Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Enzyme Immobilization on Metal-Organic Framework (MOF): Effects on Thermostability and Function

Author(s): Hassan Sher, Hazrat Ali, Muhammad H. Rashid*, Fariha Iftikhar, Saif-ur-Rehman, Muhammad S. Nawaz and Waheed S. Khan

Volume 26, Issue 9, 2019

Page: [636 - 647] Pages: 12

DOI: 10.2174/0929866526666190430120046

Price: $65

Abstract

MOFs are porous materials with adjustable porosity ensuing a tenable surface area and stability. MOFs consist of metal containing joint where organic ligands are linked with coordination bonding rendering a unique architecture favouring the diverse applications in attachment of enzymes, Chemical catalysis, Gases storage and separation, biomedicals. In the past few years immobilization of soluble enzymes on/in MOF has been the topic of interest for scientists working in diverse field. The activity of enzyme, reusability, storage, chemical and thermal stability, affinity with substrate can be greatly improved by immobilizing of enzyme on MOFs. Along with improvement in enzymes properties, the high loading of enzyme is also observed while using MOFs as immobilization support. In this review a detail study of immobilization on/in Metalorganic Frameworks (MOFs) have been described. Furthermore, strategies for the enzyme immobilization on MOFs and resulting in improved catalytic performance of immobilized enzymes have been reported.

Keywords: Nano-materials, MOF, chytosan, alginate, gelatin, immobilization, enzyme kinetics.

Graphical Abstract

[1]
Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: an update. J. Chem. Biol., 2013, 6(4), 185-205.
[http://dx.doi.org/10.1007/s12154-013-0102-9] [PMID: 24432134]
[2]
Ahmad, R.; Sardar, M. Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem., 2015, 4(2), 1.
[http://dx.doi.org/10.4172/2161-1009.1000178]
[3]
Karigar, C.S.; Rao, S.S. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res., 2011, 2011805187
[http://dx.doi.org/10.4061/2011/805187]
[4]
Li, C.; Jiang, S.; Zhao, X.; Liang, H. Co-immobilization of enzymes and magnetic nanoparticles by metal-nucleotide hydrogel nanofibers for improving stability and recycling. Molecules, 2017, 22(1), 179.
[http://dx.doi.org/10.3390/molecules22010179] [PMID: 28125003]
[5]
Zhu, Y-T.; Ren, X-Y.; Liu, Y-M.; Wei, Y.; Qing, L-S.; Liao, X. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays. Mater. Sci. Eng. C, 2014, 38, 278-285.
[http://dx.doi.org/10.1016/j.msec.2014.02.011] [PMID: 24656379]
[6]
Meng, X.; Xu, G.; Zhou, Q-L.; Wu, J-P.; Yang, L-R. Improvements of lipase performance in high-viscosity system by immobilization onto a novel kind of poly (methylmethacrylate-co-divinylbenzene) encapsulated porous magnetic microsphere carrier. J. Mol. Catal., B Enzym., 2013, 89, 86-92.
[http://dx.doi.org/10.1016/j.molcatb.2013.01.006]
[7]
Tran, D.N.; Balkus, K.J. Jr. Perspective of recent progress in immobilization of enzymes. ACS Catal., 2011, 1(8), 956-968.
[http://dx.doi.org/10.1021/cs200124a]
[8]
Garcia‐Galan, C.; Berenguer‐Murcia, Á.; Fernandez‐Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal., 2011, 353(16), 2885-2904.
[http://dx.doi.org/10.1002/adsc.201100534]
[9]
Nelson, J.; Griffin, E.G. Adsorption of invertase. J. Am. Chem. Soc., 1916, 38(5), 1109-1115.
[http://dx.doi.org/[https://doi.org/10.1021/ja02262a018]
[10]
Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev., 2013, 42(15), 6223-6235.
[http://dx.doi.org/10.1039/C3CS60075K] [PMID: 23532151]
[11]
Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv., 2015, 33(5), 435-456.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.006] [PMID: 25777494]
[12]
Flores-Maltos, A.; Rodríguez-Durán, L.V.; Renovato, J.; Contreras, J.C.; Rodríguez, R.; Aguilar, C.N. Catalytical properties of free and immobilized Aspergillus niger tannase. Enzyme Res., 2011, 2011768183
[http://dx.doi.org/10.4061/2011/768183]
[13]
Vaillant, F.; Millan, A.; Millan, P.; Dornier, M.; Decloux, M.; Reynes, M. Co-immobilized pectinlyase and endocellulase on chitin and nylon supports. Process Biochem., 2000, 35(9), 989-996.
[http://dx.doi.org/10.1016/S0032-9592(00)00131-X]
[14]
Kapoor, M.; Kuhad, R.C. Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Appl. Biochem. Biotechnol., 2007, 142(2), 125-138.
[http://dx.doi.org/10.1007/s12010-007-0013-8] [PMID: 18025574]
[15]
Girigowda, K.; Mulimani, V. Hydrolysis of galacto-oligosaccharides in soymilk by κ-carrageenan-entrapped α-galactosidase from Aspergillus oryzae. World J. Microbiol. Biotechnol., 2006, 22(5), 437-442.
[http://dx.doi.org/10.1007/s11274-005-9053-9]
[16]
Emregul, E.; Sungur, S.; Akbulut, U. Polyacrylamide–gelatine carrier system used for invertase immobilization. Food Chem., 2006, 97(4), 591-597.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.017]
[17]
Klein, M.P.; Scheeren, C.W.; Lorenzoni, A.S.G.; Dupont, J.; Frazzon, J.; Hertz, P.F. Ionic liquid-cellulose film for enzyme immobilization. Process Biochem., 2011, 46(6), 1375-1379.
[http://dx.doi.org/10.1016/j.procbio.2011.02.021]
[18]
Matto, M.; Husain, Q. Calcium alginate–starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. J. Mol. Catal., B Enzym., 2009, 57(1-4), 164-170.
[http://dx.doi.org/10.1016/j.molcatb.2008.08.011]
[19]
Jawaheer, S.; White, S.; Rughooputh, S.; Cullen, D.C. Enzyme stabilization using pectin as a novel entrapment matrix in biosensors. Anal. Lett., 2002, 35(13), 2077-2091.
[http://dx.doi.org/10.1081/AL-120014997]
[20]
Romaskevic, T.; Viskantiene, E.; Budriene, S.; Ramanaviciene, A.; Dienys, G. Immobilization of maltogenase onto polyurethane microparticles from poly (vinyl alcohol) and hexamethylene diisocyanate. J. Mol. Catal., B Enzym., 2010, 64(3-4), 172-176.
[http://dx.doi.org/10.1016/j.molcatb.2009.09.013]
[21]
Xiangli, Q.; Zhe, L.; Zhiwei, L.; Yinglin, Z.; Zhengjia, Z. Immobilization of activated sludge in poly (ethylene glycol) by UV technology and its application in micro-polluted wastewater. Biochem. Eng. J., 2010, 50(1-2), 71-76.
[http://dx.doi.org/10.1016/j.bej.2010.03.007]
[22]
Ashly, P.; Joseph, M.; Mohanan, P. Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem., 2011, 127(4), 1808-1813.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.068] [PMID: 25213960]
[23]
Hartmann, M.; Kostrov, X. Immobilization of enzymes on porous silicas--benefits and challenges. Chem. Soc. Rev., 2013, 42(15), 6277-6289.
[http://dx.doi.org/10.1039/c3cs60021a] [PMID: 23765193]
[24]
Datta, S.; Christena, L.R.; Rajaram, Y.R.S. Datta, S.; Christena, L.R.; Rajaram, Y.S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2013, 3(1), 1-9.
[http://dx.doi.org/10.1007%2Fs13205-012-0071-7] [PMID: 28324347]
[25]
Jia, H.; Zhu, G.; Wang, P. Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol. Bioeng., 2003, 84(4), 406-414.
[http://dx.doi.org/10.1002/bit.10781] [PMID: 14574697]
[26]
Verma, M.L.; Chaudhary, R.; Tsuzuki, T.; Barrow, C.J.; Puri, M. Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour. Technol., 2013, 135, 2-6.
[http://dx.doi.org/10.1016/j.biortech.2013.01.047] [PMID: 23419989]
[27]
Soleimani, M.; Khani, A.; Najafzadeh, K. α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal., B Enzym., 2012, 74(1-2), 1-5.
[http://dx.doi.org/10.1016/j.molcatb.2011.07.011]
[28]
Chen, Y.Z.; Yang, C.T.; Ching, C.B.; Xu, R. Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts. Langmuir, 2008, 24(16), 8877-8884.
[http://dx.doi.org/10.1021/la801384c] [PMID: 18656972]
[29]
Yang, H-H.; Zhang, S-Q.; Chen, X-L.; Zhuang, Z-X.; Xu, J-G.; Wang, X-R. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem., 2004, 76(5), 1316-1321.
[http://dx.doi.org/10.1021/ac034920m] [PMID: 14987087]
[30]
Kouassi, G.K.; Irudayaraj, J.; McCarty, G. Examination of cholesterol oxidase attachment to magnetic nanoparticles. J. Nanobiotechnology, 2005, 3(1), 1.
[http://dx.doi.org/10.1186/1477-3155-3-1] [PMID: 15661076]
[31]
Pandey, P.; Singh, S.P.; Arya, S.K.; Gupta, V.; Datta, M.; Singh, S.; Malhotra, B.D. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir, 2007, 23(6), 3333-3337.
[http://dx.doi.org/10.1021/la062901c] [PMID: 17261046]
[32]
Miletić, N.; Abetz, V.; Ebert, K.; Loos, K. Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromol. Rapid Commun., 2010, 31(1), 71-74.
[http://dx.doi.org/10.1002/marc.200900497] [PMID: 21590839]
[33]
Mishra, A.; Ahmad, R.; Singh, V.; Gupta, M.N.; Sardar, M. Preparation, characterization and biocatalytic activity of a nanoconjugate of alpha amylase and silver nanoparticles. J. Nanosci. Nanotechnol., 2013, 13(7), 5028-5033.
[http://dx.doi.org/10.1166/jnn.2013.7593] [PMID: 23901526]
[34]
Ahmad, R.; Khatoon, N.; Sardar, M. Biosynthesis, characterization and application of TiO2 nanoparticles in biocatalysis and protein folding. J. Proteins Proteomics, 2013, 4(2), 115-121.
[35]
Ahmad, R.; Sardar, M. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study. Indian J. Biochem. Biophys., 2014, 51(4), 314-320.
[PMID: 25296503]
[36]
Mikhaylova, M.; Kim, D.K.; Berry, C.C.; Zagorodni, A.; Toprak, M.; Curtis, A.S.; Muhammed, M. BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater., 2004, 16(12), 2344-2354.
[http://dx.doi.org/10.1021/cm0348904]
[37]
Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv., 2012, 30(3), 512-523.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.005] [PMID: 21963605]
[38]
Jia, H.; Zhu, G.; Vugrinovich, B.; Kataphinan, W.; Reneker, D.H.; Wang, P. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol. Prog., 2002, 18(5), 1027-1032.
[http://dx.doi.org/10.1021/bp020042m] [PMID: 12363353]
[39]
Diaz, J.F.; Balkus, K.J. Jr Enzyme immobilization in MCM-41 molecular sieve. J. Mol. Catal., B Enzym., 1996, 2(2-3), 115-126.
[http://dx.doi.org/10.1016/S1381-1177(96)00017-3]
[40]
Avnir, D.; Braun, S.; Lev, O.; Ottolenghi, M. Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater., 1994, 6(10), 1605-1614.
[http://dx.doi.org/10.1021/cm00046a008]
[41]
Luckarift, H.R.; Spain, J.C.; Naik, R.R.; Stone, M.O. Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol., 2004, 22(2), 211-213.
[http://dx.doi.org/10.1038/nbt931] [PMID: 14716316]
[42]
Kim, J.; Grate, J.W. Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett., 2003, 3(9), 1219-1222.
[http://dx.doi.org/10.1021/nl034404b]
[43]
Asuri, P.; Karajanagi, S.S.; Sellitto, E.; Kim, D.Y.; Kane, R.S.; Dordick, J.S. Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng., 2006, 95(5), 804-811.
[http://dx.doi.org/10.1002/bit.21016] [PMID: 16933322]
[44]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[45]
Gupta, M.N.; Kaloti, M.; Kapoor, M.; Solanki, K. Nanomaterials as matrices for enzyme immobilization. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(2), 98-109.
[http://dx.doi.org/10.3109/10731199.2010.516259] [PMID: 20958099]
[46]
Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Mahy, J-P.; Steunou, N.; Serre, C. Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater. Horiz., 2017, 4(1), 55-63.
[http://dx.doi.org/10.1039/C6MH00312E]
[47]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149)1230444
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[48]
Pettinari, C.; Marchetti, F.; Mosca, N.; Tosi, G.; Drozdov, A. Application of metal-organic frameworks. Polym. Int., 2017, 66(6), 731-744.
[http://dx.doi.org/10.1002/pi.5315]
[49]
Cheetham, A. K.; Rao, C.; Feller, R. K. Structural diversity and chemical trends in hybrid inorganic–organic framework materials. ChemComm, 2006, (46), 4780-4795.
[http://dx.doi.org/10.1039/B610264F]
[50]
Yaghi, O.; Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc., 1995, 117(41), 10401-10402.
[http://dx.doi.org/10.1021/ja00146a033]
[51]
Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-organic framework materials as catalysts. Chem. Soc. Rev., 2009, 38(5), 1450-1459.
[http://dx.doi.org/10.1039/b807080f] [PMID: 19384447]
[52]
Wong-Foy, A.G.; Matzger, A.J.; Yaghi, O.M. Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc., 2006, 128(11), 3494-3495.
[http://dx.doi.org/10.1021/ja058213h] [PMID: 16536503]
[53]
Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–organic framework materials as chemical sensors. Chem. Rev., 2011, 112(2), 1105-1125.
[http://dx.doi.org/[https://doi.org/10.1021/cr200324t]
[54]
Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Kim, K-H.; Deep, A. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coord. Chem. Rev., 2016, 322, 30-40.
[http://dx.doi.org/[https://doi.org/10.1016/j.ccr.2016.05.007]
[55]
Dey, C.; Kundu, T.; Biswal, B.P.; Mallick, A.; Banerjee, R. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2014, 70(Pt 1), 3-10.
[http://dx.doi.org/10.1107/S2052520613029557] [PMID: 24441122]
[56]
Kumar, P.; Bansal, V.; Deep, A.; Kim, K-H. Synthesis and energy applications of metal organic frameworks. J. Porous Mater., 2015, 22(2), 413-424.
[http://dx.doi.org/10.1007/s10934-015-9910-3]
[57]
Burnett, B.J.; Barron, P.M.; Choe, W. Recent advances in porphyrinic metal–organic frameworks: materials design, synthetic strategies, and emerging applications. CrystEngComm, 2012, 14(11), 3839-3846.
[http://dx.doi.org/10.1039/c2ce06692k]
[58]
Meek, S.T.; Greathouse, J.A.; Allendorf, M.D. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater., 2011, 23(2), 249-267.
[http://dx.doi.org/10.1002/adma.201002854] [PMID: 20972981]
[59]
Ni, Z.; Masel, R.I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc., 2006, 128(38), 12394-12395.
[http://dx.doi.org/10.1021/ja0635231] [PMID: 16984171]
[60]
Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 64(36), 8553-8557.
[http://dx.doi.org/10.1016/j.tet.2008.06.036]
[61]
Wu, X.; Hou, M.; Ge, J. Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catal. Sci. Technol., 2015, 5(12), 5077-5085.
[http://dx.doi.org/10.1039/C5CY01181G]
[62]
Pisklak, T.J.; Macías, M.; Coutinho, D.H.; Huang, R.S.; Balkus, K.J. Hybrid materials for immobilization of MP-11 catalyst. Top. Catal., 2006, 38(4), 269-278.
[http://dx.doi.org/10.1007/s11244-006-0025-6]
[63]
Lykourinou, V.; Chen, Y.; Wang, X-S.; Meng, L.; Hoang, T.; Ming, L-J.; Musselman, R.L.; Ma, S. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J. Am. Chem. Soc., 2011, 133(27), 10382-10385.
[http://dx.doi.org/10.1021/ja2038003] [PMID: 21682253]
[64]
Ma, W.; Jiang, Q.; Yu, P.; Yang, L.; Mao, L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem., 2013, 85(15), 7550-7557.
[http://dx.doi.org/10.1021/ac401576u] [PMID: 23815314]
[65]
Cao, Y.; Wu, Z.; Wang, T.; Xiao, Y.; Huo, Q.; Liu, Y. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification. Dalton Trans., 2016, 45(16), 6998-7003.
[http://dx.doi.org/10.1039/C6DT00677A] [PMID: 26988724]
[66]
Liu, W.L.; Yang, N.S.; Chen, Y.T.; Lirio, S.; Wu, C.Y.; Lin, C.H.; Huang, H.Y. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis. Chemistry, 2015, 21(1), 115-119.
[http://dx.doi.org/10.1002/chem.201405252] [PMID: 25384625]
[67]
Wang, X.; Lu, X.; Wu, L.; Chen, J. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens. Bioelectron., 2015, 65, 295-301.
[http://dx.doi.org/10.1016/j.bios.2014.10.010] [PMID: 25461172]
[68]
Liu, W.L.; Wu, C.Y.; Chen, C.Y.; Singco, B.; Lin, C.H.; Huang, H.Y. Fast multipoint immobilized MOF bioreactor. Chemistry, 2014, 20(29), 8923-8928.
[http://dx.doi.org/[https://doi.org/10.1002/chem.201400270] [PMID: 24954123]
[69]
Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol., 2007, 40(6), 1451-1463.
[http://dx.doi.org/10.1016/j.enzmictec.2007.01.018]
[70]
Jung, S.; Kim, Y.; Kim, S-J.; Kwon, T-H.; Huh, S.; Park, S. Bio-functionalization of metal-organic frameworks by covalent protein conjugation. Chem. Commun. (Camb.), 2011, 47(10), 2904-2906.
[http://dx.doi.org/10.1039/c0cc03288c] [PMID: 21240442]
[71]
Wang, W.; Wang, L.; Huang, Y.; Xie, Z.; Jing, X. Nanoscale metal-organic framework-hemoglobin conjugates. Chem. Asian J., 2016, 11(5), 750-756.
[http://dx.doi.org/10.1002/asia.201501216] [PMID: 26692560]
[72]
Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.C.; Liu, Z.; Asahina, S. Large-pore apertures in a series of metal-organic frameworks. Science, 2012, 336(6084), 1018-1023.
[http://dx.doi.org/[https://doi.org/10.1126/science.1220131] [PMID: 22628651]
[73]
Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett., 2014, 14(10), 5761-5765.
[http://dx.doi.org/10.1021/nl5026419] [PMID: 25211437]
[74]
Hou, C.; Wang, Y.; Ding, Q.; Jiang, L.; Li, M.; Zhu, W.; Pan, D.; Zhu, H.; Liu, M. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale, 2015, 7(44), 18770-18779.
[http://dx.doi.org/10.1039/C5NR04994F] [PMID: 26505865]
[75]
Nadar, S.S.; Rathod, V.K. Facile synthesis of glucoamylase embedded metal-organic frameworks (glucoamylase-MOF) with enhanced stability. Int. J. Biol. Macromol., 2017, 95, 511-519.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.084] [PMID: 27889341]
[76]
Pang, S.; Wu, Y.; Zhang, X.; Li, B.; Ouyang, J.; Ding, M. Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochem., 2016, 51(2), 229-239.
[http://dx.doi.org/10.1016/j.procbio.2015.11.033]
[77]
Nadar, S.S.; Rathod, V.K. Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme Microb. Technol., 2018, 108, 11-20.
[http://dx.doi.org/10.1016/j.enzmictec.2017.08.008] [PMID: 29108622]
[78]
Qi, B.; Luo, J.; Wan, Y. Immobilization of cellulase on a core-shell structured metal-organic framework composites: better inhibitors tolerance and easier recycling. Bioresour. Technol., 2018, 268, 577-582.
[http://dx.doi.org/10.1016/j.biortech.2018.07.115] [PMID: 30130719]
[79]
Samui, A.; Chowdhuri, A.R.; Mahto, T.K.; Sahu, S.K. Fabrication of a magnetic nanoparticle embedded NH 2-MIL-88B MOF hybrid for highly efficient covalent immobilization of lipase. RSC Advances, 2016, 6(71), 66385-66393.
[http://dx.doi.org/10.1039/C6RA10885G]
[80]
Wang, J.; Zhao, G.; Yu, F. Facile preparation of Fe3O4@ MOF core-shell microspheres for lipase immobilization. J Taiwan Inst Chem Eng., 2016, 69, 139-145.
[http://dx.doi.org/10.1016/j.jtice.2016.10.004]
[81]
Ren, Y.; Rivera, J.G.; He, L.; Kulkarni, H.; Lee, D-K.; Messersmith, P.B. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol., 2011, 11(1), 63.
[http://dx.doi.org/10.1186/1472-6750-11-63] [PMID: 21649934]
[82]
Xiang, X.; Suo, H.; Xu, C.; Hu, Y. Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent. Colloids Surf. B Biointerfaces, 2018, 165, 262-269.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.033] [PMID: 29499527]
[83]
Tripathi, P.; Kumari, A.; Rath, P.; Kayastha, A.M. Immobilization of α-amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: A comparative study. J. Mol. Catal., B Enzym., 2007, 49(1-4), 69-74.
[http://dx.doi.org/10.1016/j.molcatb.2007.08.011]
[84]
Talekar, S.; Chavare, S. Optimization of immobilization of α- amylase in alginate gel and its comparative biochemical studies with free α-amylase. Recent Res. Sci. Technol, 2012, 4(2)
[85]
Jaiswal, N.; Prakash, O. Immobilization of soybean α-amylase on gelatin and its application as a detergent additive. Asian J. Biochem., 2011, 6(4), 337-346.
[http://dx.doi.org/10.3923/ajb.2011.337.346]
[86]
Shukla, R.J.; Singh, S.P. Structural and catalytic properties of immobilized α-amylase from Laceyella sacchari TSI-2. Int. J. Biol. Macromol., 2016, 85, 208-216.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.079] [PMID: 26740465]
[87]
Cui, J.; Feng, Y.; Lin, T.; Tan, Z.; Zhong, C.; Jia, S. Mesoporous metal–organic framework with well-defined cruciate flower-like morphology for enzyme immobilization. ACS Appl. Mater. Interfaces, 2017, 9(12), 10587-10594.
[http://dx.doi.org/10.1021/acsami.7b00512] [PMID: 28281743]
[88]
Chiou, S-H.; Wu, W-T. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 2004, 25(2), 197-204.
[http://dx.doi.org/10.1016/S0142-9612(03)00482-4] [PMID: 14585707]
[89]
Chen, H.; Liu, L.; Lv, S.; Liu, X.; Wang, M.; Song, A.; Jia, X. Immobilization of Aspergillus niger xylanase on chitosan using dialdehyde starch as a coupling agent. Appl. Biochem. Biotechnol., 2010, 162(1), 24-32.
[http://dx.doi.org/10.1007/s12010-009-8790-x] [PMID: 19823778]
[90]
Kamburov, M.; Lalov, I. Preparation of chitosan beads for trypsin immobilization. Biotechnol. Biotechnol. Equip, 2012, 26(sup1). , 156-163.
[http://dx.doi.org/10.5504/50YRTIMB.2011.0029]
[91]
Bhushan, I.; Parshad, R.; Qazi, G.N.; Gupta, V.K. Immobilization of lipase by entrapment in Ca-alginate beads. J. Bioact. Compat. Polym., 2008, 23(6), 552-562.
[http://dx.doi.org/10.1177/0883911508097866]
[92]
Pal, A.; Khanum, F. Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochem., 2011, 46(6), 1315-1322.
[http://dx.doi.org/10.1016/j.procbio.2011.02.024]
[93]
Rehman, H.U.; Aman, A.; Silipo, A.; Qader, S.A.U.; Molinaro, A.; Ansari, A. Degradation of complex carbohydrate: immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chem., 2013, 139(1-4), 1081-1086.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.069] [PMID: 23561212]
[94]
Anwar, A.; Qader, S.A.U.; Raiz, A.; Iqbal, S.; Azhar, A. Calcium alginate: a support material for immobilization of proteases from newly isolated strain of Bacillus subtilis KIBGE-HAS. World Appl. Sci. J., 2009, 7(10), 1281-1286.
[95]
Tanriseven, A.; Ölçer, Z. A novel method for the immobilization of glucoamylase onto polyglutaraldehyde-activated gelatin. Biochem. Eng. J., 2008, 39(3), 430-434.
[http://dx.doi.org/10.1016/j.bej.2007.10.011]
[96]
Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W. Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem., 2011, 46(8), 1565-1571.
[http://dx.doi.org/10.1016/j.procbio.2011.04.010]
[97]
Huang, X-J.; Chen, P-C.; Huang, F.; Ou, Y.; Chen, M-R.; Xu, Z-K. Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J. Mol. Catal., B Enzym., 2011, 70(3-4), 95-100.
[http://dx.doi.org/10.1016/j.molcatb.2011.02.010]
[98]
Kumar, L.; Nagar, S.; Mittal, A.; Garg, N.; Gupta, V.K. Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices. J. Food Sci. Technol., 2014, 51(9), 1737-1749.
[http://dx.doi.org/10.1007/s13197-014-1268-z] [PMID: 25190829]
[99]
Dhavale, R.; Parit, S.; Sahoo, S.C.; Kollu, P.; Patil, P.; Patil, P.; Chougale, A. α-amylase immobilized on magnetic nanoparticles: reusable robust nano-biocatalyst for starch hydrolysis. Mater. Res. Express, 2018, 5(7)075403
[http://dx.doi.org/10.1088/2053-1591/aacef1]
[100]
Ladole, M.R.; Mevada, J.S.; Pandit, A.B. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresour. Technol., 2017, 239, 117-126.
[http://dx.doi.org/10.1016/j.biortech.2017.04.096] [PMID: 28501684]
[101]
Bayramoglu, G.; Doz, T.; Ozalp, V.C.; Arica, M.Y. Improvement stability and performance of invertase via immobilization on to silanized and polymer brush grafted magnetic nanoparticles. Food Chem., 2017, 221, 1442-1450.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.007] [PMID: 27979113]
[102]
Ali, Z.; Tian, L.; Zhao, P.; Zhang, B.; Ali, N.; Khan, M.; Zhang, Q. Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. J. Mol. Catal., B Enzym., 2016, 134, 129-135.
[http://dx.doi.org/10.1016/j.molcatb.2016.10.011]
[103]
Salgaonkar, M.; Nadar, S.S.; Rathod, V.K. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Int. J. Biol. Macromol., 2018, 113, 464-475.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.092] [PMID: 29458106]
[104]
Cao, S-L.; Yue, D-M.; Li, X-H.; Smith, T.J.; Li, N.; Zong, M-H.; Wu, H.; Ma, Y-Z.; Lou, W-Y. Novel nano-/micro-biocatalyst: soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents. ACS Sustain. Chem.& Eng., 2016, 4(6), 3586-3595.
[http://dx.doi.org/10.1021/acssuschemeng.6b00777]
[105]
Gascón, V.; Carucci, C.; Jiménez, M.B.; Blanco, R.M.; Sánchez-Sánchez, M.; Magner, E. Rapid in situ immobilization of enzymes in metal–organic framework supports under mild conditions. ChemCatChem, 2017, 9(7), 1182-1186.
[http://dx.doi.org/10.1002/cctc.201601342]
[106]
Ladole, M.R.; Mevada, J.S.; Pandit, A.B. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresour. Technol., 2017, 239, 117-126.
[http://dx.doi.org/10.1016/j.biortech.2017.04.096] [PMID: 28501684]
[107]
Atacan, K.; Çakıroğlu, B.; Özacar, M. Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chem., 2016, 212, 460-468.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.011] [PMID: 27374556]
[108]
Sohrabi, N.; Rasouli, N.; Torkzadeh, M. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles. Chem. Eng. J., 2014, 240, 426-433.
[http://dx.doi.org/10.1016/j.cej.2013.11.059]
[109]
Soozanipour, A.; Taheri-Kafrani, A.; Isfahani, A.L. Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem. Eng. J., 2015, 270, 235-243.
[http://dx.doi.org/10.1016/j.cej.2015.02.032]
[110]
Raghu, S.; Pennathur, G. Enhancing the stability of a carboxylesterase by entrapment in chitosan coated alginate beads. Turk. J. Biol., 2018, 42(4), 307-318.
[http://dx.doi.org/10.3906/biy-1805-28] [PMID: 30814894]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy