Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Exploration of Fungal Lipase as Direct Target of Eugenol through Spectroscopic Techniques

Author(s): Farheen Naz, Haider Anis, Ziaul Hasan, Asimul Islam and Luqman A. Khan*

Volume 26, Issue 12, 2019

Page: [919 - 929] Pages: 11

DOI: 10.2174/0929866526666190506113455

Price: $65

Abstract

Background: Fungal lipase dependent processes are important for their pathogenicity. Lipases can therefore be explored as direct target of promising herbal antifungals.

Objective: We explored Aspergillus niger lipase as a direct target of eugenol through spectroscopic techniques and compare results with Bovine Serum Albumin and lysozyme to comment on selectivity of eugenol towards lipase.

Methods: In vitro activity assays of lipase are used to determine concentration ranges. UV-Visible, Fluorescence and Circular dichroism spectroscopy were employed to determine binding constant, stoichiometric binding sites and structural changes in Lipase, BSA and lysozyme following incubation with varying concentrations of eugenol.

Results: In activity assays 50% inhibition of lipase was obtained at 0.913 mmoles/litre eugenol. UV-vis spectroscopy shows formation of lipase-eugenol, Bovine Serum Albumin-eugenol and lysozyme-eugenol complex well below this concentration of eugenol. Eugenol binding caused blue shift with Bovine Serum Albumin and lysozyme suggestive of compaction, and red shift with lipase. Negative ellipticity decreased with lipase but increased with Bovine Serum Albumineugenol and lysozyme-eugenol complexes suggesting loss of helical structure for lipase and compaction for Bovine Serum Albumin and lysozyme. Binding of eugenol to lipase was strong (Ka= 4.7 x 106 M-1) as compared to Bovine Serum Albumin and lysozyme. The number of stoichiometric eugenol binding sites on lipase was found to be 2 as compared to 1.37 (Bovine Serum Albumin) and 0.32 (lysozyme). Docking results also suggest strong binding of eugenol with lipase followed by Bovine Serum Albumin and lysozyme.

Conclusion: Eugenol is found to be effective inhibitor and disruptor of secondary and tertiary structure of lipase, whereas its binding to Bovine Serum Albumin and lysozyme is found to be weak and less disruptive of structures suggesting selectivity of eugenol towards lipase.

Keywords: Eugenol, Aspergillus niger lipase, bovine serum albumin, lysozyme, molecular docking, inhibitor.

Graphical Abstract

[1]
Wasko, P.; Luchowski, R.; Tutaj, K.; Grudzinski, W.; Adamkiewicz, P.; Gruszecki, W.I. Toward understanding of toxic side effects of a polyene antibiotic amphotericin B: fluorescence spectroscopy reveals widespread formation of the specific supramolecular structures of the drug. Mol. Pharm., 2012, 9(5), 1511-1520.
[http://dx.doi.org/10.1021/mp300143n] [PMID: 22506900]
[2]
Hsuchen, C-C.; Feingold, D.S. Selective membrane toxicity of the polyene antibiotics: studies on lecithin membrane models (liposomes). Antimicrob. Agents Chemother., 1973, 4(3), 309-315.
[http://dx.doi.org/10.1128/AAC.4.3.309] [PMID: 4758835]
[3]
Ostroumova, O.S.; Efimova, S.S.; Malev, V.V. Chapter Six - Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning. Int. Rev. Cell Mol. Biol., 2015, 315, 245-297.
[http://dx.doi.org/10.1016/bs.ircmb.2014.12.001] [PMID: 25708465]
[4]
Kanafani, Z.A.; Perfect, J.R. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis., 2008, 46(1), 120-128.
[http://dx.doi.org/10.1086/524071] [PMID: 18171227]
[5]
O’Shaughnessy, E.M.; Lyman, C.A.; Walsh, T.J. Amphotericin B: polyene resistance mechanisms. In: Antimicrobial Drug Resistance. Infectious Disease; Mayers, D.L., Ed.; Humana Press: Newyork, USA, 2009, pp. 295-305.
[http://dx.doi.org/10.1007/978-1-59745-180-2_25]
[6]
Prasad, R.; Kapoor, K. Multidrug resistance in yeast candida. Int. Rev. Cytol., 2004, 242, 215-248.
[http://dx.doi.org/10.1016/S0074-7696(04)42005-1] [PMID: 15598470]
[7]
Cleary, J.D.; Stover, K.R.; Farley, J.; Daley, W.; Kyle, P.B.; Hosler, J. Cardiac Toxicity of Azole Antifungals. Pharmacol. Pharm., 2013, 4(3), 362-368.
[http://dx.doi.org/10.4236/pp.2013.43052]
[8]
van Schie, R.M.; Brüggemann, R.J.M.; Hoogerbrugge, P.M.; te Loo, D.M.W.M. Effect of azole antifungal therapy on vincristine toxicity in childhood acute lymphoblastic leukaemia. J. Antimicrob. Chemother., 2011, 66(8), 1853-1856.
[http://dx.doi.org/10.1093/jac/dkr223] [PMID: 21652620]
[9]
Verweij, P.E.; Chowdhary, A.; Melchers, W.J.G.; Meis, J.F. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal Azoles? Clin. Infect. Dis., 2016, 62(3), 362-368.
[http://dx.doi.org/10.1093/cid/civ885] [PMID: 26486705]
[10]
Toraason, M.; Luken, M.E.; Breitenstein, M.; Krueger, J.A.; Biagini, R.E. Comparative toxicity of allylamine and acrolein in cultured myocytes and fibroblasts from neonatal rat heart. Toxicology, 1989, 56(1), 107-117.
[http://dx.doi.org/10.1016/0300-483X(89)90216-3] [PMID: 2728003]
[11]
Stover, K.R.; Farley, J.M.; Kyle, P.B.; Cleary, J.D. Cardiac toxicity of some echinocandin antifungals. Expert Opin. Drug Saf., 2014, 13(1), 5-14.
[http://dx.doi.org/10.1517/14740338.2013.829036] [PMID: 24047086]
[12]
Perlin, D. S. Echinocandin resistance in candida. Clin. Infect. Dis., 2015, 61(suppl_6), S612-S617.
[http://dx.doi.org/10.1093/cid/civ791]
[13]
Balkis, M.M.; Leidich, S.D.; Mukherjee, P.K.; Ghannoum, M.A. Mechanisms of fungal resistance: an overview. Drugs, 2002, 62(7), 1025-1040.
[http://dx.doi.org/10.2165/00003495-200262070-00004] [PMID: 11985489]
[14]
Oliveira, F.Q.; Gobira, B.; Guimarães, C.; Batista, J.; Barreto, M.; Souza, M. Espécies vegetais indicadas na odontologia. Rev. Bras. Farmacogn., 2007, 17, 466-476.
[http://dx.doi.org/10.1590/S0102-695X2007000300022]
[15]
Magalhães, C.B.; Riva, D.R.; DePaula, L.J.; Brando-Lima, A.; Koatz, V.L.; Leal-Cardoso, J.H.; Zin, W.A.; Faffe, D.S. In vivo anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury. J. Appl. Physiol., 2010, 108(4), 845-851.
[http://dx.doi.org/10.1152/japplphysiol.00560.2009] [PMID: 20075264]
[16]
Suanarunsawat, T.; Devakul Na Ayutthaya, W.; Songsak, T.; Thirawarapan, S.; Poungshompoo, S. antioxidant activity and lipid-lowering effect of essential oils extracted from Ocimum sanctum L. leaves in rats fed with a high cholesterol diet. J. Clin. Biochem. Nutr., 2010, 46(1), 52-59.
[http://dx.doi.org/10.3164/jcbn.09-52] [PMID: 20104265]
[17]
Pal, D.; Banerjee, S.; Mukherjee, S.; Roy, A.; Panda, C.K.; Das, S. Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. J. Dermatol. Sci., 2010, 59(1), 31-39.
[http://dx.doi.org/10.1016/j.jdermsci.2010.04.013] [PMID: 20537511]
[18]
Lee, S.J.; Han, J.I.; Lee, G.S.; Park, M.J.; Choi, I.G.; Na, K.J.; Jeung, E.B. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol. Pharm. Bull., 2007, 30(1), 184-188.
[http://dx.doi.org/10.1248/bpb.30.184] [PMID: 17202684]
[19]
Kumar, A.; Shukla, R.; Singh, P.; Dubey, N.K. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol., 2010, 48(2), 539-543.
[http://dx.doi.org/10.1016/j.fct.2009.11.028] [PMID: 19909781]
[20]
Chami, N.; Bennis, S.; Chami, F.; Aboussekhra, A.; Remmal, A. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol. Immunol., 2005, 20(2), 106-111.
[http://dx.doi.org/10.1111/j.1399-302X.2004.00202.x] [PMID: 15720571]
[21]
He, M.; Du, M.; Fan, M.; Bian, Z. In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia, 2007, 163(3), 137-143.
[http://dx.doi.org/10.1007/s11046-007-0097-2] [PMID: 17356790]
[22]
Ahmad, A.; Khan, A.; Manzoor, N.; Khan, L.A. Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb. Pathog., 2010, 48(1), 35-41.
[http://dx.doi.org/10.1016/j.micpath.2009.10.001] [PMID: 19835945]
[23]
Ahmad, A.; Khan, A.; Khan, L.A.; Manzoor, N. In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J. Med. Microbiol., 2010, 59(Pt 10), 1178-1184.
[http://dx.doi.org/10.1099/jmm.0.020693-0] [PMID: 20634332]
[24]
Ahmad, A.; Khan, A.; Yousuf, S.; Khan, L.A.; Manzoor, N. Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia, 2010, 81(8), 1157-1162.
[http://dx.doi.org/10.1016/j.fitote.2010.07.020] [PMID: 20659536]
[25]
Hube, B.; Stehr, F.; Bossenz, M.; Mazur, A.; Kretschmar, M.; Schäfer, W. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch. Microbiol., 2000, 174(5), 362-374.
[http://dx.doi.org/10.1007/s002030000218] [PMID: 11131027]
[26]
Gácser, A.; Schäfer, W.; Nosanchuk, J.S.; Salomon, S.; Nosanchuk, J.D. Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet. Biol., 2007, 44(12), 1336-1341.
[http://dx.doi.org/10.1016/j.fgb.2007.02.002] [PMID: 17391997]
[27]
Kesavan, S.; Holland, K.T.; Ingham, E. The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. Med. Mycol., 2000, 38(3), 239-247.
[http://dx.doi.org/10.1080/mmy.38.3.239.247] [PMID: 10892993]
[28]
Toth, R.; Toth, A.; Vagvolgyi, C.; Gacser, A. Candida parapsilosis secreted lipase as an important virulence factor. Curr. Protein Pept. Sci., 2017, 18(10), 1043-1049.
[http://dx.doi.org/10.2174/1389203717666160813163054] [PMID: 27526931]
[29]
Raksha; Singh, G.; Urhekar, A.D. Virulence factors detection in Aspergillus isolates from clinical and environmental samples. J. Clin. Diagn. Res., 2017, 11(7), DC13-DC18.
[PMID: 28892890]
[30]
Mellon, J.E.; Cotty, P.J.; Dowd, M.K. Aspergillus flavus hydrolases: their roles in pathogenesis and substrate utilization. Appl. Microbiol. Biotechnol., 2007, 77(3), 497-504.
[http://dx.doi.org/10.1007/s00253-007-1201-8] [PMID: 17938911]
[31]
Housaindokht, M.; Chamani, J.; Saboury, A.; Moosavi-Movahedi, A.; Bahrololoom, M. Three binding sets analysis of alpha-Lactalbumin by interaction of tetradecyl trimethyl ammonium bromide. Bull. Korean Chem. Soc., 2001, 22(2), 145-148.
[32]
Moosavi-Movahedi, A.A.; Golchin, A.R.; Nazari, K.; Chamani, J.; Saboury, A.A.; Bathaie, S.Z.; Tangestani-Nejad, S. Microcalorimetry, energetics and binding studies of DNA–dimethyltin dichloride complexes. Thermochim. Acta, 2004, 414(2), 233-241.
[http://dx.doi.org/10.1016/j.tca.2004.01.007]
[33]
Zolfagharzadeh, M.; Pirouzi, M.; Asoodeh, A.; Saberi, M.R.; Chamani, J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J. Biomol. Struct. Dyn., 2014, 32(12), 1936-1952.
[http://dx.doi.org/10.1080/07391102.2013.843062] [PMID: 24125112]
[34]
Gupta, N.; Rathi, P.; Gupta, R. Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal. Biochem., 2002, 311(1), 98-99.
[http://dx.doi.org/10.1016/S0003-2697(02)00379-2] [PMID: 12441161]
[35]
Winkler, U.K.; Stuckmann, M. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol., 1979, 138(3), 663-670.
[PMID: 222724]
[36]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[37]
Pan, X.; Qin, P.; Liu, R.; Wang, J. Characterizing the Interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach. J. Agric. Food Chem., 2011, 59(12), 6650-6656.
[http://dx.doi.org/10.1021/jf200907x] [PMID: 21591756]
[38]
Bi, S.; Song, D.; Tian, Y.; Zhou, X.; Liu, Z.; Zhang, H. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(4), 629-636.
[http://dx.doi.org/10.1016/j.saa.2004.05.028] [PMID: 15649793]
[39]
Hu, Y-J.; Liu, Y.; Wang, J-B.; Xiao, X-H.; Qu, S-S. Study of the interaction between Monoammonium glycyrrhizinate and bovine serum albumin. J. Pharm. Biomed. Anal., 2004, 36(4), 915-919.
[http://dx.doi.org/10.1016/j.jpba.2004.08.021] [PMID: 15533690]
[40]
Yasmeen, S. Riyazuddeen, Thermodynamics and binding mechanism of polyphenon-60 with human lysozyme elucidated by calorimetric and spectroscopic techniques. J. Chem. Thermodyn., 2017, 110, 79-86.
[http://dx.doi.org/10.1016/j.jct.2017.02.013]
[41]
He, W.; Li, Y.; Xue, C.; Hu, Z.; Chen, X.; Sheng, F. Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg. Med. Chem., 2005, 13(5), 1837-1845.
[http://dx.doi.org/10.1016/j.bmc.2004.11.038] [PMID: 15698801]
[42]
Ishiwata, S.; Kamiya, M. Cyclodextrin inclusion effects on fluorescence and fluorimetric properties of the pesticide warfarin. Chemosphere, 1997, 34(4), 783-789.
[http://dx.doi.org/10.1016/S0045-6535(97)00006-4]
[43]
Chaitanya, P.K.; Prabhu, N.P. Stability and activity of porcine lipase against temperature and chemical denaturants. Appl. Biochem. Biotechnol., 2014, 174(8), 2711-2724.
[http://dx.doi.org/10.1007/s12010-014-1220-8] [PMID: 25224914]
[44]
Rajeshwara, A.N.; Gopalakrishna, K.N.; Prakash, V. Preferential interaction of denaturants with rice bran lipase. Int. J. Biol. Macromol., 1996, 19(1), 1-7.
[http://dx.doi.org/10.1016/0141-8130(96)01091-4] [PMID: 8782712]
[45]
Ramos, P.; Coste, T.; Piémont, E.; Lessinger, J.M.; Bousquet, J.A.; Chapus, C.; Kerfelec, B.; Férard, G.; Mély, Y. Time-resolved fluorescence allows selective monitoring of Trp30 environmental changes in the seven-Trp-containing human pancreatic lipase. Biochemistry, 2003, 42(43), 12488-12496.
[http://dx.doi.org/10.1021/bi034900e] [PMID: 14580194]
[46]
Zhang, J.; Xiong, D.; Chen, L.; Kang, Q.; Zeng, B. Interaction of pyrrolizine derivatives with bovine serum albumin by fluorescence and UV-Vis spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 132-138.
[http://dx.doi.org/10.1016/j.saa.2012.05.013] [PMID: 22659280]
[47]
Song, G.; Yan, Q.; He, Y. Studies on interaction of norfloxacin, Cu2+, and DNA by spectral methods. J. Fluoresc., 2005, 15(5), 673-678.
[http://dx.doi.org/10.1007/s10895-005-2974-8] [PMID: 16341784]
[48]
Dockal, M.; Chang, M.; Carter, D.C.; Rüker, F. Five recombinant fragments of human serum albumin-tools for the characterization of the warfarin binding site. Protein Sci., 2000, 9(8), 1455-1465.
[http://dx.doi.org/10.1110/ps.9.8.1455] [PMID: 10975567]
[49]
Varlan, A.; Hillebrand, M. Bovine and human serum albumin interactions with 3-carboxyphenoxathiin studied by fluorescence and circular dichroism spectroscopy. Molecules, 2010, 15(6), 3905-3919.
[http://dx.doi.org/10.3390/molecules15063905] [PMID: 20657416]
[50]
Flora, K.; Brennan, J.D.; Baker, G.A.; Doody, M.A.; Bright, F.V. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophys. J., 1998, 75(2), 1084-1096.
[http://dx.doi.org/10.1016/S0006-3495(98)77598-8] [PMID: 9675210]
[51]
Laurents, D.V.; Baldwin, R.L. Characterization of the unfolding pathway of hen egg white lysozyme. Biochemistry, 1997, 36(6), 1496-1504.
[http://dx.doi.org/10.1021/bi962198z] [PMID: 9063898]
[52]
Paul, B.K.; Guchhait, N. A spectral deciphering of the binding interaction of an intramolecular charge transfer fluorescence probe with a cationic protein: thermodynamic analysis of the binding phenomenon combined with blind docking study. Photochem. Photobiol. Sci., 2011, 10(6), 980-991.
[http://dx.doi.org/10.1039/c0pp00309c] [PMID: 21373684]
[53]
Santiago, P.S.; Carvalho, F.A.O.; Domingues, M.M.; Carvalho, J.W.P.; Santos, N.C.; Tabak, M. Isoelectric point determination for Glossoscolex paulistus extracellular hemoglobin: oligomeric stability in acidic pH and relevance to protein-surfactant interactions. Langmuir, 2010, 26(12), 9794-9801.
[http://dx.doi.org/10.1021/la100060p] [PMID: 20423061]
[54]
Rabbani, G.; Ahmad, E.; Zaidi, N.; Fatima, S.; Khan, R.H. pH-Induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys., 2012, 62(3), 487-499.
[http://dx.doi.org/10.1007/s12013-011-9335-9] [PMID: 22215307]
[55]
Liu, J.; Tian, J.; Tian, X.; Hu, Z.; Chen, X. Interaction of isofraxidin with human serum albumin. Bioorg. Med. Chem., 2004, 12(2), 469-474.
[http://dx.doi.org/10.1016/j.bmc.2003.10.030] [PMID: 14723965]
[56]
Samanta, N.; Mahanta, D.D.; Mitra, R.K. Collective hydration dynamics of guanidinium chloride solutions and its possible role in protein denaturation: a terahertz spectroscopic study. Phys. Chem. Chem. Phys., 2014, 16(42), 23308-23315.
[http://dx.doi.org/10.1039/C4CP03273J] [PMID: 25259383]
[57]
Mizuguchi, M.; Masaki, K.; Nitta, K. The molten globule state of a chimera of human alpha-lactalbumin and equine lysozyme. J. Mol. Biol., 1999, 292(5), 1137-1148.
[http://dx.doi.org/10.1006/jmbi.1999.3132] [PMID: 10512708]
[58]
Mizuguchi, M.; Arai, M.; Ke, Y.; Nitta, K.; Kuwajima, K. Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy. J. Mol. Biol., 1998, 283(1), 265-277.
[http://dx.doi.org/10.1006/jmbi.1998.2100] [PMID: 9761689]
[59]
Rose, J.; Eisenmenger, F. A fast unbiased comparison of protein structures by means of the Needleman-Wunsch algorithm. J. Mol. Evol., 1991, 32(4), 340-354.
[http://dx.doi.org/10.1007/BF02102193] [PMID: 1907667]
[60]
de Oliveira Pereira, F.; Mendes, J.M.; de Oliveira Lima, E. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med. Mycol., 2013, 51(5), 507-513.
[http://dx.doi.org/10.3109/13693786.2012.742966] [PMID: 23181601]
[61]
Campaniello, D.; Corbo, M.R.; Sinigaglia, M. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species. J. Food Prot., 2010, 73(6), 1124-1128.
[http://dx.doi.org/10.4315/0362-028X-73.6.1124] [PMID: 20537272]
[62]
Carrasco, H.; Raimondi, M.; Svetaz, L.; Di Liberto, M.; Rodriguez, M.V.; Espinoza, L.; Madrid, A.; Zacchino, S. Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules, 2012, 17(1), 1002-1024.
[http://dx.doi.org/10.3390/molecules17011002] [PMID: 22262200]
[63]
Park, M.; Do, E.; Jung, W.H. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology, 2013, 41(2), 67-72.
[http://dx.doi.org/10.5941/MYCO.2013.41.2.67] [PMID: 23874127]
[64]
Mnafgui, K.; Kaanich, F.; Derbali, A.; Hamden, K.; Derbali, F.; Slama, S.; Allouche, N.; Elfeki, A. Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats. Arch. Physiol. Biochem., 2013, 119(5), 225-233.
[http://dx.doi.org/10.3109/13813455.2013.822521] [PMID: 23886079]
[65]
Sompong, W.; Muangngam, N.; Kongpatpharnich, A.; Manacharoenlarp, C.; Amorworasin, C.; Suantawee, T.; Thilavech, T.; Adisakwattana, S. The inhibitory activity of herbal medicines on the keys enzymes and steps related to carbohydrate and lipid digestion. BMC Complement. Altern. Med., 2016, 16(1), 016-1424.
[http://dx.doi.org/10.1186/s12906-016-1424-2]
[66]
Frikha, F.; Miled, N.; Bacha, A.B.; Mejdoub, H.; Gargouri, Y. Structural homologies, importance for catalysis and lipid binding of the N-terminal peptide of a fungal and a pancreatic lipase. Protein Pept. Lett., 2010, 17(2), 254-259.
[http://dx.doi.org/10.2174/092986610790226049] [PMID: 20214648]
[67]
Veeraragavan, K.; Colpitts, T.; Gibbs, B.F. Purification and characterization of two distinct lipases from Geotrichum candidum. Biochim. Biophys. Acta, 1990, 1044(1), 26-33.
[http://dx.doi.org/10.1016/0005-2760(90)90214-I] [PMID: 2340308]
[68]
Sanei, H.; Asoodeh, A.; Hamedakbari-Tusi, S.; Chamani, J. Multi-spectroscopic investigations of aspirin and colchicine interactions with human hemoglobin: binary and ternary systems. J. Solution Chem., 2011, 40(11), 1905-1931.
[http://dx.doi.org/10.1007/s10953-011-9766-3]
[69]
Lissi, E.; Abuin, E. On the evaluation of the number of binding sites in proteins from steady state fluorescence measurements. J. Fluoresc., 2011, 21(5), 1831-1833.
[http://dx.doi.org/10.1007/s10895-011-0887-2] [PMID: 21484310]
[70]
Zheng, S.; Yang, S.; Cheng, X.; Bau, T.; Li, Y.; Zhang, R.; Bao, H. Fluorescence spectroscopy and molecular docking approach to probe the interaction between dehydroeburicoic acid and human serum albumin. Adv. Microbiol., 2019, 9(1), 17.
[http://dx.doi.org/10.4236/aim.2019.91003]
[71]
Dubey, K.; Anand, B.G.; Shekhawat, D.S.; Kar, K. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Sci. Rep., 2017, 7, 40744.
[http://dx.doi.org/10.1038/srep40744] [PMID: 28145454]
[72]
Singh, P.; Jayaramaiah, R.H.; Agawane, S.B.; Vannuruswamy, G.; Korwar, A.M.; Anand, A.; Dhaygude, V.S.; Shaikh, M.L.; Joshi, R.S.; Boppana, R.; Kulkarni, M.J.; Thulasiram, H.V.; Giri, A.P. potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: proteomic and mechanistic insights. Sci. Rep., 2016, 6(18798), 18798.
[http://dx.doi.org/10.1038/srep18798] [PMID: 26739611]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy