kovanen, P.T.; Frösen, J. Myeloperoxidase associates with degenerative remodeling and rupture of the saccular intracranial aneurysm wall. Eur. J. Clin. Invest., 2018, 77(6), 461-468.
[88]
Wang, Y.; Emeto, T.I.; Lee, J.; Marshman, L.; Moran, C.; Seto, S.W.; Golledge, J. Mouse models of intracranial aneurysm. Brain Pathol., 2015, 25(3), 237-247.
[89]
Nasri, A.; Mansour, M.; Brahem, Z.; Kacem, A.; Hassan, A.A.; Derbali, H.; Messelmani, M.; Zaouali, J.; Mrissa, R. Stroke disclosing primary aldosteronism: Report on three cases and review of the literature. Annales Dendocrinologie, 2017, 78(1), 9-13.
[90]
Cun, Y.P.; Xiong, C.J.; Diao, B.; Yang, Y.; Pan, L.; Ma, L.T. Association between angiotensin-converting enzyme insertion/deletion polymorphisms and intracranial aneurysm susceptibility: A meta-analysis. Biomed. Rep., 2017, 6(6), 663-670.
[91]
Pannu, H.; Kim, D.H.; Seaman, C.R.; Van, G.G.; Shete, S.; Milewicz, D.M. Lack of an association between the angiotensin-converting enzyme insertion/deletion polymorphism and intracranial aneurysms in a Caucasian population in the United States. J. Neurosurg., 2005, 103(1), 92.
[92]
Kao, H.W.; Lee, K.W.; Kuo, C.L.; Huang, C.S.; Tseng, W.M.; Liu, C.S.; Lin, C.P. Interleukin-6 as a Prognostic biomarker in ruptured intracranial aneurysms. PLoS One, 2015, 10(7), e0132115.
[93]
Zheng, S.; Su, A.; Sun, H.; You, C. The association between interleukin-6 gene polymorphisms and intracranial aneurysms: A meta-analysis. Hum. Immunol., 2013, 74(12), 1679-1683.
[94]
Liu, B.; Zhang, J.N.; Pu, P.Y. Expressions of PDGF-B and collagen type III in the remodeling of experimental saccular aneurysm in rats. Neurol. Res., 2008, 30(6), 632-638.
[95]
Sathyan, S.; Koshy, L.V.; Srinivas, L.; Easwer, H.V.; Premkumar, S.; Nair, S.; Bhattacharya, R.N.; Alapatt, J.P.; Banerjee, M. Erratum to: Pathogenesis of intracranial aneurysm is mediated by proinflammatory cytokine TNFA and IFNG and through stochastic regulation of IL10 and TGFB1 by comorbid factors. J. Neuroinflammation, 2015, 12(1), 135.
[96]
Kosierkiewicz, T.A.; Factor, S.M.; Dickson, D.W. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J. Neuropathol. Exp. Neurol., 1994, 53(4), 399-406.
[97]
Chyatte, D.; Bruno, G.; Desai, S.; Todor, D.R. Inflammation and intracranial aneurysms. Neurosurgery, 1999, 45(5), 1137.
[98]
Lintermans, L.L.; Stegeman, C.A.; Heeringa, P.; Abdulahad, W.H. T cells in vascular inflammatory diseases. Front. Immunol., 2014, 5, 504.
[99]
Frösen, J.; Tulamo, R.; Heikura, T.; Sammalkorpi, S.; Niemelä, M.; Hernesniemi, J.; Levonen, A.; Hörkkö, S. YläHerttuala, S. Lipid accumulation, lipid oxidation, and low plasma levels of acquired antibodies against oxidized lipids associate with degeneration and rupture of the intracranial aneurysm wall. Acta Neuropathol. Commun., 2013, 1(1), 71.
[100]
Yu, Z.; Jiang, Y.; Yong, P.; Zhang, M. The quantitative and functional changes of postoperative peripheral blood immune cell subsets relate to prognosis of patients with subarachnoid hemorrhage: A preliminary study. World Neurosurg., 2017, 108, 206-215.
[101]
Aoki, T.; Nishimura, M. The development and the use of experimental animal models to study the underlying mechanisms of CA formation. J. Biomed. Biotechnol., 2011, 2011, 257-260.
[102]
(a) Tulamo, R.; Frosen, J.; Junnikkala, S.; Paetau, A.; Pitkaniemi, J.; Kangasniemi, M.; Niemela, M.; Jaaskelainen, J.; Jokitalo, E.; Karatas, A.; Hernesniemi, J.; Meri, S. Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery, 2006, 59(5), 1069-1076 discussion 1076-1077;-.
(b) Tulamo, R.; Frösen, J.; Junnikkala, S.; Paetau, A.; Kangasniemi, M.; Peláez, J.; Hernesniemi, J.; Niemelä, M.; Meri, S. Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab. Invest., 2010, 90(2), 168.