Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Preparation, Characterization, and Application of Ru-Silica-Ionic Liquid System for CO2 Hydrogenation Reaction

Author(s): Prashant Gautam, Praveenkumar Ramprakash Upadhyay and Vivek Srivastava*

Volume 17, Issue 6, 2020

Page: [443 - 454] Pages: 12

DOI: 10.2174/1570178616666190429150333

Price: $65

Abstract

A group of silica-ionic liquid supported Ru-based catalysts was synthesized and further utilized for CO2 hydrogenation reaction. All the materials were properly analyzed in terms of their physicochemical properties. The physiochemical impacts of different functionalized and non-functionalized ionic liquid over the synthesis, size, and stability of Ru NPs along with their effect on the rate of hydrogenation reaction were investigated. The Ru-[DAMI][NTf2] (1:10)@SiO2 furnished the best catalytic performance in CO2 conversion to formic acid under high-pressure reaction condition. The results confirmed the impact of ionic liquids as a repellent to avoid agglomeration and oxidation of the Ru nanoparticles followed by space resistance and electrostatic protection. Hence, such influence positively begins the rate of reaction as well as the selectivity of the process. Good physiochemical stability of catalyst in terms of 7-time catalyst recycling and easy product/catalyst isolation make this protocol near to the principal of sustainable chemistry.

Keywords: Silica-ionic liquid supported Ru metal, nanoparticles, ionic liquid, hydrogenation reaction, formic acid.

Graphical Abstract

[1]
Koytsoumpa, E.I.; Bergins, C.; Kakaras, E. J. Supercrit. Fluids, 2018, 132, 3-16.
[2]
Abu-Khader, M.M. Energy Sources. Part A, 2006, 28, 1261-1279.
[3]
Li, W.; Wang, H.; Jiang, X.; Zhu, J.; Liu, Z.; Guo, X.; Song, C. RSC Advances, 2018, 8, 7651-7669.
[4]
Chakravartula Srivatsa, S.; Bhattacharya, S. J. CO2 Util. 2018, 26, 397-407.
[5]
Chen, C.S.; Wu, J.H.; Lai, T.W. J. Phys. Chem., 2010, 114 35,15021-15028
[6]
Vesselli, E.; Schweicher, J.; Bundhoo, A.; Frennet, A.; Kruse, N.J. Phys. Chem. C,, 2011, 115, 1255-1260.
[7]
Quan, F.; Zhan, G.; Mao, C.; Ai, Z.; Jia, F.; Zhang, L.; Gub, H.; Liub, S. Catal. Sci. Technol., 2018, 8, 6503-6510.
[8]
Zhang, X.; Li, X.; Zhang, D.; Su, N.Q.; Yang, W.; Everitt, H.O.; Liu, J. Nat. Commun., 2017, 8, 1-9.
[9]
Upadhyay, P.R.; Srivastava, V. Catal. Lett., 2017, 147, 1051-1060.
[10]
Upadhyay, P.R.; Srivastava, V. RSC Adv, 2016, 6, 42297-42306.
[11]
Liu, L.; Corma, A. Chem. Rev., 2018, 118, 4981-5079.
[12]
Guo, X.; Peng, Z.; Traitangwong, A.; Wang, G.; Xu, H.; Meeyoo, V.; Li, C.; Zhang, S. Green Chem., 2018, 20, 4932-4945.
[13]
Richter, K.; Campbell, P.S.; Baecker, T.; Schimitzek, A.; Yaprak, D.; Mudring, A.-V. physica status solidi (b), 2013, 250, 1152-1164.
[14]
Hea, Z.; Alexandridis, P. Phys. Chem. Chem. Phys., 2015, 17, 18238-18261.
[15]
Zhao, X.; Hu, Y.; Liang, L.; Liu, C.; Liao, J.; Xing, W. Int. J. Hydrogen Energy, 2012, 37, 51-58.
[16]
Upadhyay, P.; Srivastava, V. Catal. Lett., 2016, 146, 12-21.
[17]
Srivastava, V. Catal. Lett., 2014, 144, 2221-2226.
[18]
Srivastava, V. Catal. Lett., 2014, 144, 1745-1750.
[19]
Weilhard, A.; Qadir, M.I.; Sans, V. Dupont. J. ACS Catal., 2018, 8, 1628-1634.
[20]
Zhang, Z.; Hu, S.; Song, J.; Li, W.; Yang, G.; Han, B. ChemSusChem, 2009, 23, 234-238.
[21]
Aghaie, M.; Rezaei, N.; Zendehboudi, S. Renew. Sust. Energy Rev., 2018, 96, 502-525.
[22]
Han, Y.; Lu, Z.; Teng, Z.; Liang, J.; Guo, Z.; Wang, D.; Han, M-Y.; Yang, W. Langmuir, 2017, 33, 5879-5890.
[23]
Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzán, L.M. J. Colloid Interface Sci., 2005, 283, 392-396.
[24]
Rao, K.S.; El-Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K. J. Colloid Interface Sci., 2005, 289, 125-131.
[25]
Liu, J.; Bing, W.; Xue, X.; Wang, F.; Wang, B.; He, S.; Zhang, Y.; Wei, M. Catal. Sci. Technol., 2016, 6, 3976-3983.
[26]
Yan, Y.; Dai, Y.; He, H.; Yu, Y.; Yang, Y. Appl. Catal. B, 2016, 196, 108-116.
[27]
Tada, S.; Shimizu, T.; Kameyama, H.; Haneda, T.; Kikuchi, R. Int. J. Hydrogen Energy, 2012, 37, 5527-5531.
[28]
Scholten, J.D.; Leal, B.C.; Dupont, J. ACS Catal., 2012, 2, 184-200.
[29]
Pârvulescu, V.I.; Hardacre, C. Chem. Rev., 2007, 107, 2615-2665.
[30]
Migowski, P.; Dupont, J. Chem. Eur. J.,, 2007, 13, 32-39.
[31]
Munshi, P.; Main, A.D.; Linehan, J.C.; Tai, C-C.; Jessop, P.G. J. Am. Chem. Soc., 2002, 124, 7963-7971.
[32]
Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc., 2009, 131, 14168-14169.
[33]
Jessop, P.G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc., 1996, 118, 344-355.
[34]
Tai, C.C.; Chang, T.; Roller, B.; Jessop, P.G. Inorg. Chem., 2003, 42, 7340-7341.
[35]
Molnar, A.; Papp, A. Coord. Chem. Rev., 2017, 349, 1-65.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy