[2]
Tiberi, S.; Buchanan, R.; Carninero, J.A.; Centis, R.; Arbex, M.A.; Salazar, M.; Potter, J.; Migliori, G.B. The challenge of the new tuberculosis drugs. Presse Med., 2017, 46, e41-e51.
[3]
Gualano, G.; Capone, S.; Matteelli, A.; Palmieri, F. New antituberculosis drugs: From clinical trial to programmatic use. Infect. Dis. Reports., 2016, 8, 6569-6575.
[4]
Diacon, A.H.; Pym, A.; Grobusch, M.P. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N. Engl. J. Med., 2014, 371, 723-732.
[5]
Gler, M.T.; Skripconokova, V.; Sanchez-Garavito, E. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2012, 366, 2151-2160.
[6]
Manca, C.; Paul, S.; Barry, C.E., III; Freedman, V.H.; Kaplan, G. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun., 1999, 67, 74-79.
[7]
Zhao, X.; Yu, H.; Wang, F.; Sacchettini, J.C.; Magliozzo, R.S. Hydrogen peroxide mediated isoniazid activation catalysed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry, 2006, 45, 4131-4140.
[8]
Ng, V.H.; Cox, J.S.; Sousa, A.O.; MacMicking, J.D.; McKinney, J.D. Role of KatG catalase-peroxidase in mycobacterial pathogenisis: countering the phagocyte oxidative burst. Mol. Microbiol., 2004, 52, 1291-1302.
[9]
Zhang, Y.; Heym, B.; Allen, B.; Young, D.; Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 1992, 358, 591-593.
[10]
Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bacteriocidal antibiotics. Cell, 2007, 130, 797-810.
[11]
Barry, V.C.; Belton, J.G.; Conalty, M.L.; Den-Steny, J.M.; Edward, D.W.; O’Sullivan, J.F.; Twomey, D.; Winder, F. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957, 179, 1013-1015.
[12]
Yano, T.; Kassova-Bratinova, S.; The, J.S.; Winkler, J.; Sullivan, K.; Isaacs, A.; Schechter, N.M.; Rubin, H. Reduction of clofazimine by Mycobacterial type 2 NADH: Quinone Oxidoreductase. A pathway for the generation of bacteriocidal levels of reactive oxygen species. J. Biol. Chem., 2011, 286, 10276-10287.
[13]
Reddy, V.M.; O’Sullivan, J.F. Antimycobacterial activities of riminophenazines. J. Antimicrob. Chemother., 1999, 43, 615-623.
[14]
Barry, V.C.; Conalty, M.L. The antimycobacterial activity of B663. Lepr. Rev., 1965, 36, 3-7.
[15]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother., 2012, 67, 290-298.
[16]
Vilchèze, C.; Hartman, T.; Jacobs, W.R., Jr Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin-C induced Fenton reaction. Nat. Commun., 2013, 4, 1881.
[17]
Burkitt, M.J.; Gilbert, B.C. Model studies of the iron-catalysed Haber-Weiss cycle and the ascorbate driven Fenton reaction. Free Radic. Res. Commun., 1990, 10, 265-280.
[18]
Rutledge, C. Iron, Mycobacteria and tuberculosis. Tuberculosis , 2004, 84, 110-130.
[19]
Minato, Y.; Thiede, J.M.; Kordus, S.L.; McKlveen, E.J.; Turman, B.J.; Baughn, A.D. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob. Agents Chemother., 2015, 59, 5097-5106.
[20]
Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: A novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev., 2010, 39, 435-454.
[21]
Miller, M.J.; Walz, A.J.; Zhu, H.; Wu, C.; Moraski, G.; Möllmann, U.; Tristani, E.M.; Crumbliss, A.L.; Ferdig, M.T.; Checkley, L.; Edwards, R.L.; Boshoff, H.I. Design, synthesis and study of a mycobactin – artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J. Am. Chem. Soc., 2011, 133, 2076-2079.
[22]
Choi, W.H. Novel pharmacological activity of artesunate and artemisinin: their potential as anti-tubercular agents. J. Clin. Med., 2017, 6, 30-43.
[23]
Cantrell, C.L.; Rajab, M.S.; Franzblau, S.G.; Fronczek, F.R.; Fischer, N.H. Antimycobacterial ergosterol-5,8-endoperoxide from Ajuga remota. Planta Med., 1999, 65, 732-734.
[24]
Haynes, R.K.; Fugmann, B.; Stetter, J.; Riekmann, K.; Heilmann, H-D.; Chan, H-W.; Cheung, M-K.; Lam, W-L.; Wong, H-N.; Croft, S.L.; Vivas, L.; Rattray, L.; Stewart, L.; Peters, W.; Robinson, B.L.; Edstein, M.D.; Kotecka, B.; Kyle, D.E.; Beckermann, B.; Gerisch, M.; Radtke, M.; Schmuck, G.; Steinke, W.; Wollborn, U.; Schmeer, K.; Römer, A. Artemisone – a highly active antimalarial drug of the artemisinin class. Angew. Chemie., 2006, 118, 2136-2142.
[25]
Opsenica, I.; Opsenica, D.; Smith, K.S.; Šolaja, B.A. Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials. J. Med. Chem., 2008, 51, 2261-2266.
[26]
Šolaja, B.A.; Terzic, N.; Pocsfalvi, G.; Gerena, L.; Tinant, B.; Opsenica, D.; Milhous, W.K. Mixed steroidal 1,2,4,5-tetraoxanes: antimalarial and antimycobacterial activity. J. Med. Chem., 2002, 45, 3331-3336.
[27]
Woldemichael, G.M.; Franzblau, S.G.; Zhang, F.; Wang, Y.; Timmermann, B.N. Inhibitory effects of sterols from Ruprechtia triflora and diterpenes from Calceolaria pinnifolia on the growth of Mycobacterium tuberculosis. Planta Med., 2003, 69, 628-631.
[28]
Harshan, K.V.; Mittal, A.; Prasad, H.K.; Misra, R.S.; Chopra, N.K.; Nath, I. Uptake of purine and pyrimidine nucleosides by macrophage-resident Mycobacterium leprae: 3H-adenosine as an indicator of viability and antimicrobial activity. Int. J. Lepr. Other Mycobact. Dis., 1990, 58, 526-533.
[29]
Siddiqi, S.H.; Libonati, J.P.; Middlebrook, G. Evaluation of rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol., 1981, 13, 908-912.
[30]
Martin-Casabona, N.; Xairó Mimó, D.; González, T.; Rossello, J.; Arcalis, L. Rapid method for testing susceptibility of Mycobacterium tuberculosis by using DNA probes. J. Clin. Microbiol., 1997, 35, 2521-2525.
[31]
Saito, I.; Nagata, R.; Yuba, K.; Matsuura, T. Synthesis of α-silyloxyhydroperoxides from the reaction of silyl enol ethers and hydrogen peroxide. Tetrahedron Lett., 1983, 16, 1737-1740.
[32]
Perrin, D.D.; Armarego, W.L.F. Purification of laboratory chemicals (3/e); Pergamon Press: Oxford, 1994.
[33]
Chan, W.C.; Chan, D.H.W.; Lee, K.W.; Tin, W.S.; Wong, H.N.; Haynes, R.K. Evaluation and optimisation ofsynthetic routes from dihydroartemisinin to the alkylamino-artemisinins artemiside and artemisone: A test of N-glycosidation methodologies on a lipophilic peroxide. Tetrahedron, 2018, 74, 5156-5171.
[34]
Pavel, A.B.; Korolev, K.S. Genetic load makes cancer cells more sensitive to common drugs: Evidence from cancer cell line encyclopedia. Sci. Rep., 2017, 7, Article 1938.
[35]
Slezakova, S.; Ruda-Kucerova, J. Anticancer activity of artemisinin and its derivatives. Anticancer Res., 2017, 37, 5995-6003.
[36]
Das, A.K. Anticancer effect of anti-malarial artemisinin compounds. Ann. Med. Health Sci. Res., 2015, 5, 93-102.
[37]
Lai, H.; Sasaki, T.; Singh, N.P. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds. Expert Opin. Ther. Targets, 2005, 9, 995-1007.